|
|
|
@@ -0,0 +1,101 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""PROXIMAL_ADA_GRAD"""
|
|
|
|
from mindspore.ops import functional as F, composite as C, operations as P
|
|
|
|
from mindspore.common import Tensor
|
|
|
|
import mindspore.common.dtype as mstype
|
|
|
|
from mindspore._checkparam import Validator as validator
|
|
|
|
from mindspore._checkparam import Rel
|
|
|
|
from .optimizer import Optimizer
|
|
|
|
|
|
|
|
proximal_ada_grad_opt = C.MultitypeFuncGraph("proximal_ada_grad_opt")
|
|
|
|
|
|
|
|
|
|
|
|
@proximal_ada_grad_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
|
|
|
|
def _tensor_run_opt(opt, learning_rate, l1, l2, gradient, weight, accum):
|
|
|
|
"""Apply proximal_ada_grad optimizer to the weight parameter."""
|
|
|
|
success = True
|
|
|
|
success = F.depend(success, opt(weight, accum, learning_rate, l1, l2, gradient))
|
|
|
|
return success
|
|
|
|
|
|
|
|
|
|
|
|
def _check_param_value(accum, learning_rate, l1, l2, use_locking, prim_name=None):
|
|
|
|
"""Check inputs param."""
|
|
|
|
validator.check_value_type("accum", accum, [float], prim_name)
|
|
|
|
validator.check_value_type("learning_rate", learning_rate, [float], prim_name)
|
|
|
|
validator.check_value_type("l1", l1, [float], prim_name)
|
|
|
|
validator.check_value_type("l2", l2, [float], prim_name)
|
|
|
|
validator.check_value_type("use_locking", use_locking, [bool], prim_name)
|
|
|
|
validator.check_number_range("accum", accum, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
|
|
|
|
validator.check_number_range("learning_rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
|
|
|
|
validator.check_number_range("l1", l1, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
|
|
|
|
validator.check_number_range("l2", l2, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
|
|
|
|
|
|
|
|
|
|
|
|
class ProximalAdagrad(Optimizer):
|
|
|
|
"""
|
|
|
|
Implement the ProximalAdagrad algorithm with ApplyProximalAdagrad Operator.
|
|
|
|
|
|
|
|
ProximalAdagrad is an online Learning and Stochastic Optimization.
|
|
|
|
Refer to paper `Efficient Learning using Forward-Backward Splitting
|
|
|
|
<http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
|
|
|
|
should be Parameter.
|
|
|
|
accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1.
|
|
|
|
learning_rate (float): The learning rate value, must be greater than or equal to zero. Default: 0.001.
|
|
|
|
l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
|
|
|
|
l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
|
|
|
|
use_locking (bool): If True use locks for update operation. Default: False.
|
|
|
|
loss_scale (float): Value for the loss scale. It should be equal to or greater than 1.0. Default: 1.0.
|
|
|
|
wegith_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
- **grads** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is as same as the `params`
|
|
|
|
in optimizer.
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
Tensor[bool], the value is True.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> net = Net()
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
>>> opt = nn.ProximalAdagrad(net.trainable_params())
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=opt, metrics=None)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, params, accum=0.1, learning_rate=0.001, l1=0.0, l2=0.0,
|
|
|
|
use_locking=False, loss_scale=1.0, weight_decay=0.0):
|
|
|
|
super(ProximalAdagrad, self).__init__(0.0, params, weight_decay, loss_scale)
|
|
|
|
if self.is_group:
|
|
|
|
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
|
|
|
|
_check_param_value(accum, learning_rate, l1, l2, use_locking, self.cls_name)
|
|
|
|
self.accum = self.parameters.clone(prefix="accum", init=accum)
|
|
|
|
self.l1 = Tensor(l1, mstype.float32)
|
|
|
|
self.l2 = Tensor(l2, mstype.float32)
|
|
|
|
self.weight_decay = weight_decay
|
|
|
|
self.hyper_map = C.HyperMap()
|
|
|
|
self.opt = P.ApplyProximalAdagrad(use_locking=use_locking)
|
|
|
|
|
|
|
|
def construct(self, grads):
|
|
|
|
params = self.parameters
|
|
|
|
accum = self.accum
|
|
|
|
grads = self.decay_weight(grads)
|
|
|
|
grads = self.scale_grad(grads)
|
|
|
|
lr = self.learning_rate
|
|
|
|
success = self.hyper_map(F.partial(proximal_ada_grad_opt, self.opt, lr, self.l1, self.l2),
|
|
|
|
grads, params, accum)
|
|
|
|
return success
|