| @@ -29,7 +29,7 @@ from mindspore import nn, Tensor, ParameterTuple, Parameter | |||||
| from mindspore.common.initializer import Uniform, initializer | from mindspore.common.initializer import Uniform, initializer | ||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig | from mindspore.train.callback import ModelCheckpoint, CheckpointConfig | ||||
| from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_gradients_mean | from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_gradients_mean | ||||
| from mindspore.train.parallel_utils import ParallelMode | |||||
| from mindspore.context import ParallelMode | |||||
| from mindspore.nn.wrap.grad_reducer import DistributedGradReducer | from mindspore.nn.wrap.grad_reducer import DistributedGradReducer | ||||
| from src.callback import EvalCallBack, LossCallBack | from src.callback import EvalCallBack, LossCallBack | ||||
| @@ -270,7 +270,7 @@ class TrainStepWrap(nn.Cell): | |||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| self.optimizer = Adam(self.weights, learning_rate=lr, eps=eps, loss_scale=loss_scale) | self.optimizer = Adam(self.weights, learning_rate=lr, eps=eps, loss_scale=loss_scale) | ||||
| self.hyper_map = C.HyperMap() | self.hyper_map = C.HyperMap() | ||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||||
| self.sens = loss_scale | self.sens = loss_scale | ||||
| self.reducer_flag = False | self.reducer_flag = False | ||||