| @@ -172,6 +172,8 @@ using TransposeCost = ActivationCost; | |||
| using TransposeCostPtr = std::shared_ptr<TransposeCost>; | |||
| using StridedSliceCost = ActivationCost; | |||
| using StridedSliceCostPtr = std::shared_ptr<StridedSliceCost>; | |||
| using SplitCost = ActivationCost; | |||
| using SplitCostPtr = std::shared_ptr<SplitCost>; | |||
| class SoftmaxCost : public OperatorCost { | |||
| public: | |||
| @@ -203,8 +205,8 @@ using PackCost = TileCost; | |||
| using PackCostPtr = std::shared_ptr<PackCost>; | |||
| using ConcatCost = TileCost; | |||
| using ConcatCostPtr = std::shared_ptr<ConcatCost>; | |||
| using SplitCost = TileCost; | |||
| using SplitCostPtr = std::shared_ptr<SplitCost>; | |||
| using BroadcastToCost = SoftmaxCost; | |||
| using BroadcastToCostPtr = std::shared_ptr<BroadcastToCost>; | |||
| class TmpIdentityCost : public OperatorCost { | |||
| public: | |||
| @@ -176,6 +176,7 @@ REGISTER(SquareInfo); | |||
| REGISTER(GatherV2PInfo); | |||
| REGISTER(EmbeddingLookupInfo); | |||
| REGISTER(TileInfo); | |||
| REGISTER(BroadcastToInfo); | |||
| REGISTER(StridedSliceInfo); | |||
| REGISTER(DropoutInfo); | |||
| REGISTER(PackInfo); | |||
| @@ -0,0 +1,265 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "frontend/parallel/ops_info/broadcast_to_info.h" | |||
| #include <algorithm> | |||
| #include <memory> | |||
| #include <utility> | |||
| #include <vector> | |||
| #include "frontend/parallel/device_matrix.h" | |||
| #include "frontend/parallel/strategy.h" | |||
| #include "frontend/parallel/tensor_layout/tensor_redistribution.h" | |||
| #include "pipeline/jit/resource.h" | |||
| #include "frontend/parallel/graph_util/generate_graph.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| Status BroadcastToInfo::GetAttrs() { | |||
| out_shape_.clear(); | |||
| auto shape_iter = attrs_.find(SHAPE); | |||
| if (shape_iter != attrs_.end()) { | |||
| MS_EXCEPTION_IF_NULL(shape_iter->second); | |||
| auto var = shape_iter->second->cast<ValueTuplePtr>(); | |||
| if (var == nullptr) { | |||
| MS_LOG(ERROR) << name_ << ": shape format is wrong! Need ValueSequeue"; | |||
| return FAILED; | |||
| } | |||
| for (auto &ele : var->value()) { | |||
| if (!ele->isa<Int32Imm>()) { | |||
| MS_LOG(ERROR) << name_ << ": The element of shape must be int"; | |||
| return FAILED; | |||
| } | |||
| out_shape_.push_back(static_cast<int64_t>(GetValue<int>(ele))); | |||
| } | |||
| } else { | |||
| MS_LOG(ERROR) << name_ << ": Can not find the shape attr"; | |||
| return FAILED; | |||
| } | |||
| if (out_shape_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": shape cannot be empty"; | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status BroadcastToInfo::CheckStrategy(const StrategyPtr &strategy) { | |||
| MS_EXCEPTION_IF_NULL(strategy); | |||
| if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Invalid strategy"; | |||
| return FAILED; | |||
| } | |||
| auto stra = strategy->GetInputDim().at(0); | |||
| auto in_shape = inputs_shape_.at(0); | |||
| for (size_t i = 0; i < stra.size(); ++i) { | |||
| if ((in_shape[i] == 1) && (stra[i] != 1)) { | |||
| MS_LOG(ERROR) << name_ << ": dimension with size 1 is not splitable."; | |||
| return FAILED; | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status BroadcastToInfo::InferDevMatrixShape() { | |||
| MS_EXCEPTION_IF_NULL(strategy_); | |||
| std::vector<Dimensions> stra = strategy_->GetInputDim(); | |||
| if (stra.empty()) { | |||
| MS_LOG(ERROR) << name_ << "The strategy is empty"; | |||
| return FAILED; | |||
| } | |||
| dev_matrix_shape_ = stra[0]; | |||
| return SUCCESS; | |||
| } | |||
| Status BroadcastToInfo::InferTensorMap() { | |||
| TensorMap in_tensor_map; | |||
| TensorMap out_tensor_map; | |||
| if (inputs_shape_.empty()) { | |||
| MS_LOG(ERROR) << name_ << "The inputs shape is empty"; | |||
| return FAILED; | |||
| } | |||
| int32_t size = SizeToInt(inputs_shape_[0].size()); | |||
| for (int i = 0; i < size; ++i) { | |||
| in_tensor_map.push_back(size - i - 1); | |||
| } | |||
| inputs_tensor_map_.push_back(in_tensor_map); | |||
| size_t len_diff = outputs_shape_.at(0).size() - inputs_shape_.at(0).size(); | |||
| for (size_t i = 0; i < len_diff; ++i) { | |||
| out_tensor_map.push_back(MAP_NONE); | |||
| } | |||
| std::copy(in_tensor_map.begin(), in_tensor_map.end(), std::back_inserter(out_tensor_map)); | |||
| outputs_tensor_map_.push_back(out_tensor_map); | |||
| return SUCCESS; | |||
| } | |||
| Status BroadcastToInfo::InferMirrorOps() { | |||
| mirror_ops_.clear(); | |||
| if (inputs_tensor_map_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty"; | |||
| return FAILED; | |||
| } | |||
| Shape input_tensor_map = inputs_tensor_map_[0]; | |||
| std::vector<Group> group; | |||
| if (CreateGroupByTensorMap(input_tensor_map, &group) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Create group for input failed."; | |||
| return FAILED; | |||
| } | |||
| if (group.empty()) { | |||
| MS_LOG(INFO) << name_ << ": The mirror group is empty."; | |||
| return SUCCESS; | |||
| } | |||
| OperatorVector input_op; | |||
| input_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum()); | |||
| mirror_ops_.push_back(input_op); | |||
| return SUCCESS; | |||
| } | |||
| Status BroadcastToInfo::InferTensorInfo() { | |||
| if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": Invalid args"; | |||
| return FAILED; | |||
| } | |||
| TensorLayout input_layout, output_layout; | |||
| // infer tensor layout | |||
| if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed."; | |||
| return FAILED; | |||
| } | |||
| TensorInfo input_tensor_info(input_layout); | |||
| inputs_tensor_info_.push_back(input_tensor_info); | |||
| if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed."; | |||
| return FAILED; | |||
| } | |||
| TensorInfo output_tensor_info(output_layout); | |||
| outputs_tensor_info_.push_back(output_tensor_info); | |||
| return SUCCESS; | |||
| } | |||
| Status BroadcastToInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); } | |||
| Status BroadcastToInfo::GenerateStrategies(int32_t stage_id) { | |||
| if (InferAttrs() != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Infer attrs failed"; | |||
| return FAILED; | |||
| } | |||
| if (inputs_shape_.empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The inputs shape is empty"; | |||
| return FAILED; | |||
| } | |||
| Shape input_split; | |||
| for (size_t i = 0; i < inputs_shape_[0].size(); ++i) { | |||
| if (inputs_shape_[0][i] == 1) { | |||
| input_split.push_back(0); | |||
| } else { | |||
| input_split.push_back(1); | |||
| } | |||
| } | |||
| // to generate the first input's strategy | |||
| Shapes splittable_input = {input_split}; | |||
| Shapes tmp_inputs_shape = {inputs_shape_[0]}; | |||
| std::vector<StrategyPtr> sp_vector; | |||
| if (GenerateStrategiesForIndependentInputs(stage_id, tmp_inputs_shape, splittable_input, &sp_vector) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Generate strategies failed"; | |||
| return FAILED; | |||
| } | |||
| // the others strategies are equal to the first input's strategy | |||
| for (auto &sp : sp_vector) { | |||
| if ((sp == nullptr) || sp->GetInputDim().empty()) { | |||
| MS_LOG(ERROR) << name_ << ": The strategy is null or empty"; | |||
| return FAILED; | |||
| } | |||
| Strategys tmp_strategy; | |||
| Dimensions first_input_strategy = sp->GetInputDim()[0]; | |||
| for (size_t i = 0; i < inputs_shape_.size(); ++i) { | |||
| tmp_strategy.push_back(first_input_strategy); | |||
| } | |||
| sp->ResetInputs(tmp_strategy); | |||
| } | |||
| size_t success = 0; | |||
| for (auto &sp : sp_vector) { | |||
| PrintStrategy(sp); | |||
| if (SetCostUnderStrategy(sp) == SUCCESS) { | |||
| success++; | |||
| MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy."; | |||
| PrintStrategy(sp); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status BroadcastToInfo::ComputeReplaceGraph(const CNodePtr &cnode) { | |||
| GenerateGraph gen_g = GenerateGraph(); | |||
| if (gen_g.Init(cnode) != SUCCESS) { | |||
| MS_LOG(ERROR) << "GenerateGraph Init failed"; | |||
| return FAILED; | |||
| } | |||
| Shape to_shape = outputs_tensor_info_[0].slice_shape(); | |||
| Attr attr_shape = std::make_pair(SHAPE, MakeValue(to_shape)); | |||
| OperatorAttrs attrs = {attr_shape}; | |||
| auto new_broadcast_to = gen_g.PushBack({gen_g.NewOpInst(BROADCAST_TO, attrs), gen_g.virtual_input_node()}); | |||
| std::vector<std::pair<AnfNodePtr, int>> input_nodes = {std::make_pair(new_broadcast_to, 1)}; | |||
| replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int>>, AnfNodePtr>>( | |||
| std::make_pair(input_nodes, new_broadcast_to)); | |||
| return SUCCESS; | |||
| } | |||
| ReplaceGraphPtr BroadcastToInfo::replace_graph(const CNodePtr &cnode) { | |||
| if (ComputeReplaceGraph(cnode) != SUCCESS) { | |||
| MS_LOG(EXCEPTION) << name_ << ": ComputeReplaceGraph failed."; | |||
| } | |||
| return replace_graph_; | |||
| } | |||
| Status BroadcastToInfo::Init(const StrategyPtr &strategy) { | |||
| if (InitWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Init failed."; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << ": Init success."; | |||
| return SUCCESS; | |||
| } | |||
| Status BroadcastToInfo::InitForCostModel(const StrategyPtr &strategy) { | |||
| if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Init for cost model failed."; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << ": Init for cost model success."; | |||
| return SUCCESS; | |||
| } | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,64 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_BROADCAST_TO_INFO_H_ | |||
| #define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_BROADCAST_TO_INFO_H_ | |||
| #include <string> | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include "ir/value.h" | |||
| #include "frontend/parallel/auto_parallel/operator_costmodel.h" | |||
| #include "frontend/parallel/ops_info/operator_info.h" | |||
| #include "frontend/parallel/strategy.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| /* | |||
| * Limitation: Dimensions with size 1 can't be splited. | |||
| */ | |||
| class BroadcastToInfo : public OperatorInfo { | |||
| public: | |||
| BroadcastToInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape, | |||
| const PrimitiveAttrs &attrs) | |||
| : OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<BroadcastToCost>(false)) {} | |||
| ~BroadcastToInfo() override = default; | |||
| Status Init(const StrategyPtr &strategy) override; | |||
| Status InitForCostModel(const StrategyPtr &strategy) override; | |||
| Status GenerateStrategies(int32_t) override; | |||
| Status SetCostUnderStrategy(const StrategyPtr &) override; | |||
| ReplaceGraphPtr replace_graph(const CNodePtr &cnode) override; | |||
| protected: | |||
| Status GetAttrs() override; | |||
| Status CheckStrategy(const StrategyPtr &strategy) override; | |||
| Status InferMirrorOps() override; | |||
| Status InferForwardCommunication() override { return SUCCESS; } | |||
| Status InferTensorInfo() override; | |||
| Status InferDevMatrixShape() override; | |||
| Status InferTensorMap() override; | |||
| Status ComputeReplaceGraph(const CNodePtr &cnode); | |||
| private: | |||
| Shape out_shape_; | |||
| }; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_BROADCAST_TO_INFO_H_ | |||
| @@ -42,5 +42,6 @@ | |||
| #include "frontend/parallel/ops_info/concat_info.h" | |||
| #include "frontend/parallel/ops_info/split_info.h" | |||
| #include "frontend/parallel/ops_info/pack_info.h" | |||
| #include "frontend/parallel/ops_info/broadcast_to_info.h" | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_ | |||
| @@ -222,6 +222,7 @@ constexpr char GATHERV2[] = "GatherV2"; | |||
| constexpr char SPARSE_GATHERV2[] = "SparseGatherV2"; | |||
| constexpr char STRIDEDSLICE[] = "StridedSlice"; | |||
| constexpr char BROADCAST[] = "Broadcast"; | |||
| constexpr char BROADCAST_TO[] = "BroadcastTo"; | |||
| constexpr char SQRT[] = "Sqrt"; | |||
| constexpr char ASSIGN[] = "Assign"; | |||
| constexpr char GET_NEXT[] = "GetNext"; | |||
| @@ -265,7 +265,7 @@ bool IsSplittableOperator(const std::string &op_name) { | |||
| LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, CONCAT, | |||
| STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT, | |||
| SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, | |||
| EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT}; | |||
| EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT, BROADCAST_TO}; | |||
| // clang-format on | |||
| auto iter = splittable_op.find(op_name); | |||
| @@ -0,0 +1,112 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore as ms | |||
| import mindspore.context as context | |||
| from mindspore import Tensor, Parameter | |||
| import mindspore.nn as nn | |||
| from mindspore.common.api import _executor | |||
| from mindspore.nn import TrainOneStepCell, Momentum | |||
| from mindspore.ops import operations as P | |||
| class Net(nn.Cell): | |||
| def __init__(self, weight1, strategy1=None, strategy2=None, is_parameter=True): | |||
| super(Net, self).__init__() | |||
| self.shape = (8, 48, 64) | |||
| self.broadcast = P.BroadcastTo(self.shape).shard(strategy1) | |||
| self.mul = P.Mul().shard(strategy2) | |||
| if is_parameter: | |||
| self.weight1 = Parameter(weight1, "w1") | |||
| else: | |||
| self.weight1 = weight1 | |||
| def construct(self, x): | |||
| out = self.broadcast(self.weight1) | |||
| out = self.mul(x, out) | |||
| return out | |||
| class MatMulNet(nn.Cell): | |||
| def __init__(self, weight1, strategy1=None, strategy2=None, strategy3=None, is_parameter=True): | |||
| super(MatMulNet, self).__init__() | |||
| self.shape = (8, 64, 64) | |||
| self.broadcast = P.BroadcastTo(self.shape).shard(strategy1) | |||
| self.matmul = P.BatchMatMul().shard(strategy2) | |||
| self.mul = P.Mul().shard(strategy3) | |||
| if is_parameter: | |||
| self.weight1 = Parameter(weight1, "w1") | |||
| else: | |||
| self.weight1 = weight1 | |||
| def construct(self, x1, x2): | |||
| out = self.broadcast(x2) | |||
| out = self.matmul(x1, out) | |||
| out = self.mul(out, self.weight1) | |||
| return out | |||
| _w1 = Tensor(np.ones([1, 48, 64]), dtype=ms.float32) | |||
| _x1 = Tensor(np.ones([8, 48, 64]), dtype=ms.float32) | |||
| _x2 = Tensor(np.ones([64, 64]), dtype=ms.float32) | |||
| def compile_net(net): | |||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| train_net = TrainOneStepCell(net, optimizer) | |||
| train_net.set_auto_parallel() | |||
| _executor.compile(train_net, _x1) | |||
| context.reset_auto_parallel_context() | |||
| def compile_net2(net): | |||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| train_net = TrainOneStepCell(net, optimizer) | |||
| train_net.set_auto_parallel() | |||
| _executor.compile(train_net, _x1, _x2) | |||
| context.reset_auto_parallel_context() | |||
| def test_BroadcastTo_parameter(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 4, 2),) | |||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||
| net = Net(_w1, strategy1, strategy2) | |||
| compile_net(net) | |||
| def test_BroadcastTo_parameter_no_full(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((1, 2, 2),) | |||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||
| net = Net(_w1, strategy1, strategy2) | |||
| compile_net(net) | |||
| def test_BroadcastTo_auto_parallel(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| net = Net(_w1) | |||
| compile_net(net) | |||
| def test_BroadcastTo_matmul(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((2, 4),) | |||
| strategy2 = ((1, 1, 2), (1, 2, 4)) | |||
| strategy3 = ((1, 2, 4), (1, 2, 4)) | |||
| net = MatMulNet(_w1, strategy1, strategy2, strategy3) | |||
| compile_net2(net) | |||