| @@ -446,7 +446,9 @@ Tensor::Tensor(const Tensor &tensor) | |||||
| event_(tensor.event_), | event_(tensor.event_), | ||||
| sync_status_(tensor.sync_status_), | sync_status_(tensor.sync_status_), | ||||
| device_sync_(tensor.device_sync_), | device_sync_(tensor.device_sync_), | ||||
| padding_type_(tensor.padding_type()) {} | |||||
| padding_type_(tensor.padding_type()) { | |||||
| CheckShape(tensor.shape_); | |||||
| } | |||||
| Tensor::Tensor(const Tensor &tensor, TypeId data_type) | Tensor::Tensor(const Tensor &tensor, TypeId data_type) | ||||
| : MetaTensor(data_type, tensor.shape_), | : MetaTensor(data_type, tensor.shape_), | ||||
| @@ -456,29 +458,43 @@ Tensor::Tensor(const Tensor &tensor, TypeId data_type) | |||||
| event_(tensor.event_), | event_(tensor.event_), | ||||
| sync_status_(tensor.sync_status_), | sync_status_(tensor.sync_status_), | ||||
| device_sync_(tensor.device_sync_), | device_sync_(tensor.device_sync_), | ||||
| padding_type_(tensor.padding_type()) {} | |||||
| padding_type_(tensor.padding_type()) { | |||||
| CheckShape(tensor.shape_); | |||||
| } | |||||
| Tensor::Tensor(TypeId data_type, const ShapeVector &shape, TensorDataPtr data) | Tensor::Tensor(TypeId data_type, const ShapeVector &shape, TensorDataPtr data) | ||||
| : MetaTensor(data_type, shape), data_(std::move(data)), id_(MakeId()) {} | |||||
| : MetaTensor(data_type, shape), data_(std::move(data)), id_(MakeId()) { | |||||
| CheckShape(shape); | |||||
| } | |||||
| Tensor::Tensor(TypeId data_type, const ShapeVector &shape) | Tensor::Tensor(TypeId data_type, const ShapeVector &shape) | ||||
| : Tensor(data_type, shape, MakeTensorData(data_type, shape)) {} | |||||
| : Tensor(data_type, shape, MakeTensorData(data_type, shape)) { | |||||
| CheckShape(shape); | |||||
| } | |||||
| Tensor::Tensor(TypeId data_type, const ShapeVector &shape, void *data, size_t data_len) | Tensor::Tensor(TypeId data_type, const ShapeVector &shape, void *data, size_t data_len) | ||||
| : Tensor(data_type, shape, MakeTensorData(data_type, shape, data, data_len)) {} | |||||
| : Tensor(data_type, shape, MakeTensorData(data_type, shape, data, data_len)) { | |||||
| CheckShape(shape); | |||||
| } | |||||
| Tensor::Tensor(TypeId data_type, const ShapeVector &shape, void *data, TypeId src_data_type) | Tensor::Tensor(TypeId data_type, const ShapeVector &shape, void *data, TypeId src_data_type) | ||||
| : Tensor(data_type, shape, MakeTensorData(data_type, shape, data, src_data_type)) {} | |||||
| : Tensor(data_type, shape, MakeTensorData(data_type, shape, data, src_data_type)) { | |||||
| CheckShape(shape); | |||||
| } | |||||
| Tensor::Tensor(const std::vector<int64_t> &input, const TypePtr &data_type) | Tensor::Tensor(const std::vector<int64_t> &input, const TypePtr &data_type) | ||||
| : MetaTensor(TypeIdOf(data_type, kNumberTypeInt32), {static_cast<int>(input.size())}), | : MetaTensor(TypeIdOf(data_type, kNumberTypeInt32), {static_cast<int>(input.size())}), | ||||
| data_(MakeTensorData(data_type_, shape_, input.data(), input.size())), | data_(MakeTensorData(data_type_, shape_, input.data(), input.size())), | ||||
| id_(MakeId()) {} | |||||
| id_(MakeId()) { | |||||
| CheckShape(shape_); | |||||
| } | |||||
| Tensor::Tensor(const std::vector<double> &input, const TypePtr &data_type) | Tensor::Tensor(const std::vector<double> &input, const TypePtr &data_type) | ||||
| : MetaTensor(TypeIdOf(data_type, kNumberTypeFloat32), {static_cast<int>(input.size())}), | : MetaTensor(TypeIdOf(data_type, kNumberTypeFloat32), {static_cast<int>(input.size())}), | ||||
| data_(MakeTensorData(data_type_, shape_, input.data(), input.size())), | data_(MakeTensorData(data_type_, shape_, input.data(), input.size())), | ||||
| id_(MakeId()) {} | |||||
| id_(MakeId()) { | |||||
| CheckShape(shape_); | |||||
| } | |||||
| Tensor::Tensor(int64_t input, const TypePtr &data_type) | Tensor::Tensor(int64_t input, const TypePtr &data_type) | ||||
| : MetaTensor(TypeIdOf(data_type, kNumberTypeInt32), {}), | : MetaTensor(TypeIdOf(data_type, kNumberTypeInt32), {}), | ||||
| @@ -497,6 +513,7 @@ bool Tensor::operator==(const Tensor &tensor) const { | |||||
| bool Tensor::ValueEqual(const Tensor &tensor) const { | bool Tensor::ValueEqual(const Tensor &tensor) const { | ||||
| return (&tensor == this || (MetaTensor::operator==(tensor) && data_->equals(*tensor.data_))); | return (&tensor == this || (MetaTensor::operator==(tensor) && data_->equals(*tensor.data_))); | ||||
| } | } | ||||
| // assgin value to this tensor | // assgin value to this tensor | ||||
| Tensor &Tensor::AssignValue(const Tensor &tensor) { | Tensor &Tensor::AssignValue(const Tensor &tensor) { | ||||
| if (this != &tensor) { | if (this != &tensor) { | ||||
| @@ -573,6 +590,17 @@ std::string Tensor::ToStringRepr() const { | |||||
| return buf.str(); | return buf.str(); | ||||
| } | } | ||||
| void Tensor::CheckShape(const ShapeVector &shape) const { | |||||
| // Check tensor's shape, ignore one-dimensional tensor, including empty tensor with shape=(0,). | |||||
| if (shape.size() > 1) { | |||||
| for (const auto &s : shape) { | |||||
| if (s == 0) { | |||||
| MS_EXCEPTION(ValueError) << "Zero is not supported in the shape of Tensor !"; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void Tensor::data_sync(bool need_wait) const { | void Tensor::data_sync(bool need_wait) const { | ||||
| if (need_wait) { | if (need_wait) { | ||||
| Wait(); | Wait(); | ||||
| @@ -261,6 +261,8 @@ class Tensor : public MetaTensor { | |||||
| std::string ToStringRepr() const; | std::string ToStringRepr() const; | ||||
| void CheckShape(const ShapeVector &shape) const; | |||||
| bool is_init() const { return init_flag_; } | bool is_init() const { return init_flag_; } | ||||
| void set_init_flag(bool flag) { init_flag_ = flag; } | void set_init_flag(bool flag) { init_flag_ = flag; } | ||||
| @@ -33,11 +33,6 @@ class TensroAdd(nn.Cell): | |||||
| self.add = P.TensorAdd() | self.add = P.TensorAdd() | ||||
| self.x = Parameter(initializer( | |||||
| Tensor(np.random.randn(2, 0).astype(np.float32)), [2, 0]), name='x') | |||||
| self.y = Parameter(initializer( | |||||
| Tensor(np.random.randn(2, 1).astype(np.float32)), [2, 1]), name='y') | |||||
| self.x1 = Parameter(initializer( | self.x1 = Parameter(initializer( | ||||
| Tensor(np.arange(3).reshape(3).astype(np.float32)), [3]), name='x1') | Tensor(np.arange(3).reshape(3).astype(np.float32)), [3]), name='x1') | ||||
| self.y1 = Parameter(initializer( | self.y1 = Parameter(initializer( | ||||
| @@ -55,20 +50,17 @@ class TensroAdd(nn.Cell): | |||||
| @ms_function | @ms_function | ||||
| def construct(self): | def construct(self): | ||||
| return ( | |||||
| self.add(self.x, self.y), self.add(self.x1, self.y1), self.add(self.x2, self.y2), | |||||
| self.add(self.x3, self.y3)) | |||||
| return (self.add(self.x1, self.y1), self.add(self.x2, self.y2), self.add(self.x3, self.y3)) | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.platform_x86_gpu_training | @pytest.mark.platform_x86_gpu_training | ||||
| @pytest.mark.env_onecard | @pytest.mark.env_onecard | ||||
| def test_TensroAdd(): | |||||
| def test_TensorAdd(): | |||||
| add = TensroAdd() | add = TensroAdd() | ||||
| output = add() | output = add() | ||||
| expect0 = np.array([]) | |||||
| expect1 = np.array([2, 3, 4]) | |||||
| expect2 = np.array( | |||||
| expect0 = np.array([2, 3, 4]) | |||||
| expect1 = np.array( | |||||
| [[[[0., 2., 4.], | [[[[0., 2., 4.], | ||||
| [6., 8., 10.], | [6., 8., 10.], | ||||
| [12., 14., 16.]], | [12., 14., 16.]], | ||||
| @@ -96,7 +88,7 @@ def test_TensroAdd(): | |||||
| [[144., 146., 148.], | [[144., 146., 148.], | ||||
| [150., 152., 154.], | [150., 152., 154.], | ||||
| [156., 158., 160.]]]]) | [156., 158., 160.]]]]) | ||||
| expect3 = np.array( | |||||
| expect2 = np.array( | |||||
| [[[[0., 2., 4.], | [[[[0., 2., 4.], | ||||
| [6., 8., 10.], | [6., 8., 10.], | ||||
| [12., 14., 16.]], | [12., 14., 16.]], | ||||
| @@ -128,4 +120,26 @@ def test_TensroAdd(): | |||||
| assert (output[0].asnumpy() == expect0).all() | assert (output[0].asnumpy() == expect0).all() | ||||
| assert (output[1].asnumpy() == expect1).all() | assert (output[1].asnumpy() == expect1).all() | ||||
| assert (output[2].asnumpy() == expect2).all() | assert (output[2].asnumpy() == expect2).all() | ||||
| assert (output[3].asnumpy() == expect3).all() | |||||
| class TensorAdd2(nn.Cell): | |||||
| def __init__(self): | |||||
| super(TensorAdd2, self).__init__() | |||||
| self.add = P.TensorAdd() | |||||
| self.x = Parameter(initializer( | |||||
| Tensor(np.random.randn(2, 0).astype(np.float32)), [2, 0]), name='x') | |||||
| self.y = Parameter(initializer( | |||||
| Tensor(np.random.randn(2, 1).astype(np.float32)), [2, 1]), name='y') | |||||
| @ms_function | |||||
| def construct(self): | |||||
| return self.add(self.x, self.y) | |||||
| # Constructing a tensor with 0 in shape is not support, excluding empty tensor. | |||||
| @pytest.mark.skip(reason='0 in shape is not support') | |||||
| def test_TensorAdd_shape_has_zero(): | |||||
| add = TensorAdd2() | |||||
| output = add() | |||||
| expect = np.array([]) | |||||
| assert (output.asnumpy() == expect).all() | |||||
| @@ -786,8 +786,8 @@ def test_tensor_assign_exception(): | |||||
| t = Tensor([1, 2, 3, 4, 5, 6, 7, 8], dtype=mstype.float32) | t = Tensor([1, 2, 3, 4, 5, 6, 7, 8], dtype=mstype.float32) | ||||
| tck = Tensor([1, 2, 3, 4, 5, 6, 7, 8], dtype=mstype.float32) | tck = Tensor([1, 2, 3, 4, 5, 6, 7, 8], dtype=mstype.float32) | ||||
| # Error for A[Slice] = Number | # Error for A[Slice] = Number | ||||
| # 1. A[Slice] = Number, Slice error | |||||
| with pytest.raises(IndexError): | |||||
| # 1. A[Slice] = Number, 0 in shape | |||||
| with pytest.raises(ValueError): | |||||
| net_e2(t, 2) | net_e2(t, 2) | ||||
| # Error for A[Slice] = U, U is a Tensor | # Error for A[Slice] = U, U is a Tensor | ||||
| @@ -68,6 +68,18 @@ def test_tensor(): | |||||
| assert t4.dtype == ms.int64 | assert t4.dtype == ms.int64 | ||||
| def test_tensor_empty(): | |||||
| t = ms.Tensor(np.ones(0), ms.float32) | |||||
| assert isinstance(t, ms.Tensor) | |||||
| assert t.shape == (0,) | |||||
| def test_tensor_shape_has_zero(): | |||||
| with pytest.raises(ValueError): | |||||
| t = ms.Tensor(np.ones((1, 0)), ms.float32) | |||||
| print(t) | |||||
| def test_tensor_type_float16(): | def test_tensor_type_float16(): | ||||
| t_float16 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float16)) | t_float16 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float16)) | ||||
| assert isinstance(t_float16, ms.Tensor) | assert isinstance(t_float16, ms.Tensor) | ||||
| @@ -14,6 +14,7 @@ | |||||
| # ============================================================================ | # ============================================================================ | ||||
| """ test ops """ | """ test ops """ | ||||
| import functools | import functools | ||||
| import pytest | |||||
| import numpy as np | import numpy as np | ||||
| @@ -770,6 +771,8 @@ class StridedSliceNet(nn.Cell): | |||||
| return out_0, out_1, out_2, out_3 | return out_0, out_1, out_2, out_3 | ||||
| # Constructing a tensor with 0 in shape is not support, excluding empty tensor. | |||||
| @pytest.mark.skip(reason='0 in shape is not support') | |||||
| def test_strided_slice_const(): | def test_strided_slice_const(): | ||||
| class StridedSLiceConstNet(nn.Cell): | class StridedSLiceConstNet(nn.Cell): | ||||
| """StridedSLiceConstNet net definition""" | """StridedSLiceConstNet net definition""" | ||||
| @@ -464,8 +464,8 @@ def test_tensor_assign(): | |||||
| net(Ta, b, Tck) | net(Ta, b, Tck) | ||||
| net2(t, b, tck) | net2(t, b, tck) | ||||
| # Error for A[Slice] = Number | # Error for A[Slice] = Number | ||||
| # 1. A[Slice] = Number, Slice error | |||||
| with pytest.raises(IndexError): | |||||
| # 1. A[Slice] = Number, 0 in shape | |||||
| with pytest.raises(ValueError): | |||||
| net_e2(t, Tensor(2, mstype.int32)) | net_e2(t, Tensor(2, mstype.int32)) | ||||
| # Error for A[Slice] = U, U is a Tensor | # Error for A[Slice] = U, U is a Tensor | ||||