| @@ -18,17 +18,7 @@ Operators can be used in the construct function of Cell. | |||||
| Examples: | Examples: | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import composite as C | |||||
| >>> from mindspore.ops import functional as F | |||||
| >>> import mindspore.ops as ops | >>> import mindspore.ops as ops | ||||
| Note: | |||||
| - The Primitive operators in operations need to be instantiated before being used. | |||||
| - The composite operators are the pre-defined combination of operators. | |||||
| - The functional operators are the pre-instantiated Primitive operators, which can be used directly as a function. | |||||
| - For functional operators usage, please refer to | |||||
| https://gitee.com/mindspore/mindspore/blob/master/mindspore/ops/functional.py | |||||
| """ | """ | ||||
| from .primitive import Primitive, PrimitiveWithInfer, prim_attr_register | from .primitive import Primitive, PrimitiveWithInfer, prim_attr_register | ||||
| @@ -94,7 +94,7 @@ class SearchCacheIdx(PrimitiveWithInfer): | |||||
| [21, 9, -5, 1]], np.int32)), name="hashmap") | [21, 9, -5, 1]], np.int32)), name="hashmap") | ||||
| >>> indices = Tensor(np.array([10, 2, 25, 5, 3], np.int32)) | >>> indices = Tensor(np.array([10, 2, 25, 5, 3], np.int32)) | ||||
| >>> step = 0, emb_max_num = 25, cache_max_num = 10 | >>> step = 0, emb_max_num = 25, cache_max_num = 10 | ||||
| >>> ops = P.SearchCacheIdx() | |||||
| >>> ops = ops.SearchCacheIdx() | |||||
| >>> cache_idx, miss_idx, miss_emb_idx = ops(hashmap, indices, step, emb_max_num, cache_max_num) | >>> cache_idx, miss_idx, miss_emb_idx = ops(hashmap, indices, step, emb_max_num, cache_max_num) | ||||
| cache_idx : [5, 1, 10, -1, 3] | cache_idx : [5, 1, 10, -1, 3] | ||||
| miss_idx : [-1, -1, -1, 3, -1] | miss_idx : [-1, -1, -1, 3, -1] | ||||
| @@ -496,7 +496,7 @@ class DropoutGrad(PrimitiveWithInfer): | |||||
| Tensor, the value of generated mask for input shape. | Tensor, the value of generated mask for input shape. | ||||
| Examples: | Examples: | ||||
| >>> dropout_grad = P.DropoutGrad(keep_prob=0.5) | |||||
| >>> dropout_grad = ops.DropoutGrad(keep_prob=0.5) | |||||
| >>> in = Tensor((20, 16, 50, 50)) | >>> in = Tensor((20, 16, 50, 50)) | ||||
| >>> out = dropout_grad(in) | >>> out = dropout_grad(in) | ||||
| """ | """ | ||||
| @@ -130,7 +130,7 @@ class Range(PrimitiveWithInfer): | |||||
| Tensor, has the same shape and dtype as `input_x`. | Tensor, has the same shape and dtype as `input_x`. | ||||
| Examples: | Examples: | ||||
| >>> range = P.Range(1.0, 8.0, 2.0) | |||||
| >>> range = ops.Range(1.0, 8.0, 2.0) | |||||
| >>> x = Tensor(np.array([1, 2, 3, 2]), mindspore.int32) | >>> x = Tensor(np.array([1, 2, 3, 2]), mindspore.int32) | ||||
| >>> output = range(x) | >>> output = range(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -199,7 +199,7 @@ class Quant(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor([100.0, 150.0], mstype.float32) | >>> input_x = Tensor([100.0, 150.0], mstype.float32) | ||||
| >>> quant = P.Quant(80.0, 0.0, False, "Round") | |||||
| >>> quant = ops.Quant(80.0, 0.0, False, "Round") | |||||
| >>> y = quant(input_x) | >>> y = quant(input_x) | ||||
| """ | """ | ||||
| @@ -253,7 +253,7 @@ class Dequant(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor([100.0, 150.0], mstype.float32) | >>> input_x = Tensor([100.0, 150.0], mstype.float32) | ||||
| >>> dequant = P.Dequant(False, False) | |||||
| >>> dequant = ops.Dequant(False, False) | |||||
| >>> y = dequant(input_x) | >>> y = dequant(input_x) | ||||
| """ | """ | ||||
| @@ -289,7 +289,7 @@ class LinSpace(PrimitiveWithInfer): | |||||
| Tensor, has the same shape as `assist`. | Tensor, has the same shape as `assist`. | ||||
| Examples: | Examples: | ||||
| >>> linspace = P.LinSpace() | |||||
| >>> linspace = ops.LinSpace() | |||||
| >>> assist = Tensor([5, 5.5], mindspore.float32) | >>> assist = Tensor([5, 5.5], mindspore.float32) | ||||
| >>> start = Tensor(1, mindspore.float32) | >>> start = Tensor(1, mindspore.float32) | ||||
| >>> stop = Tensor(10, mindspore.float32) | >>> stop = Tensor(10, mindspore.float32) | ||||
| @@ -329,7 +329,7 @@ class MatrixDiag(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.array([1, -1]), mstype.float32) | >>> x = Tensor(np.array([1, -1]), mstype.float32) | ||||
| >>> assist = Tensor(np.arange(-12, 0).reshape(3, 2, 2), mindspore.float32) | >>> assist = Tensor(np.arange(-12, 0).reshape(3, 2, 2), mindspore.float32) | ||||
| >>> matrix_diag = P.MatrixDiag() | |||||
| >>> matrix_diag = ops.MatrixDiag() | |||||
| >>> result = matrix_diag(x, assist) | >>> result = matrix_diag(x, assist) | ||||
| >>> print(result) | >>> print(result) | ||||
| [[[-12. 11.] | [[[-12. 11.] | ||||
| @@ -383,7 +383,7 @@ class MatrixDiagPart(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) | >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) | ||||
| >>> assist = Tensor(np.arange(-12, 0).reshape(3, 2, 2), mindspore.float32) | >>> assist = Tensor(np.arange(-12, 0).reshape(3, 2, 2), mindspore.float32) | ||||
| >>> matrix_diag_part = P.MatrixDiagPart() | |||||
| >>> matrix_diag_part = ops.MatrixDiagPart() | |||||
| >>> result = matrix_diag_part(x, assist) | >>> result = matrix_diag_part(x, assist) | ||||
| >>> print(result) | >>> print(result) | ||||
| [[12., -9.], [8., -5.], [4., -1.]] | [[12., -9.], [8., -5.], [4., -1.]] | ||||
| @@ -426,7 +426,7 @@ class MatrixSetDiag(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) | >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) | ||||
| >>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32) | >>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32) | ||||
| >>> matrix_set_diag = P.MatrixSetDiag() | |||||
| >>> matrix_set_diag = ops.MatrixSetDiag() | |||||
| >>> result = matrix_set_diag(x, diagonal) | >>> result = matrix_set_diag(x, diagonal) | ||||
| >>> print(result) | >>> print(result) | ||||
| [[[-1, 0], [0, 2]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]] | [[[-1, 0], [0, 2]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]] | ||||
| @@ -523,7 +523,7 @@ class DynamicGRUV2(PrimitiveWithInfer): | |||||
| >>> bias_i = Tensor(np.random.rand(48).astype(np.float16)) | >>> bias_i = Tensor(np.random.rand(48).astype(np.float16)) | ||||
| >>> bias_h = Tensor(np.random.rand(48).astype(np.float16)) | >>> bias_h = Tensor(np.random.rand(48).astype(np.float16)) | ||||
| >>> init_h = Tensor(np.random.rand(8, 16).astype(np.float16)) | >>> init_h = Tensor(np.random.rand(8, 16).astype(np.float16)) | ||||
| >>> dynamic_gru_v2 = P.DynamicGRUV2() | |||||
| >>> dynamic_gru_v2 = ops.DynamicGRUV2() | |||||
| >>> output = dynamic_gru_v2(x, weight_i, weight_h, bias_i, bias_h, None, init_h) | >>> output = dynamic_gru_v2(x, weight_i, weight_h, bias_i, bias_h, None, init_h) | ||||
| >>> result = output[0].shape | >>> result = output[0].shape | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -640,7 +640,7 @@ class ConfusionMulGrad(PrimitiveWithInfer): | |||||
| the shape of output is :math:`(x_1,x_4,...x_R)`. | the shape of output is :math:`(x_1,x_4,...x_R)`. | ||||
| Examples: | Examples: | ||||
| >>> confusion_mul_grad = P.ConfusionMulGrad() | |||||
| >>> confusion_mul_grad = ops.ConfusionMulGrad() | |||||
| >>> input_0 = Tensor(np.random.randint(-2, 2, (2, 3)), mindspore.float32) | >>> input_0 = Tensor(np.random.randint(-2, 2, (2, 3)), mindspore.float32) | ||||
| >>> input_1 = Tensor(np.random.randint(0, 4, (2, 3)), mindspore.float32) | >>> input_1 = Tensor(np.random.randint(0, 4, (2, 3)), mindspore.float32) | ||||
| >>> input_2 = Tensor(np.random.randint(-4, 0, (2, 3)), mindspore.float32) | >>> input_2 = Tensor(np.random.randint(-4, 0, (2, 3)), mindspore.float32) | ||||
| @@ -752,7 +752,7 @@ class BatchNormFoldGrad(PrimitiveWithInfer): | |||||
| Performs grad of BatchNormFold operation. | Performs grad of BatchNormFold operation. | ||||
| Examples: | Examples: | ||||
| >>> batch_norm_fold_grad = P.BatchNormFoldGrad() | |||||
| >>> batch_norm_fold_grad = ops.BatchNormFoldGrad() | |||||
| >>> d_batch_mean = Tensor(np.random.randint(-2., 2., (1, 2, 2, 3)), mindspore.float32) | >>> d_batch_mean = Tensor(np.random.randint(-2., 2., (1, 2, 2, 3)), mindspore.float32) | ||||
| >>> d_batch_std = Tensor(np.random.randn(1, 2, 2, 3), mindspore.float32) | >>> d_batch_std = Tensor(np.random.randn(1, 2, 2, 3), mindspore.float32) | ||||
| >>> input_x = Tensor(np.random.randint(0, 256, (4, 1, 4, 6)), mindspore.float32) | >>> input_x = Tensor(np.random.randint(0, 256, (4, 1, 4, 6)), mindspore.float32) | ||||
| @@ -809,7 +809,7 @@ class CorrectionMul(PrimitiveWithInfer): | |||||
| - **out** (Tensor) - Tensor has the same shape as x. | - **out** (Tensor) - Tensor has the same shape as x. | ||||
| Examples: | Examples: | ||||
| >>> correction_mul = P.CorrectionMul() | |||||
| >>> correction_mul = ops.CorrectionMul() | |||||
| >>> input_x = Tensor(np.random.randint(-8, 12, (3, 4)), mindspore.float32) | >>> input_x = Tensor(np.random.randint(-8, 12, (3, 4)), mindspore.float32) | ||||
| >>> batch_std = Tensor(np.array([1.5, 3, 2]), mindspore.float32) | >>> batch_std = Tensor(np.array([1.5, 3, 2]), mindspore.float32) | ||||
| >>> running_std = Tensor(np.array([2, 1.2, 0.5]), mindspore.float32) | >>> running_std = Tensor(np.array([2, 1.2, 0.5]), mindspore.float32) | ||||
| @@ -842,7 +842,7 @@ class CorrectionMulGrad(PrimitiveWithInfer): | |||||
| Performs grad of CorrectionMul operation. | Performs grad of CorrectionMul operation. | ||||
| Examples: | Examples: | ||||
| >>> correction_mul_grad = P.CorrectionMulGrad() | |||||
| >>> correction_mul_grad = ops.CorrectionMulGrad() | |||||
| >>> dout = Tensor(np.array([1.5, -2.2, 0.7, -3, 1.6, 2.8]).reshape(2, 1, 1, 3), mindspore.float32) | >>> dout = Tensor(np.array([1.5, -2.2, 0.7, -3, 1.6, 2.8]).reshape(2, 1, 1, 3), mindspore.float32) | ||||
| >>> input_x = Tensor(np.random.randint(0, 256, (2, 1, 1, 3)), mindspore.float32) | >>> input_x = Tensor(np.random.randint(0, 256, (2, 1, 1, 3)), mindspore.float32) | ||||
| >>> gamma = Tensor(np.array([0.2, -0.2, 2.5, -1.]).reshape(2, 1, 2), mindspore.float32) | >>> gamma = Tensor(np.array([0.2, -0.2, 2.5, -1.]).reshape(2, 1, 2), mindspore.float32) | ||||
| @@ -882,7 +882,7 @@ class CorrectionMulGradReduce(PrimitiveWithInfer): | |||||
| Performs grad reduce of CorrectionMul operation. | Performs grad reduce of CorrectionMul operation. | ||||
| Examples: | Examples: | ||||
| >>> correction_mul_grad_rd = P.CorrectionMulGradReduce() | |||||
| >>> correction_mul_grad_rd = ops.CorrectionMulGradReduce() | |||||
| >>> dout = Tensor(np.array([1.5, -2.2, 0.7, -3, 1.6, 2.8]).reshape(2, 1, 1, 3), mindspore.float32) | >>> dout = Tensor(np.array([1.5, -2.2, 0.7, -3, 1.6, 2.8]).reshape(2, 1, 1, 3), mindspore.float32) | ||||
| >>> input_x = Tensor(np.random.randint(0, 256, (2, 1, 1, 3)), mindspore.float32) | >>> input_x = Tensor(np.random.randint(0, 256, (2, 1, 1, 3)), mindspore.float32) | ||||
| >>> gamma = Tensor(np.array([0.2, -0.2, 2.5, -1.]).reshape(2, 1, 2), mindspore.float32) | >>> gamma = Tensor(np.array([0.2, -0.2, 2.5, -1.]).reshape(2, 1, 2), mindspore.float32) | ||||
| @@ -926,7 +926,7 @@ class BatchNormFold2(PrimitiveWithInfer): | |||||
| - **y** (Tensor) - Tensor has the same shape as x. | - **y** (Tensor) - Tensor has the same shape as x. | ||||
| Examples: | Examples: | ||||
| >>> batch_norm_fold2 = P.BatchNormFold2() | |||||
| >>> batch_norm_fold2 = ops.BatchNormFold2() | |||||
| >>> input_x = Tensor(np.random.randint(-6, 6, (4, 3)), mindspore.float32) | >>> input_x = Tensor(np.random.randint(-6, 6, (4, 3)), mindspore.float32) | ||||
| >>> beta = Tensor(np.array([0.2, -0.1, 0.25]), mindspore.float32) | >>> beta = Tensor(np.array([0.2, -0.1, 0.25]), mindspore.float32) | ||||
| >>> gamma = Tensor(np.array([-0.1, -0.25, 0.1]), mindspore.float32) | >>> gamma = Tensor(np.array([-0.1, -0.25, 0.1]), mindspore.float32) | ||||
| @@ -974,7 +974,7 @@ class BatchNormFold2Grad(PrimitiveWithInfer): | |||||
| Performs grad of CorrectionAddGrad operation. | Performs grad of CorrectionAddGrad operation. | ||||
| Examples: | Examples: | ||||
| >>> bnf2_grad = P.BatchNormFold2Grad() | |||||
| >>> bnf2_grad = ops.BatchNormFold2Grad() | |||||
| >>> input_x = Tensor(np.arange(3*3*12*12).reshape(6, 3, 6, 12), mindspore.float32) | >>> input_x = Tensor(np.arange(3*3*12*12).reshape(6, 3, 6, 12), mindspore.float32) | ||||
| >>> dout = Tensor(np.random.randint(-32, 32, (6, 3, 6, 12)), mindspore.float32) | >>> dout = Tensor(np.random.randint(-32, 32, (6, 3, 6, 12)), mindspore.float32) | ||||
| >>> gamma = Tensor(np.random.randint(-4, 4, (3, 1, 1, 2)), mindspore.float32) | >>> gamma = Tensor(np.random.randint(-4, 4, (3, 1, 1, 2)), mindspore.float32) | ||||
| @@ -82,7 +82,7 @@ class CusBatchMatMul(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32) | >>> input_x = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32) | >>> input_y = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32) | ||||
| >>> cus_batch_matmul = P.CusBatchMatMul() | |||||
| >>> cus_batch_matmul = ops.CusBatchMatMul() | |||||
| >>> output = cus_batch_matmul(input_x, input_y) | >>> output = cus_batch_matmul(input_x, input_y) | ||||
| """ | """ | ||||
| @@ -115,7 +115,7 @@ class CusCholeskyTrsm(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float32) | >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float32) | ||||
| >>> cus_choleskytrsm = P.CusCholeskyTrsm() | |||||
| >>> cus_choleskytrsm = ops.CusCholeskyTrsm() | |||||
| >>> output = matmul(input_x) | >>> output = matmul(input_x) | ||||
| """ | """ | ||||
| @@ -151,7 +151,7 @@ class CusFusedAbsMax1(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[1, 3]), mindspore.float32) | >>> input_x = Tensor(np.ones(shape=[1, 3]), mindspore.float32) | ||||
| >>> cus_fused_abs_max1 = P.CusFusedAbsMax1() | |||||
| >>> cus_fused_abs_max1 = ops.CusFusedAbsMax1() | |||||
| >>> output = cus_fused_abs_max1(input_x) | >>> output = cus_fused_abs_max1(input_x) | ||||
| """ | """ | ||||
| @@ -187,7 +187,7 @@ class CusImg2Col(PrimitiveWithInfer): | |||||
| Tensor, the shape of the output tensor is :math:`(N * H_O * W_O, C1 * K_W * K_H * C0)`. | Tensor, the shape of the output tensor is :math:`(N * H_O * W_O, C1 * K_W * K_H * C0)`. | ||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[32, 3, 224, 224]), mindspore.float16) | >>> input_x = Tensor(np.ones(shape=[32, 3, 224, 224]), mindspore.float16) | ||||
| >>> cusimg2col = P.CusImg2Col() | |||||
| >>> cusimg2col = ops.CusImg2Col() | |||||
| >>> output = cusimg2col(input_x) | >>> output = cusimg2col(input_x) | ||||
| """ | """ | ||||
| @@ -233,7 +233,7 @@ class CusMatMulCubeDenseLeft(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16) | >>> input_x = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16) | ||||
| >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | ||||
| >>> matmulcubedenseleft = P.CusMatMulCubeDenseLeft() | |||||
| >>> matmulcubedenseleft = ops.CusMatMulCubeDenseLeft() | |||||
| >>> output = matmulcubedenseleft(input_x, input_y) | >>> output = matmulcubedenseleft(input_x, input_y) | ||||
| """ | """ | ||||
| @@ -268,7 +268,7 @@ class CusMatMulCubeFraczRightMul(PrimitiveWithInfer): | |||||
| >>> input_x1 = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | >>> input_x1 = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | ||||
| >>> input_x2 = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16) | >>> input_x2 = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16) | ||||
| >>> input_x3 = Tensor(np.ones(shape=[1, ]), mindspore.float16) | >>> input_x3 = Tensor(np.ones(shape=[1, ]), mindspore.float16) | ||||
| >>> cusmatmulfraczrightmul = P.CusMatMulCubeFraczRightMul() | |||||
| >>> cusmatmulfraczrightmul = ops.CusMatMulCubeFraczRightMul() | |||||
| >>> output = cusmatmulfraczrightmul(input_x1, input_x2, input_x3) | >>> output = cusmatmulfraczrightmul(input_x1, input_x2, input_x3) | ||||
| """ | """ | ||||
| @@ -307,7 +307,7 @@ class CusMatMulCube(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | ||||
| >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | ||||
| >>> cusmatmulcube = P.CusMatMulCube() | |||||
| >>> cusmatmulcube = ops.CusMatMulCube() | |||||
| >>> output = matmul(input_x, input_y) | >>> output = matmul(input_x, input_y) | ||||
| """ | """ | ||||
| @@ -349,7 +349,7 @@ class CusMatrixCombine(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32) | >>> input_x = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32) | ||||
| >>> cusmatrixcombine = P.CusMatrixCombine() | |||||
| >>> cusmatrixcombine = ops.CusMatrixCombine() | |||||
| >>> output = cusmatrixcombine(input_x) | >>> output = cusmatrixcombine(input_x) | ||||
| """ | """ | ||||
| @@ -383,7 +383,7 @@ class CusTranspose02314(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[32, 1, 224, 224, 16]), mindspore.float16) | >>> input_x = Tensor(np.ones(shape=[32, 1, 224, 224, 16]), mindspore.float16) | ||||
| >>> custranspose02314 = P.CusTranspose02314() | |||||
| >>> custranspose02314 = ops.CusTranspose02314() | |||||
| >>> output = custranspose02314(input_x) | >>> output = custranspose02314(input_x) | ||||
| """ | """ | ||||
| @@ -429,7 +429,7 @@ class CusMatMulCubeDenseRight(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | ||||
| >>> input_y = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16) | >>> input_y = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16) | ||||
| >>> cusmatmulcubedenseright = P.CusMatMulCubeDenseRight() | |||||
| >>> cusmatmulcubedenseright = ops.CusMatMulCubeDenseRight() | |||||
| >>> output = cusmatmulcubedenseright(input_x, input_y) | >>> output = cusmatmulcubedenseright(input_x, input_y) | ||||
| """ | """ | ||||
| @@ -464,7 +464,7 @@ class CusMatMulCubeFraczLeftCast(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16) | >>> input_x = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16) | ||||
| >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16) | ||||
| >>> cusmatmulcubefraczleftcast = P.CusMatMulCubeFraczLeftCast() | |||||
| >>> cusmatmulcubefraczleftcast = ops.CusMatMulCubeFraczLeftCast() | |||||
| >>> output = cusmatmulcubefraczleftcast(input_x, input_y) | >>> output = cusmatmulcubefraczleftcast(input_x, input_y) | ||||
| """ | """ | ||||
| @@ -494,7 +494,7 @@ class Im2Col(PrimitiveWithInfer): | |||||
| Tensor. | Tensor. | ||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.random.rand(32, 3, 224, 224).astype(np.float16)) | >>> input_x = Tensor(np.random.rand(32, 3, 224, 224).astype(np.float16)) | ||||
| >>> img2col = P.CusMatMulCubeDenseLeft(kernel_size=7, pad=3, stride=2) | |||||
| >>> img2col = ops.CusMatMulCubeDenseLeft(kernel_size=7, pad=3, stride=2) | |||||
| >>> output = img2col(input_x) | >>> output = img2col(input_x) | ||||
| """ | """ | ||||
| @@ -587,7 +587,7 @@ class UpdateThorGradient(PrimitiveWithInfer): | |||||
| >>> for i in range(16): | >>> for i in range(16): | ||||
| ... input_x3[i,:,:,:] = temp_x3 | ... input_x3[i,:,:,:] = temp_x3 | ||||
| >>> input_x3 = Tensor(input_x3) | >>> input_x3 = Tensor(input_x3) | ||||
| >>> update_thor_gradient = P.UpdateThorGradient(split_dim=128) | |||||
| >>> update_thor_gradient = ops.UpdateThorGradient(split_dim=128) | |||||
| >>> output = update_thor_gradient(input_x1, input_x2, input_x3) | >>> output = update_thor_gradient(input_x1, input_x2, input_x3) | ||||
| """ | """ | ||||
| @@ -148,7 +148,7 @@ class ExpandDims(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | ||||
| >>> expand_dims = P.ExpandDims() | |||||
| >>> expand_dims = ops.ExpandDims() | |||||
| >>> output = expand_dims(input_tensor, 0) | >>> output = expand_dims(input_tensor, 0) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[2. 2.] | [[[2. 2.] | ||||
| @@ -200,7 +200,7 @@ class DType(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | ||||
| >>> output = P.DType()(input_tensor) | |||||
| >>> output = ops.DType()(input_tensor) | |||||
| >>> print(output) | >>> print(output) | ||||
| Float32 | Float32 | ||||
| """ | """ | ||||
| @@ -239,7 +239,7 @@ class SameTypeShape(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | >>> input_x = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | >>> input_y = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | ||||
| >>> output = P.SameTypeShape()(input_x, input_y) | |||||
| >>> output = ops.SameTypeShape()(input_x, input_y) | |||||
| >>> print(output) | >>> print(output) | ||||
| [[2. 2.] | [[2. 2.] | ||||
| [2. 2.]] | [2. 2.]] | ||||
| @@ -284,7 +284,7 @@ class Cast(PrimitiveWithInfer): | |||||
| >>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) | >>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) | ||||
| >>> input_x = Tensor(input_np) | >>> input_x = Tensor(input_np) | ||||
| >>> type_dst = mindspore.float16 | >>> type_dst = mindspore.float16 | ||||
| >>> cast = P.Cast() | |||||
| >>> cast = ops.Cast() | |||||
| >>> output = cast(input_x, type_dst) | >>> output = cast(input_x, type_dst) | ||||
| >>> print(output.dtype) | >>> print(output.dtype) | ||||
| Float16 | Float16 | ||||
| @@ -357,7 +357,7 @@ class IsSubClass(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> output = P.IsSubClass()(mindspore.int32, mindspore.intc) | |||||
| >>> output = ops.IsSubClass()(mindspore.int32, mindspore.intc) | |||||
| >>> print(output) | >>> print(output) | ||||
| True | True | ||||
| """ | """ | ||||
| @@ -397,7 +397,7 @@ class IsInstance(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> a = 1 | >>> a = 1 | ||||
| >>> output = P.IsInstance()(a, mindspore.int32) | |||||
| >>> output = ops.IsInstance()(a, mindspore.int32) | |||||
| >>> print(output) | >>> print(output) | ||||
| False | False | ||||
| """ | """ | ||||
| @@ -447,7 +447,7 @@ class Reshape(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) | ||||
| >>> reshape = P.Reshape() | |||||
| >>> reshape = ops.Reshape() | |||||
| >>> output = reshape(input_tensor, (3, 2)) | >>> output = reshape(input_tensor, (3, 2)) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[-0.1 0.3] | [[-0.1 0.3] | ||||
| @@ -539,7 +539,7 @@ class Shape(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) | >>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) | ||||
| >>> shape = P.Shape() | |||||
| >>> shape = ops.Shape() | |||||
| >>> output = shape(input_tensor) | >>> output = shape(input_tensor) | ||||
| >>> print(output) | >>> print(output) | ||||
| (3, 2, 1) | (3, 2, 1) | ||||
| @@ -572,7 +572,7 @@ class DynamicShape(Primitive): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) | >>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) | ||||
| >>> shape = P.DynamicShape() | |||||
| >>> shape = ops.DynamicShape() | |||||
| >>> output = shape(input_tensor) | >>> output = shape(input_tensor) | ||||
| """ | """ | ||||
| @@ -610,7 +610,7 @@ class Squeeze(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) | >>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32) | ||||
| >>> squeeze = P.Squeeze(2) | |||||
| >>> squeeze = ops.Squeeze(2) | |||||
| >>> output = squeeze(input_tensor) | >>> output = squeeze(input_tensor) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1. 1.] | [[1. 1.] | ||||
| @@ -669,7 +669,7 @@ class Transpose(PrimitiveWithCheck): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32) | ||||
| >>> perm = (0, 2, 1) | >>> perm = (0, 2, 1) | ||||
| >>> transpose = P.Transpose() | |||||
| >>> transpose = ops.Transpose() | |||||
| >>> output = transpose(input_tensor, perm) | >>> output = transpose(input_tensor, perm) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[ 1. 4.] | [[[ 1. 4.] | ||||
| @@ -711,7 +711,7 @@ class Unique(Primitive): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32) | >>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32) | ||||
| >>> output = P.Unique()(x) | |||||
| >>> output = ops.Unique()(x) | |||||
| >>> print(output) | >>> print(output) | ||||
| (Tensor(shape=[3], dtype=Int32, value= [1, 2, 5]), Tensor(shape=[4], dtype=Int32, value= [0, 1, 2, 1])) | (Tensor(shape=[3], dtype=Int32, value= [1, 2, 5]), Tensor(shape=[4], dtype=Int32, value= [0, 1, 2, 1])) | ||||
| """ | """ | ||||
| @@ -743,7 +743,7 @@ class GatherV2(PrimitiveWithCheck): | |||||
| >>> input_params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32) | >>> input_params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32) | ||||
| >>> input_indices = Tensor(np.array([1, 2]), mindspore.int32) | >>> input_indices = Tensor(np.array([1, 2]), mindspore.int32) | ||||
| >>> axis = 1 | >>> axis = 1 | ||||
| >>> output = P.GatherV2()(input_params, input_indices, axis) | |||||
| >>> output = ops.GatherV2()(input_params, input_indices, axis) | |||||
| >>> print(output) | >>> print(output) | ||||
| [[ 2. 7.] | [[ 2. 7.] | ||||
| [ 4. 54.] | [ 4. 54.] | ||||
| @@ -796,7 +796,7 @@ class SparseGatherV2(GatherV2): | |||||
| >>> input_params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32) | >>> input_params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32) | ||||
| >>> input_indices = Tensor(np.array([1, 2]), mindspore.int32) | >>> input_indices = Tensor(np.array([1, 2]), mindspore.int32) | ||||
| >>> axis = 1 | >>> axis = 1 | ||||
| >>> out = P.SparseGatherV2()(input_params, input_indices, axis) | |||||
| >>> out = ops.SparseGatherV2()(input_params, input_indices, axis) | |||||
| """ | """ | ||||
| @@ -820,7 +820,7 @@ class Padding(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.array([[8], [10]]), mindspore.float32) | >>> x = Tensor(np.array([[8], [10]]), mindspore.float32) | ||||
| >>> pad_dim_size = 4 | >>> pad_dim_size = 4 | ||||
| >>> output = P.Padding(pad_dim_size)(x) | |||||
| >>> output = ops.Padding(pad_dim_size)(x) | |||||
| >>> print(output) | >>> print(output) | ||||
| [[ 8. 0. 0. 0.] | [[ 8. 0. 0. 0.] | ||||
| [10. 0. 0. 0.]] | [10. 0. 0. 0.]] | ||||
| @@ -865,7 +865,7 @@ class UniqueWithPad(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.array([1, 1, 5, 5, 4, 4, 3, 3, 2, 2,]), mindspore.int32) | >>> x = Tensor(np.array([1, 1, 5, 5, 4, 4, 3, 3, 2, 2,]), mindspore.int32) | ||||
| >>> pad_num = 8 | >>> pad_num = 8 | ||||
| >>> output = P.UniqueWithPad()(x, pad_num) | |||||
| >>> output = ops.UniqueWithPad()(x, pad_num) | |||||
| >>> print(output) | >>> print(output) | ||||
| (Tensor(shape=[10], dtype=Int32, value= [1, 5, 4, 3, 2, 8, 8, 8, 8, 8]), | (Tensor(shape=[10], dtype=Int32, value= [1, 5, 4, 3, 2, 8, 8, 8, 8, 8]), | ||||
| Tensor(shape=[10], dtype=Int32, value= [0, 0, 1, 1, 2, 2, 3, 3, 4, 4])) | Tensor(shape=[10], dtype=Int32, value= [0, 0, 1, 1, 2, 2, 3, 3, 4, 4])) | ||||
| @@ -911,7 +911,7 @@ class Split(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> split = P.Split(1, 2) | |||||
| >>> split = ops.Split(1, 2) | |||||
| >>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), mindspore.int32) | >>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), mindspore.int32) | ||||
| >>> output = split(x) | >>> output = split(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -973,7 +973,7 @@ class Rank(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | ||||
| >>> rank = P.Rank() | |||||
| >>> rank = ops.Rank() | |||||
| >>> output = rank(input_tensor) | >>> output = rank(input_tensor) | ||||
| >>> print(output) | >>> print(output) | ||||
| 2 | 2 | ||||
| @@ -1009,7 +1009,7 @@ class TruncatedNormal(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> shape = (1, 2, 3) | >>> shape = (1, 2, 3) | ||||
| >>> truncated_normal = P.TruncatedNormal() | |||||
| >>> truncated_normal = ops.TruncatedNormal() | |||||
| >>> output = truncated_normal(shape) | >>> output = truncated_normal(shape) | ||||
| """ | """ | ||||
| @@ -1048,7 +1048,7 @@ class Size(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32) | ||||
| >>> size = P.Size() | |||||
| >>> size = ops.Size() | |||||
| >>> output = size(input_tensor) | >>> output = size(input_tensor) | ||||
| >>> print(output) | >>> print(output) | ||||
| 4 | 4 | ||||
| @@ -1090,7 +1090,7 @@ class Fill(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> fill = P.Fill() | |||||
| >>> fill = ops.Fill() | |||||
| >>> output = fill(mindspore.float32, (2, 2), 1) | >>> output = fill(mindspore.float32, (2, 2), 1) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1. 1.] | [[1. 1.] | ||||
| @@ -1139,8 +1139,8 @@ class Ones(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> ones = P.Ones() | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> ones = ops.Ones() | |||||
| >>> output = ones((2, 2), mindspore.float32) | >>> output = ones((2, 2), mindspore.float32) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1.0, 1.0], | [[1.0, 1.0], | ||||
| @@ -1192,8 +1192,8 @@ class Zeros(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> zeros = P.Zeros() | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> zeros = ops.Zeros() | |||||
| >>> output = zeros((2, 2), mindspore.float32) | >>> output = zeros((2, 2), mindspore.float32) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0.0, 0.0], | [[0.0, 0.0], | ||||
| @@ -1243,7 +1243,7 @@ class OnesLike(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> oneslike = P.OnesLike() | |||||
| >>> oneslike = ops.OnesLike() | |||||
| >>> x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)) | >>> x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)) | ||||
| >>> output = oneslike(x) | >>> output = oneslike(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -1279,7 +1279,7 @@ class ZerosLike(PrimitiveWithCheck): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> zeroslike = P.ZerosLike() | |||||
| >>> zeroslike = ops.ZerosLike() | |||||
| >>> x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32)) | >>> x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32)) | ||||
| >>> output = zeroslike(x) | >>> output = zeroslike(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -1313,7 +1313,7 @@ class TupleToArray(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> type = P.TupleToArray()((1,2,3)) | |||||
| >>> type = ops.TupleToArray()((1,2,3)) | |||||
| >>> print(type) | >>> print(type) | ||||
| [1 2 3] | [1 2 3] | ||||
| """ | """ | ||||
| @@ -1359,7 +1359,7 @@ class ScalarToArray(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> op = P.ScalarToArray() | |||||
| >>> op = ops.ScalarToArray() | |||||
| >>> data = 1.0 | >>> data = 1.0 | ||||
| >>> output = op(data) | >>> output = op(data) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -1395,7 +1395,7 @@ class ScalarToTensor(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> op = P.ScalarToTensor() | |||||
| >>> op = ops.ScalarToTensor() | |||||
| >>> data = 1 | >>> data = 1 | ||||
| >>> output = op(data, mindspore.float32) | >>> output = op(data, mindspore.float32) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -1441,7 +1441,7 @@ class InvertPermutation(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> invert = P.InvertPermutation() | |||||
| >>> invert = ops.InvertPermutation() | |||||
| >>> input_data = (3, 4, 0, 2, 1) | >>> input_data = (3, 4, 0, 2, 1) | ||||
| >>> output = invert(input_data) | >>> output = invert(input_data) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -1510,7 +1510,7 @@ class Argmax(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32) | >>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32) | ||||
| >>> output = P.Argmax(output_type=mindspore.int32)(input_x) | |||||
| >>> output = ops.Argmax(output_type=mindspore.int32)(input_x) | |||||
| >>> print(output) | >>> print(output) | ||||
| 1 | 1 | ||||
| """ | """ | ||||
| @@ -1562,7 +1562,7 @@ class Argmin(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32) | >>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32) | ||||
| >>> index = P.Argmin()(input_x) | |||||
| >>> index = ops.Argmin()(input_x) | |||||
| >>> print(index) | >>> print(index) | ||||
| 2 | 2 | ||||
| """ | """ | ||||
| @@ -1623,7 +1623,7 @@ class ArgMaxWithValue(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.random.rand(5), mindspore.float32) | >>> input_x = Tensor(np.random.rand(5), mindspore.float32) | ||||
| >>> index, output = P.ArgMaxWithValue()(input_x) | |||||
| >>> index, output = ops.ArgMaxWithValue()(input_x) | |||||
| """ | """ | ||||
| @prim_attr_register | @prim_attr_register | ||||
| @@ -1678,7 +1678,7 @@ class ArgMinWithValue(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.random.rand(5), mindspore.float32) | >>> input_x = Tensor(np.random.rand(5), mindspore.float32) | ||||
| >>> output = P.ArgMinWithValue()(input_x) | |||||
| >>> output = ops.ArgMinWithValue()(input_x) | |||||
| >>> print(output) | >>> print(output) | ||||
| (Tensor(shape=[], dtype=Int32, value= 2), Tensor(shape=[], dtype=Float32, value= 0.0595638)) | (Tensor(shape=[], dtype=Int32, value= 2), Tensor(shape=[], dtype=Float32, value= 0.0595638)) | ||||
| """ | """ | ||||
| @@ -1735,7 +1735,7 @@ class Tile(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> tile = P.Tile() | |||||
| >>> tile = ops.Tile() | |||||
| >>> input_x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.float32) | >>> input_x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.float32) | ||||
| >>> multiples = (2, 3) | >>> multiples = (2, 3) | ||||
| >>> output = tile(input_x, multiples) | >>> output = tile(input_x, multiples) | ||||
| @@ -1816,7 +1816,7 @@ class UnsortedSegmentSum(PrimitiveWithInfer): | |||||
| >>> input_x = Tensor([1, 2, 3, 4], mindspore.float32) | >>> input_x = Tensor([1, 2, 3, 4], mindspore.float32) | ||||
| >>> segment_ids = Tensor([0, 0, 1, 2], mindspore.int32) | >>> segment_ids = Tensor([0, 0, 1, 2], mindspore.int32) | ||||
| >>> num_segments = 4 | >>> num_segments = 4 | ||||
| >>> output = P.UnsortedSegmentSum()(input_x, segment_ids, num_segments) | |||||
| >>> output = ops.UnsortedSegmentSum()(input_x, segment_ids, num_segments) | |||||
| >>> print(output) | >>> print(output) | ||||
| [3. 3. 4. 0.] | [3. 3. 4. 0.] | ||||
| """ | """ | ||||
| @@ -1894,7 +1894,7 @@ class UnsortedSegmentMin(PrimitiveWithInfer): | |||||
| >>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) | >>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) | ||||
| >>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32)) | >>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32)) | ||||
| >>> num_segments = 2 | >>> num_segments = 2 | ||||
| >>> unsorted_segment_min = P.UnsortedSegmentMin() | |||||
| >>> unsorted_segment_min = ops.UnsortedSegmentMin() | |||||
| >>> output = unsorted_segment_min(input_x, segment_ids, num_segments) | >>> output = unsorted_segment_min(input_x, segment_ids, num_segments) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1. 2. 3.] | [[1. 2. 3.] | ||||
| @@ -1953,7 +1953,7 @@ class UnsortedSegmentMax(PrimitiveWithInfer): | |||||
| >>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) | >>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) | ||||
| >>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32)) | >>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32)) | ||||
| >>> num_segments = 2 | >>> num_segments = 2 | ||||
| >>> unsorted_segment_max = P.UnsortedSegmentMax() | |||||
| >>> unsorted_segment_max = ops.UnsortedSegmentMax() | |||||
| >>> output = unsorted_segment_max(input_x, segment_ids, num_segments) | >>> output = unsorted_segment_max(input_x, segment_ids, num_segments) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1. 2. 3.] | [[1. 2. 3.] | ||||
| @@ -2009,7 +2009,7 @@ class UnsortedSegmentProd(PrimitiveWithInfer): | |||||
| >>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) | >>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) | ||||
| >>> segment_ids = Tensor(np.array([0, 1, 0]).astype(np.int32)) | >>> segment_ids = Tensor(np.array([0, 1, 0]).astype(np.int32)) | ||||
| >>> num_segments = 2 | >>> num_segments = 2 | ||||
| >>> unsorted_segment_prod = P.UnsortedSegmentProd() | |||||
| >>> unsorted_segment_prod = ops.UnsortedSegmentProd() | |||||
| >>> output = unsorted_segment_prod(input_x, segment_ids, num_segments) | >>> output = unsorted_segment_prod(input_x, segment_ids, num_segments) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[4. 4. 3.] | [[4. 4. 3.] | ||||
| @@ -2075,7 +2075,7 @@ class Concat(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> data1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)) | >>> data1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)) | ||||
| >>> data2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)) | >>> data2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)) | ||||
| >>> op = P.Concat() | |||||
| >>> op = ops.Concat() | |||||
| >>> output = op((data1, data2)) | >>> output = op((data1, data2)) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0 1] | [[0 1] | ||||
| @@ -2129,7 +2129,7 @@ class ParallelConcat(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> data1 = Tensor(np.array([[0, 1]]).astype(np.int32)) | >>> data1 = Tensor(np.array([[0, 1]]).astype(np.int32)) | ||||
| >>> data2 = Tensor(np.array([[2, 1]]).astype(np.int32)) | >>> data2 = Tensor(np.array([[2, 1]]).astype(np.int32)) | ||||
| >>> op = P.ParallelConcat() | |||||
| >>> op = ops.ParallelConcat() | |||||
| >>> output = op((data1, data2)) | >>> output = op((data1, data2)) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0 1] | [[0 1] | ||||
| @@ -2216,7 +2216,7 @@ class Pack(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> data1 = Tensor(np.array([0, 1]).astype(np.float32)) | >>> data1 = Tensor(np.array([0, 1]).astype(np.float32)) | ||||
| >>> data2 = Tensor(np.array([2, 3]).astype(np.float32)) | >>> data2 = Tensor(np.array([2, 3]).astype(np.float32)) | ||||
| >>> pack = P.Pack() | |||||
| >>> pack = ops.Pack() | |||||
| >>> output = pack([data1, data2]) | >>> output = pack([data1, data2]) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0. 1.] | [[0. 1.] | ||||
| @@ -2269,7 +2269,7 @@ class Unpack(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> unpack = P.Unpack() | |||||
| >>> unpack = ops.Unpack() | |||||
| >>> input_x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]])) | >>> input_x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]])) | ||||
| >>> output = unpack(input_x) | >>> output = unpack(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -2330,7 +2330,7 @@ class Slice(PrimitiveWithInfer): | |||||
| >>> data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], | >>> data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], | ||||
| ... [[3, 3, 3], [4, 4, 4]], | ... [[3, 3, 3], [4, 4, 4]], | ||||
| ... [[5, 5, 5], [6, 6, 6]]]).astype(np.int32)) | ... [[5, 5, 5], [6, 6, 6]]]).astype(np.int32)) | ||||
| >>> slice = P.Slice() | |||||
| >>> slice = ops.Slice() | |||||
| >>> output = slice(data, (1, 0, 0), (1, 1, 3)) | >>> output = slice(data, (1, 0, 0), (1, 1, 3)) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[3 3 3]]] | [[[3 3 3]]] | ||||
| @@ -2385,7 +2385,7 @@ class ReverseV2(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), mindspore.int32) | >>> input_x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), mindspore.int32) | ||||
| >>> op = P.ReverseV2(axis=[1]) | |||||
| >>> op = ops.ReverseV2(axis=[1]) | |||||
| >>> output = op(input_x) | >>> output = op(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[4 3 2 1] | [[4 3 2 1] | ||||
| @@ -2427,7 +2427,7 @@ class Rint(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([-1.6, -0.1, 1.5, 2.0]), mindspore.float32) | >>> input_x = Tensor(np.array([-1.6, -0.1, 1.5, 2.0]), mindspore.float32) | ||||
| >>> op = P.Rint() | |||||
| >>> op = ops.Rint() | |||||
| >>> output = op(input_x) | >>> output = op(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [-2. 0. 2. 2.] | [-2. 0. 2. 2.] | ||||
| @@ -2489,7 +2489,7 @@ class Select(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> select = P.Select() | |||||
| >>> select = ops.Select() | |||||
| >>> input_cond = Tensor([True, False]) | >>> input_cond = Tensor([True, False]) | ||||
| >>> input_x = Tensor([2,3], mindspore.float32) | >>> input_x = Tensor([2,3], mindspore.float32) | ||||
| >>> input_y = Tensor([1,2], mindspore.float32) | >>> input_y = Tensor([1,2], mindspore.float32) | ||||
| @@ -2628,7 +2628,7 @@ class StridedSlice(PrimitiveWithInfer): | |||||
| Examples | Examples | ||||
| >>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], | >>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], | ||||
| ... [[5, 5, 5], [6, 6, 6]]], mindspore.float32) | ... [[5, 5, 5], [6, 6, 6]]], mindspore.float32) | ||||
| >>> slice = P.StridedSlice() | |||||
| >>> slice = ops.StridedSlice() | |||||
| >>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1)) | >>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1)) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[3. 3. 3.]]] | [[[3. 3. 3.]]] | ||||
| @@ -2773,7 +2773,7 @@ class Diag(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor([1, 2, 3, 4]) | >>> input_x = Tensor([1, 2, 3, 4]) | ||||
| >>> diag = P.Diag() | |||||
| >>> diag = ops.Diag() | |||||
| >>> output = diag(input_x) | >>> output = diag(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1, 0, 0, 0], | [[1, 0, 0, 0], | ||||
| @@ -2826,7 +2826,7 @@ class DiagPart(PrimitiveWithInfer): | |||||
| ... [0, 2, 0, 0], | ... [0, 2, 0, 0], | ||||
| ... [0, 0, 3, 0], | ... [0, 0, 3, 0], | ||||
| ... [0, 0, 0, 4]]) | ... [0, 0, 0, 4]]) | ||||
| >>> diag_part = P.DiagPart() | |||||
| >>> diag_part = ops.DiagPart() | |||||
| >>> output = diag_part(input_x) | >>> output = diag_part(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1 2 3 4] | [1 2 3 4] | ||||
| @@ -2879,7 +2879,7 @@ class Eye(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> eye = P.Eye() | |||||
| >>> eye = ops.Eye() | |||||
| >>> output = eye(2, 2, mindspore.int32) | >>> output = eye(2, 2, mindspore.int32) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1 0] | [[1 0] | ||||
| @@ -2918,7 +2918,7 @@ class ScatterNd(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> op = P.ScatterNd() | |||||
| >>> op = ops.ScatterNd() | |||||
| >>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) | >>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) | ||||
| >>> update = Tensor(np.array([3.2, 1.1]), mindspore.float32) | >>> update = Tensor(np.array([3.2, 1.1]), mindspore.float32) | ||||
| >>> shape = (3, 3) | >>> shape = (3, 3) | ||||
| @@ -2975,7 +2975,7 @@ class ResizeNearestNeighbor(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]]]), mindspore.float32) | ||||
| >>> resize = P.ResizeNearestNeighbor((2, 2)) | |||||
| >>> resize = ops.ResizeNearestNeighbor((2, 2)) | |||||
| >>> output = resize(input_tensor) | >>> output = resize(input_tensor) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[[-0.1 0.3] | [[[[-0.1 0.3] | ||||
| @@ -3020,7 +3020,7 @@ class GatherNd(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) | >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) | ||||
| >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | ||||
| >>> op = P.GatherNd() | |||||
| >>> op = ops.GatherNd() | |||||
| >>> output = op(input_x, indices) | >>> output = op(input_x, indices) | ||||
| >>> print(output) | >>> print(output) | ||||
| [-0.1 0.5] | [-0.1 0.5] | ||||
| @@ -3061,7 +3061,7 @@ class TensorScatterUpdate(PrimitiveWithInfer): | |||||
| >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) | >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) | ||||
| >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | ||||
| >>> update = Tensor(np.array([1.0, 2.2]), mindspore.float32) | >>> update = Tensor(np.array([1.0, 2.2]), mindspore.float32) | ||||
| >>> op = P.TensorScatterUpdate() | |||||
| >>> op = ops.TensorScatterUpdate() | |||||
| >>> output = op(input_x, indices, update) | >>> output = op(input_x, indices, update) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[ 1. 0.3 3.6] | [[ 1. 0.3 3.6] | ||||
| @@ -3120,7 +3120,7 @@ class ScatterUpdate(_ScatterOp_Dynamic): | |||||
| >>> indices = Tensor(np.array([0, 1]), mindspore.int32) | >>> indices = Tensor(np.array([0, 1]), mindspore.int32) | ||||
| >>> np_updates = np.array([[2.0, 1.2, 1.0], [3.0, 1.2, 1.0]]) | >>> np_updates = np.array([[2.0, 1.2, 1.0], [3.0, 1.2, 1.0]]) | ||||
| >>> updates = Tensor(np_updates, mindspore.float32) | >>> updates = Tensor(np_updates, mindspore.float32) | ||||
| >>> op = P.ScatterUpdate() | |||||
| >>> op = ops.ScatterUpdate() | |||||
| >>> output = op(input_x, indices, updates) | >>> output = op(input_x, indices, updates) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[2. 1.2 1. ] | [[2. 1.2 1. ] | ||||
| @@ -3164,7 +3164,7 @@ class ScatterNdUpdate(_ScatterNdOp): | |||||
| >>> input_x = mindspore.Parameter(Tensor(np_x, mindspore.float32), name="x") | >>> input_x = mindspore.Parameter(Tensor(np_x, mindspore.float32), name="x") | ||||
| >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | ||||
| >>> update = Tensor(np.array([1.0, 2.2]), mindspore.float32) | >>> update = Tensor(np.array([1.0, 2.2]), mindspore.float32) | ||||
| >>> op = P.ScatterNdUpdate() | |||||
| >>> op = ops.ScatterNdUpdate() | |||||
| >>> output = op(input_x, indices, update) | >>> output = op(input_x, indices, update) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[ 1. 0.3 3.6] | [[ 1. 0.3 3.6] | ||||
| @@ -3215,7 +3215,7 @@ class ScatterMax(_ScatterOp): | |||||
| >>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x") | >>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x") | ||||
| >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | ||||
| >>> update = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32) | >>> update = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32) | ||||
| >>> scatter_max = P.ScatterMax() | |||||
| >>> scatter_max = ops.ScatterMax() | |||||
| >>> output = scatter_max(input_x, indices, update) | >>> output = scatter_max(input_x, indices, update) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[88. 88. 88.] | [[88. 88. 88.] | ||||
| @@ -3260,7 +3260,7 @@ class ScatterMin(_ScatterOp): | |||||
| >>> input_x = Parameter(Tensor(np.array([[0.0, 1.0, 2.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="input_x") | >>> input_x = Parameter(Tensor(np.array([[0.0, 1.0, 2.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="input_x") | ||||
| >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) | ||||
| >>> update = Tensor(np.ones([2, 2, 3]), mindspore.float32) | >>> update = Tensor(np.ones([2, 2, 3]), mindspore.float32) | ||||
| >>> scatter_min = P.ScatterMin() | |||||
| >>> scatter_min = ops.ScatterMin() | |||||
| >>> output = scatter_min(input_x, indices, update) | >>> output = scatter_min(input_x, indices, update) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0. 1. 1.] | [[0. 1. 1.] | ||||
| @@ -3299,7 +3299,7 @@ class ScatterAdd(_ScatterOp_Dynamic): | |||||
| >>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x") | >>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), mindspore.float32), name="x") | ||||
| >>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) | >>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32) | ||||
| >>> updates = Tensor(np.ones([2, 2, 3]), mindspore.float32) | >>> updates = Tensor(np.ones([2, 2, 3]), mindspore.float32) | ||||
| >>> scatter_add = P.ScatterAdd() | |||||
| >>> scatter_add = ops.ScatterAdd() | |||||
| >>> output = scatter_add(input_x, indices, updates) | >>> output = scatter_add(input_x, indices, updates) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1. 1. 1.] | [[1. 1. 1.] | ||||
| @@ -3345,7 +3345,7 @@ class ScatterSub(_ScatterOp): | |||||
| >>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]), mindspore.float32), name="x") | >>> input_x = Parameter(Tensor(np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]), mindspore.float32), name="x") | ||||
| >>> indices = Tensor(np.array([[0, 1]]), mindspore.int32) | >>> indices = Tensor(np.array([[0, 1]]), mindspore.int32) | ||||
| >>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]]), mindspore.float32) | >>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]]), mindspore.float32) | ||||
| >>> scatter_sub = P.ScatterSub() | |||||
| >>> scatter_sub = ops.ScatterSub() | |||||
| >>> output = scatter_sub(input_x, indices, updates) | >>> output = scatter_sub(input_x, indices, updates) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[-1.0, -1.0, -1.0], [-1.0, -1.0, -1.0]] | [[-1.0, -1.0, -1.0], [-1.0, -1.0, -1.0]] | ||||
| @@ -3383,7 +3383,7 @@ class ScatterMul(_ScatterOp): | |||||
| >>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") | >>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") | ||||
| >>> indices = Tensor(np.array([0, 1]), mindspore.int32) | >>> indices = Tensor(np.array([0, 1]), mindspore.int32) | ||||
| >>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mindspore.float32) | >>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mindspore.float32) | ||||
| >>> scatter_mul = P.ScatterMul() | |||||
| >>> scatter_mul = ops.ScatterMul() | |||||
| >>> output = scatter_mul(input_x, indices, updates) | >>> output = scatter_mul(input_x, indices, updates) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[2. 2. 2.] | [[2. 2. 2.] | ||||
| @@ -3422,7 +3422,7 @@ class ScatterDiv(_ScatterOp): | |||||
| >>> input_x = Parameter(Tensor(np.array([[6.0, 6.0, 6.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") | >>> input_x = Parameter(Tensor(np.array([[6.0, 6.0, 6.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x") | ||||
| >>> indices = Tensor(np.array([0, 1]), mindspore.int32) | >>> indices = Tensor(np.array([0, 1]), mindspore.int32) | ||||
| >>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mindspore.float32) | >>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mindspore.float32) | ||||
| >>> scatter_div = P.ScatterDiv() | |||||
| >>> scatter_div = ops.ScatterDiv() | |||||
| >>> output = scatter_div(input_x, indices, updates) | >>> output = scatter_div(input_x, indices, updates) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[3. 3. 3.] | [[3. 3. 3.] | ||||
| @@ -3461,7 +3461,7 @@ class ScatterNdAdd(_ScatterNdOp): | |||||
| >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") | >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") | ||||
| >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) | >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) | ||||
| >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) | >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) | ||||
| >>> scatter_nd_add = P.ScatterNdAdd() | |||||
| >>> scatter_nd_add = ops.ScatterNdAdd() | |||||
| >>> output = scatter_nd_add(input_x, indices, updates) | >>> output = scatter_nd_add(input_x, indices, updates) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 1. 10. 9. 4. 12. 6. 7. 17.] | [ 1. 10. 9. 4. 12. 6. 7. 17.] | ||||
| @@ -3499,7 +3499,7 @@ class ScatterNdSub(_ScatterNdOp): | |||||
| >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") | >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") | ||||
| >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) | >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) | ||||
| >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) | >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) | ||||
| >>> scatter_nd_sub = P.ScatterNdSub() | |||||
| >>> scatter_nd_sub = ops.ScatterNdSub() | |||||
| >>> output = scatter_nd_sub(input_x, indices, updates) | >>> output = scatter_nd_sub(input_x, indices, updates) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 1. -6. -3. 4. -2. 6. 7. -1.] | [ 1. -6. -3. 4. -2. 6. 7. -1.] | ||||
| @@ -3534,7 +3534,7 @@ class ScatterNonAliasingAdd(_ScatterNdOp): | |||||
| >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") | >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") | ||||
| >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) | >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) | ||||
| >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) | >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) | ||||
| >>> scatter_non_aliasing_add = P.ScatterNonAliasingAdd() | |||||
| >>> scatter_non_aliasing_add = ops.ScatterNonAliasingAdd() | |||||
| >>> output = scatter_non_aliasing_add(input_x, indices, updates) | >>> output = scatter_non_aliasing_add(input_x, indices, updates) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 1. 10. 9. 4. 12. 6. 7. 17.] | [ 1. 10. 9. 4. 12. 6. 7. 17.] | ||||
| @@ -3580,7 +3580,7 @@ class SpaceToDepth(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.random.rand(1,3,2,2), mindspore.float32) | >>> x = Tensor(np.random.rand(1,3,2,2), mindspore.float32) | ||||
| >>> block_size = 2 | >>> block_size = 2 | ||||
| >>> space_to_depth = P.SpaceToDepth(block_size) | |||||
| >>> space_to_depth = ops.SpaceToDepth(block_size) | |||||
| >>> output = space_to_depth(x) | >>> output = space_to_depth(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| (1, 12, 1, 1) | (1, 12, 1, 1) | ||||
| @@ -3641,7 +3641,7 @@ class DepthToSpace(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.random.rand(1,12,1,1), mindspore.float32) | >>> x = Tensor(np.random.rand(1,12,1,1), mindspore.float32) | ||||
| >>> block_size = 2 | >>> block_size = 2 | ||||
| >>> depth_to_space = P.DepthToSpace(block_size) | |||||
| >>> depth_to_space = ops.DepthToSpace(block_size) | |||||
| >>> output = depth_to_space(x) | >>> output = depth_to_space(x) | ||||
| >>> print(output.shape) | >>> print(output.shape) | ||||
| (1, 3, 2, 2) | (1, 3, 2, 2) | ||||
| @@ -3710,7 +3710,7 @@ class SpaceToBatch(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> block_size = 2 | >>> block_size = 2 | ||||
| >>> paddings = [[0, 0], [0, 0]] | >>> paddings = [[0, 0], [0, 0]] | ||||
| >>> space_to_batch = P.SpaceToBatch(block_size, paddings) | |||||
| >>> space_to_batch = ops.SpaceToBatch(block_size, paddings) | |||||
| >>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32) | >>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32) | ||||
| >>> output = space_to_batch(input_x) | >>> output = space_to_batch(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3787,7 +3787,7 @@ class BatchToSpace(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> block_size = 2 | >>> block_size = 2 | ||||
| >>> crops = [[0, 0], [0, 0]] | >>> crops = [[0, 0], [0, 0]] | ||||
| >>> batch_to_space = P.BatchToSpace(block_size, crops) | |||||
| >>> batch_to_space = ops.BatchToSpace(block_size, crops) | |||||
| >>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32) | >>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32) | ||||
| >>> output = batch_to_space(input_x) | >>> output = batch_to_space(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3868,7 +3868,7 @@ class SpaceToBatchND(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> block_shape = [2, 2] | >>> block_shape = [2, 2] | ||||
| >>> paddings = [[0, 0], [0, 0]] | >>> paddings = [[0, 0], [0, 0]] | ||||
| >>> space_to_batch_nd = P.SpaceToBatchND(block_shape, paddings) | |||||
| >>> space_to_batch_nd = ops.SpaceToBatchND(block_shape, paddings) | |||||
| >>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32) | >>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32) | ||||
| >>> output = space_to_batch_nd(input_x) | >>> output = space_to_batch_nd(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3967,7 +3967,7 @@ class BatchToSpaceND(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> block_shape = [2, 2] | >>> block_shape = [2, 2] | ||||
| >>> crops = [[0, 0], [0, 0]] | >>> crops = [[0, 0], [0, 0]] | ||||
| >>> batch_to_space_nd = P.BatchToSpaceND(block_shape, crops) | |||||
| >>> batch_to_space_nd = ops.BatchToSpaceND(block_shape, crops) | |||||
| >>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32) | >>> input_x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32) | ||||
| >>> output = batch_to_space_nd(input_x) | >>> output = batch_to_space_nd(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -4050,7 +4050,7 @@ class BroadcastTo(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> shape = (2, 3) | >>> shape = (2, 3) | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]).astype(np.float32)) | >>> input_x = Tensor(np.array([1, 2, 3]).astype(np.float32)) | ||||
| >>> broadcast_to = P.BroadcastTo(shape) | |||||
| >>> broadcast_to = ops.BroadcastTo(shape) | |||||
| >>> output = broadcast_to(input_x) | >>> output = broadcast_to(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1. 2. 3.] | [[1. 2. 3.] | ||||
| @@ -4107,7 +4107,7 @@ class Meshgrid(PrimitiveWithInfer): | |||||
| >>> y = np.array([5, 6, 7]).astype(np.int32) | >>> y = np.array([5, 6, 7]).astype(np.int32) | ||||
| >>> z = np.array([8, 9, 0, 1, 2]).astype(np.int32) | >>> z = np.array([8, 9, 0, 1, 2]).astype(np.int32) | ||||
| >>> inputs = (x, y, z) | >>> inputs = (x, y, z) | ||||
| >>> meshgrid = P.Meshgrid(indexing="xy") | |||||
| >>> meshgrid = ops.Meshgrid(indexing="xy") | |||||
| >>> meshgrid(inputs) | >>> meshgrid(inputs) | ||||
| (Tensor(shape=[3, 4, 6], dtype=UInt32, value= | (Tensor(shape=[3, 4, 6], dtype=UInt32, value= | ||||
| [[[1, 1, 1, 1, 1], | [[[1, 1, 1, 1, 1], | ||||
| @@ -4203,7 +4203,7 @@ class InplaceUpdate(PrimitiveWithInfer): | |||||
| >>> indices = (0, 1) | >>> indices = (0, 1) | ||||
| >>> x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32) | >>> x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32) | ||||
| >>> v = Tensor(np.array([[0.5, 1.0], [1.0, 1.5]]), mindspore.float32) | >>> v = Tensor(np.array([[0.5, 1.0], [1.0, 1.5]]), mindspore.float32) | ||||
| >>> inplace_update = P.InplaceUpdate(indices) | |||||
| >>> inplace_update = ops.InplaceUpdate(indices) | |||||
| >>> output = inplace_update(x, v) | >>> output = inplace_update(x, v) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0.5 1. ] | [[0.5 1. ] | ||||
| @@ -4262,7 +4262,7 @@ class ReverseSequence(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) | >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32) | ||||
| >>> seq_lengths = Tensor(np.array([1, 2, 3])) | >>> seq_lengths = Tensor(np.array([1, 2, 3])) | ||||
| >>> reverse_sequence = P.ReverseSequence(seq_dim=1) | |||||
| >>> reverse_sequence = ops.ReverseSequence(seq_dim=1) | |||||
| >>> output = reverse_sequence(x, seq_lengths) | >>> output = reverse_sequence(x, seq_lengths) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1. 2. 3.] | [[1. 2. 3.] | ||||
| @@ -4322,7 +4322,7 @@ class EditDistance(PrimitiveWithInfer): | |||||
| >>> from mindspore import context | >>> from mindspore import context | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import mindspore.ops.operations as P | |||||
| >>> import mindspore.ops.operations as ops | |||||
| >>> context.set_context(mode=context.GRAPH_MODE) | >>> context.set_context(mode=context.GRAPH_MODE) | ||||
| >>> class EditDistance(nn.Cell): | >>> class EditDistance(nn.Cell): | ||||
| ... def __init__(self, hypothesis_shape, truth_shape, normalize=True): | ... def __init__(self, hypothesis_shape, truth_shape, normalize=True): | ||||
| @@ -4437,7 +4437,7 @@ class Sort(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), mindspore.float16) | >>> x = Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), mindspore.float16) | ||||
| >>> sort = P.Sort() | |||||
| >>> sort = ops.Sort() | |||||
| >>> output = sort(x) | >>> output = sort(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| (Tensor(shape=[3, 3], dtype=Float16, value= | (Tensor(shape=[3, 3], dtype=Float16, value= | ||||
| @@ -4489,7 +4489,7 @@ class EmbeddingLookup(PrimitiveWithInfer): | |||||
| >>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32) | >>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32) | ||||
| >>> input_indices = Tensor(np.array([[5, 2], [8, 5]]), mindspore.int32) | >>> input_indices = Tensor(np.array([[5, 2], [8, 5]]), mindspore.int32) | ||||
| >>> offset = 4 | >>> offset = 4 | ||||
| >>> output = P.EmbeddingLookup()(input_params, input_indices, offset) | |||||
| >>> output = ops.EmbeddingLookup()(input_params, input_indices, offset) | |||||
| >>> print(output) | >>> print(output) | ||||
| [[[10. 11.] | [[[10. 11.] | ||||
| [ 0. 0.]] | [ 0. 0.]] | ||||
| @@ -4545,7 +4545,7 @@ class GatherD(PrimitiveWithInfer): | |||||
| >>> x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32) | >>> x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32) | ||||
| >>> index = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int32) | >>> index = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int32) | ||||
| >>> dim = 1 | >>> dim = 1 | ||||
| >>> output = P.GatherD()(x, dim, index) | |||||
| >>> output = ops.GatherD()(x, dim, index) | |||||
| >>> print(output) | >>> print(output) | ||||
| [[1 1] | [[1 1] | ||||
| [4 3]] | [4 3]] | ||||
| @@ -4594,7 +4594,7 @@ class Identity(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.array([1, 2, 3, 4]), mindspore.int64) | >>> x = Tensor(np.array([1, 2, 3, 4]), mindspore.int64) | ||||
| >>> output = P.Identity()(x) | |||||
| >>> output = ops.Identity()(x) | |||||
| >>> print(output) | >>> print(output) | ||||
| [1 2 3 4] | [1 2 3 4] | ||||
| """ | """ | ||||
| @@ -78,13 +78,13 @@ class AllReduce(PrimitiveWithInfer): | |||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops.operations.comm_ops import ReduceOp | >>> from mindspore.ops.operations.comm_ops import ReduceOp | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import mindspore.ops.operations as P | |||||
| >>> import mindspore.ops.operations as ops | |||||
| >>> | >>> | ||||
| >>> init() | >>> init() | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.allreduce_sum = P.AllReduce(ReduceOp.SUM, group="nccl_world_group") | |||||
| ... self.allreduce_sum = ops.AllReduce(ReduceOp.SUM, group="nccl_world_group") | |||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... return self.allreduce_sum(x) | ... return self.allreduce_sum(x) | ||||
| @@ -134,7 +134,7 @@ class Send(PrimitiveWithInfer): | |||||
| - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | ||||
| Examples: | Examples: | ||||
| >>> import mindspore.ops.operations as P | |||||
| >>> import mindspore.ops.operations as ops | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore.communication import init | >>> from mindspore.communication import init | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| @@ -144,8 +144,8 @@ class Send(PrimitiveWithInfer): | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| >>> def __init__(self): | >>> def __init__(self): | ||||
| >>> super(Net, self).__init__() | >>> super(Net, self).__init__() | ||||
| >>> self.depend = P.Depend() | |||||
| >>> self.send = P.Send(st_tag=0, dest_rank=8, group="hccl_world_group") | |||||
| >>> self.depend = ops.Depend() | |||||
| >>> self.send = ops.Send(st_tag=0, dest_rank=8, group="hccl_world_group") | |||||
| >>> | >>> | ||||
| >>> def construct(self, x): | >>> def construct(self, x): | ||||
| >>> out = self.depend(x, self.send(x)) | >>> out = self.depend(x, self.send(x)) | ||||
| @@ -191,7 +191,7 @@ class Receive(PrimitiveWithInfer): | |||||
| - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | ||||
| Examples: | Examples: | ||||
| >>> import mindspore.ops.operations as P | |||||
| >>> import mindspore.ops.operations as ops | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore.communication import init | >>> from mindspore.communication import init | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| @@ -201,7 +201,7 @@ class Receive(PrimitiveWithInfer): | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| >>> def __init__(self): | >>> def __init__(self): | ||||
| >>> super(Net, self).__init__() | >>> super(Net, self).__init__() | ||||
| >>> self.recv = P.Receive(st_tag=0, src_rank=0, shape=[2, 8], dtype=np.float32, | |||||
| >>> self.recv = ops.Receive(st_tag=0, src_rank=0, shape=[2, 8], dtype=np.float32, | |||||
| >>> group="hccl_world_group") | >>> group="hccl_world_group") | ||||
| >>> | >>> | ||||
| >>> def construct(self, x): | >>> def construct(self, x): | ||||
| @@ -253,7 +253,7 @@ class AllGather(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> import mindspore.ops.operations as P | |||||
| >>> import mindspore.ops.operations as ops | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore.communication import init | >>> from mindspore.communication import init | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| @@ -262,7 +262,7 @@ class AllGather(PrimitiveWithInfer): | |||||
| ... class Net(nn.Cell): | ... class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.allgather = P.AllGather(group="nccl_world_group") | |||||
| ... self.allgather = ops.AllGather(group="nccl_world_group") | |||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... return self.allgather(x) | ... return self.allgather(x) | ||||
| @@ -373,14 +373,14 @@ class ReduceScatter(PrimitiveWithInfer): | |||||
| >>> from mindspore.communication import init | >>> from mindspore.communication import init | ||||
| >>> from mindspore.ops.operations.comm_ops import ReduceOp | >>> from mindspore.ops.operations.comm_ops import ReduceOp | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import mindspore.ops.operations as P | |||||
| >>> import mindspore.ops.operations as ops | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> | >>> | ||||
| >>> init() | >>> init() | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.reducescatter = P.ReduceScatter(ReduceOp.SUM) | |||||
| ... self.reducescatter = ops.ReduceScatter(ReduceOp.SUM) | |||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... return self.reducescatter(x) | ... return self.reducescatter(x) | ||||
| @@ -493,14 +493,14 @@ class Broadcast(PrimitiveWithInfer): | |||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.communication import init | >>> from mindspore.communication import init | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import mindspore.ops.operations as P | |||||
| >>> import mindspore.ops.operations as ops | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> | >>> | ||||
| >>> init() | >>> init() | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.broadcast = P.Broadcast(1) | |||||
| ... self.broadcast = ops.Broadcast(1) | |||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... return self.broadcast((x,)) | ... return self.broadcast((x,)) | ||||
| @@ -57,7 +57,7 @@ class ControlDepend(Primitive): | |||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.control_depend = P.ControlDepend() | ... self.control_depend = P.ControlDepend() | ||||
| ... self.softmax = P.Softmax() | |||||
| ... self.softmax = ops.Softmax() | |||||
| ... | ... | ||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... mul = x * y | ... mul = x * y | ||||
| @@ -104,12 +104,12 @@ class GeSwitch(PrimitiveWithInfer): | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.square = P.Square() | |||||
| ... self.add = P.TensorAdd() | |||||
| ... self.square = ops.Square() | |||||
| ... self.add = ops.TensorAdd() | |||||
| ... self.value = Tensor(np.full((1), 3), mindspore.float32) | ... self.value = Tensor(np.full((1), 3), mindspore.float32) | ||||
| ... self.switch = P.GeSwitch() | |||||
| ... self.merge = P.Merge() | |||||
| ... self.less = P.Less() | |||||
| ... self.switch = ops.GeSwitch() | |||||
| ... self.merge = ops.Merge() | |||||
| ... self.less = ops.Less() | |||||
| ... | ... | ||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... cond = self.less(x, y) | ... cond = self.less(x, y) | ||||
| @@ -159,7 +159,7 @@ class Merge(PrimitiveWithInfer): | |||||
| tuple. Output is tuple(`data`, `output_index`). The `data` has the same shape of `inputs` element. | tuple. Output is tuple(`data`, `output_index`). The `data` has the same shape of `inputs` element. | ||||
| Examples: | Examples: | ||||
| >>> merge = P.Merge() | |||||
| >>> merge = ops.Merge() | |||||
| >>> input_x = Tensor(np.linspace(0, 8, 8).reshape(2, 4), mindspore.float32) | >>> input_x = Tensor(np.linspace(0, 8, 8).reshape(2, 4), mindspore.float32) | ||||
| >>> input_y = Tensor(np.random.randint(-4, 4, (2, 4)), mindspore.float32) | >>> input_y = Tensor(np.random.randint(-4, 4, (2, 4)), mindspore.float32) | ||||
| >>> result = merge((input_x, input_y)) | >>> result = merge((input_x, input_y)) | ||||
| @@ -55,8 +55,8 @@ class ScalarSummary(PrimitiveWithInfer): | |||||
| >>> class SummaryDemo(nn.Cell): | >>> class SummaryDemo(nn.Cell): | ||||
| ... def __init__(self,): | ... def __init__(self,): | ||||
| ... super(SummaryDemo, self).__init__() | ... super(SummaryDemo, self).__init__() | ||||
| ... self.summary = P.ScalarSummary() | |||||
| ... self.add = P.TensorAdd() | |||||
| ... self.summary = ops.ScalarSummary() | |||||
| ... self.add = ops.TensorAdd() | |||||
| ... | ... | ||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... name = "x" | ... name = "x" | ||||
| @@ -97,7 +97,7 @@ class ImageSummary(PrimitiveWithInfer): | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.summary = P.ImageSummary() | |||||
| ... self.summary = ops.ImageSummary() | |||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... name = "image" | ... name = "image" | ||||
| @@ -138,8 +138,8 @@ class TensorSummary(PrimitiveWithInfer): | |||||
| >>> class SummaryDemo(nn.Cell): | >>> class SummaryDemo(nn.Cell): | ||||
| ... def __init__(self,): | ... def __init__(self,): | ||||
| ... super(SummaryDemo, self).__init__() | ... super(SummaryDemo, self).__init__() | ||||
| ... self.summary = P.TensorSummary() | |||||
| ... self.add = P.TensorAdd() | |||||
| ... self.summary = ops.TensorSummary() | |||||
| ... self.add = ops.TensorAdd() | |||||
| ... | ... | ||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... x = self.add(x, y) | ... x = self.add(x, y) | ||||
| @@ -180,8 +180,8 @@ class HistogramSummary(PrimitiveWithInfer): | |||||
| >>> class SummaryDemo(nn.Cell): | >>> class SummaryDemo(nn.Cell): | ||||
| ... def __init__(self,): | ... def __init__(self,): | ||||
| ... super(SummaryDemo, self).__init__() | ... super(SummaryDemo, self).__init__() | ||||
| ... self.summary = P.HistogramSummary() | |||||
| ... self.add = P.TensorAdd() | |||||
| ... self.summary = ops.HistogramSummary() | |||||
| ... self.add = ops.TensorAdd() | |||||
| ... | ... | ||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... x = self.add(x, y) | ... x = self.add(x, y) | ||||
| @@ -234,8 +234,8 @@ class InsertGradientOf(PrimitiveWithInfer): | |||||
| ... | ... | ||||
| ... return ret | ... return ret | ||||
| ... | ... | ||||
| >>> clip = P.InsertGradientOf(clip_gradient) | |||||
| >>> grad_all = C.GradOperation(get_all=True) | |||||
| >>> clip = ops.InsertGradientOf(clip_gradient) | |||||
| >>> grad_all = ops.GradOperation(get_all=True) | |||||
| >>> def InsertGradientOfClipDemo(): | >>> def InsertGradientOfClipDemo(): | ||||
| ... def clip_test(x, y): | ... def clip_test(x, y): | ||||
| ... x = clip(x) | ... x = clip(x) | ||||
| @@ -289,7 +289,7 @@ class HookBackward(PrimitiveWithInfer): | |||||
| ... print(grad_out) | ... print(grad_out) | ||||
| ... | ... | ||||
| >>> grad_all = GradOperation(get_all=True) | >>> grad_all = GradOperation(get_all=True) | ||||
| >>> hook = P.HookBackward(hook_fn) | |||||
| >>> hook = ops.HookBackward(hook_fn) | |||||
| >>> def hook_test(x, y): | >>> def hook_test(x, y): | ||||
| ... z = x * y | ... z = x * y | ||||
| ... z = hook(z) | ... z = hook(z) | ||||
| @@ -341,7 +341,7 @@ class Print(PrimitiveWithInfer): | |||||
| >>> class PrintDemo(nn.Cell): | >>> class PrintDemo(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(PrintDemo, self).__init__() | ... super(PrintDemo, self).__init__() | ||||
| ... self.print = P.Print() | |||||
| ... self.print = ops.Print() | |||||
| ... | ... | ||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... self.print('Print Tensor x and Tensor y:', x, y) | ... self.print('Print Tensor x and Tensor y:', x, y) | ||||
| @@ -382,8 +382,8 @@ class Assert(PrimitiveWithInfer): | |||||
| >>> class AssertDemo(nn.Cell): | >>> class AssertDemo(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(AssertDemo, self).__init__() | ... super(AssertDemo, self).__init__() | ||||
| ... self.assert1 = P.Assert(summarize=10) | |||||
| ... self.add = P.TensorAdd() | |||||
| ... self.assert1 = ops.Assert(summarize=10) | |||||
| ... self.add = ops.TensorAdd() | |||||
| ... | ... | ||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... data = self.add(x, y) | ... data = self.add(x, y) | ||||
| @@ -60,7 +60,7 @@ class CropAndResize(PrimitiveWithInfer): | |||||
| >>> class CropAndResizeNet(nn.Cell): | >>> class CropAndResizeNet(nn.Cell): | ||||
| ... def __init__(self, crop_size): | ... def __init__(self, crop_size): | ||||
| ... super(CropAndResizeNet, self).__init__() | ... super(CropAndResizeNet, self).__init__() | ||||
| ... self.crop_and_resize = P.CropAndResize() | |||||
| ... self.crop_and_resize = ops.CropAndResize() | |||||
| ... self.crop_size = crop_size | ... self.crop_size = crop_size | ||||
| ... | ... | ||||
| ... def construct(self, x, boxes, box_index): | ... def construct(self, x, boxes, box_index): | ||||
| @@ -36,7 +36,7 @@ class ScalarCast(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> scalar_cast = P.ScalarCast() | |||||
| >>> scalar_cast = ops.ScalarCast() | |||||
| >>> output = scalar_cast(255.0, mindspore.int32) | >>> output = scalar_cast(255.0, mindspore.int32) | ||||
| >>> print(output) | >>> print(output) | ||||
| 255 | 255 | ||||
| @@ -139,7 +139,7 @@ class TensorAdd(_MathBinaryOp): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> add = P.TensorAdd() | |||||
| >>> add = ops.TensorAdd() | |||||
| >>> input_x = Tensor(np.array([1,2,3]).astype(np.float32)) | >>> input_x = Tensor(np.array([1,2,3]).astype(np.float32)) | ||||
| >>> input_y = Tensor(np.array([4,5,6]).astype(np.float32)) | >>> input_y = Tensor(np.array([4,5,6]).astype(np.float32)) | ||||
| >>> output = add(input_x, input_y) | >>> output = add(input_x, input_y) | ||||
| @@ -180,7 +180,7 @@ class AssignAdd(PrimitiveWithInfer): | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.AssignAdd = P.AssignAdd() | |||||
| ... self.AssignAdd = ops.AssignAdd() | |||||
| ... self.variable = mindspore.Parameter(initializer(1, [1], mindspore.int64), name="global_step") | ... self.variable = mindspore.Parameter(initializer(1, [1], mindspore.int64), name="global_step") | ||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| @@ -235,7 +235,7 @@ class AssignSub(PrimitiveWithInfer): | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.AssignSub = P.AssignSub() | |||||
| ... self.AssignSub = ops.AssignSub() | |||||
| ... self.variable = mindspore.Parameter(initializer(1, [1], mindspore.int32), name="global_step") | ... self.variable = mindspore.Parameter(initializer(1, [1], mindspore.int32), name="global_step") | ||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| @@ -358,7 +358,7 @@ class ReduceMean(_Reduce): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | ||||
| >>> op = P.ReduceMean(keep_dims=True) | |||||
| >>> op = ops.ReduceMean(keep_dims=True) | |||||
| >>> output = op(input_x, 1) | >>> output = op(input_x, 1) | ||||
| >>> result = output.shape | >>> result = output.shape | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -396,7 +396,7 @@ class ReduceSum(_Reduce): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | ||||
| >>> op = P.ReduceSum(keep_dims=True) | |||||
| >>> op = ops.ReduceSum(keep_dims=True) | |||||
| >>> output = op(input_x, 1) | >>> output = op(input_x, 1) | ||||
| >>> output.shape | >>> output.shape | ||||
| (3, 1, 5, 6) | (3, 1, 5, 6) | ||||
| @@ -440,7 +440,7 @@ class ReduceAll(_Reduce): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[True, False], [True, True]])) | >>> input_x = Tensor(np.array([[True, False], [True, True]])) | ||||
| >>> op = P.ReduceAll(keep_dims=True) | |||||
| >>> op = ops.ReduceAll(keep_dims=True) | |||||
| >>> output = op(input_x, 1) | >>> output = op(input_x, 1) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[False] | [[False] | ||||
| @@ -482,7 +482,7 @@ class ReduceAny(_Reduce): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[True, False], [True, True]])) | >>> input_x = Tensor(np.array([[True, False], [True, True]])) | ||||
| >>> op = P.ReduceAny(keep_dims=True) | |||||
| >>> op = ops.ReduceAny(keep_dims=True) | |||||
| >>> output = op(input_x, 1) | >>> output = op(input_x, 1) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[ True] | [[ True] | ||||
| @@ -524,7 +524,7 @@ class ReduceMax(_Reduce): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | ||||
| >>> op = P.ReduceMax(keep_dims=True) | |||||
| >>> op = ops.ReduceMax(keep_dims=True) | |||||
| >>> output = op(input_x, 1) | >>> output = op(input_x, 1) | ||||
| >>> result = output.shape | >>> result = output.shape | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -572,7 +572,7 @@ class ReduceMin(_Reduce): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | ||||
| >>> op = P.ReduceMin(keep_dims=True) | |||||
| >>> op = ops.ReduceMin(keep_dims=True) | |||||
| >>> output = op(input_x, 1) | >>> output = op(input_x, 1) | ||||
| >>> result = output.shape | >>> result = output.shape | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -611,7 +611,7 @@ class ReduceProd(_Reduce): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) | ||||
| >>> op = P.ReduceProd(keep_dims=True) | |||||
| >>> op = ops.ReduceProd(keep_dims=True) | |||||
| >>> output = op(input_x, 1) | >>> output = op(input_x, 1) | ||||
| >>> reuslt = output.shape | >>> reuslt = output.shape | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -641,13 +641,13 @@ class CumProd(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> a, b, c, = 1, 2, 3 | >>> a, b, c, = 1, 2, 3 | ||||
| >>> input_x = Tensor(np.array([a, b, c]).astype(np.float32)) | >>> input_x = Tensor(np.array([a, b, c]).astype(np.float32)) | ||||
| >>> op0 = P.CumProd() | |||||
| >>> op0 = ops.CumProd() | |||||
| >>> output0 = op0(input_x, 0) # output=[a, a * b, a * b * c] | >>> output0 = op0(input_x, 0) # output=[a, a * b, a * b * c] | ||||
| >>> op1 = P.CumProd(exclusive=True) | |||||
| >>> op1 = ops.CumProd(exclusive=True) | |||||
| >>> output1 = op1(input_x, 0) # output=[1, a, a * b] | >>> output1 = op1(input_x, 0) # output=[1, a, a * b] | ||||
| >>> op2 = P.CumProd(reverse=True) | |||||
| >>> op2 = ops.CumProd(reverse=True) | |||||
| >>> output2 = op2(input_x, 0) # output=[a * b * c, b * c, c] | >>> output2 = op2(input_x, 0) # output=[a * b * c, b * c, c] | ||||
| >>> op3 = P.CumProd(exclusive=True, reverse=True) | |||||
| >>> op3 = ops.CumProd(exclusive=True, reverse=True) | |||||
| >>> output3 = op3(input_x, 0) # output=[b * c, c, 1] | >>> output3 = op3(input_x, 0) # output=[b * c, c, 1] | ||||
| >>> print(output0) | >>> print(output0) | ||||
| [1. 2. 6.] | [1. 2. 6.] | ||||
| @@ -705,7 +705,7 @@ class MatMul(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x1 = Tensor(np.ones(shape=[1, 3]), mindspore.float32) | >>> input_x1 = Tensor(np.ones(shape=[1, 3]), mindspore.float32) | ||||
| >>> input_x2 = Tensor(np.ones(shape=[3, 4]), mindspore.float32) | >>> input_x2 = Tensor(np.ones(shape=[3, 4]), mindspore.float32) | ||||
| >>> matmul = P.MatMul() | |||||
| >>> matmul = ops.MatMul() | |||||
| >>> output = matmul(input_x1, input_x2) | >>> output = matmul(input_x1, input_x2) | ||||
| """ | """ | ||||
| @@ -787,7 +787,7 @@ class BatchMatMul(MatMul): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32) | >>> input_x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) | >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) | ||||
| >>> batmatmul = P.BatchMatMul() | |||||
| >>> batmatmul = ops.BatchMatMul() | |||||
| >>> output = batmatmul(input_x, input_y) | >>> output = batmatmul(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[[3. 3. 3. 3.]] | [[[[3. 3. 3. 3.]] | ||||
| @@ -801,7 +801,7 @@ class BatchMatMul(MatMul): | |||||
| >>> | >>> | ||||
| >>> input_x = Tensor(np.ones(shape=[2, 4, 3, 1]), mindspore.float32) | >>> input_x = Tensor(np.ones(shape=[2, 4, 3, 1]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) | >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) | ||||
| >>> batmatmul = P.BatchMatMul(transpose_a=True) | |||||
| >>> batmatmul = ops.BatchMatMul(transpose_a=True) | |||||
| >>> output = batmatmul(input_x, input_y) | >>> output = batmatmul(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[[3. 3. 3. 3.]] | [[[[3. 3. 3. 3.]] | ||||
| @@ -848,7 +848,7 @@ class CumSum(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input = Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float32)) | >>> input = Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float32)) | ||||
| >>> cumsum = P.CumSum() | |||||
| >>> cumsum = ops.CumSum() | |||||
| >>> output = cumsum(input, 1) | >>> output = cumsum(input, 1) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[ 3. 7. 13. 23.] | [[ 3. 7. 13. 23.] | ||||
| @@ -898,7 +898,7 @@ class AddN(PrimitiveWithInfer): | |||||
| >>> class NetAddN(nn.Cell): | >>> class NetAddN(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(NetAddN, self).__init__() | ... super(NetAddN, self).__init__() | ||||
| ... self.addN = P.AddN() | |||||
| ... self.addN = ops.AddN() | |||||
| ... | ... | ||||
| ... def construct(self, *z): | ... def construct(self, *z): | ||||
| ... return self.addN(z) | ... return self.addN(z) | ||||
| @@ -984,7 +984,7 @@ class AccumulateNV2(PrimitiveWithInfer): | |||||
| >>> class NetAccumulateNV2(nn.Cell): | >>> class NetAccumulateNV2(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(NetAccumulateNV2, self).__init__() | ... super(NetAccumulateNV2, self).__init__() | ||||
| ... self.accumulateNV2 = P.AccumulateNV2() | |||||
| ... self.accumulateNV2 = ops.AccumulateNV2() | |||||
| ... | ... | ||||
| ... def construct(self, *z): | ... def construct(self, *z): | ||||
| ... return self.accumulateNV2(z) | ... return self.accumulateNV2(z) | ||||
| @@ -1043,7 +1043,7 @@ class Neg(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> neg = P.Neg() | |||||
| >>> neg = ops.Neg() | |||||
| >>> input_x = Tensor(np.array([1, 2, -1, 2, 0, -3.5]), mindspore.float32) | >>> input_x = Tensor(np.array([1, 2, -1, 2, 0, -3.5]), mindspore.float32) | ||||
| >>> output = neg(input_x) | >>> output = neg(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -1094,7 +1094,7 @@ class InplaceAdd(PrimitiveWithInfer): | |||||
| >>> indices = (0, 1) | >>> indices = (0, 1) | ||||
| >>> input_x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32) | >>> input_x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32) | ||||
| >>> input_v = Tensor(np.array([[0.5, 1.0], [1.0, 1.5]]), mindspore.float32) | >>> input_v = Tensor(np.array([[0.5, 1.0], [1.0, 1.5]]), mindspore.float32) | ||||
| >>> inplaceAdd = P.InplaceAdd(indices) | |||||
| >>> inplaceAdd = ops.InplaceAdd(indices) | |||||
| >>> output = inplaceAdd(input_x, input_v) | >>> output = inplaceAdd(input_x, input_v) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1.5 3. ] | [[1.5 3. ] | ||||
| @@ -1156,7 +1156,7 @@ class InplaceSub(PrimitiveWithInfer): | |||||
| >>> indices = (0, 1) | >>> indices = (0, 1) | ||||
| >>> input_x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32) | >>> input_x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32) | ||||
| >>> input_v = Tensor(np.array([[0.5, 1.0], [1.0, 1.5]]), mindspore.float32) | >>> input_v = Tensor(np.array([[0.5, 1.0], [1.0, 1.5]]), mindspore.float32) | ||||
| >>> inplaceSub = P.InplaceSub(indices) | |||||
| >>> inplaceSub = ops.InplaceSub(indices) | |||||
| >>> output = inplaceSub(input_x, input_v) | >>> output = inplaceSub(input_x, input_v) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0.5 1. ] | [[0.5 1. ] | ||||
| @@ -1222,7 +1222,7 @@ class Sub(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32) | >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32) | ||||
| >>> sub = P.Sub() | |||||
| >>> sub = ops.Sub() | |||||
| >>> output = sub(input_x, input_y) | >>> output = sub(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [-3 -3 -3] | [-3 -3 -3] | ||||
| @@ -1265,7 +1265,7 @@ class Mul(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32) | >>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32) | ||||
| >>> mul = P.Mul() | |||||
| >>> mul = ops.Mul() | |||||
| >>> output = mul(input_x, input_y) | >>> output = mul(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 4. 10. 18.] | [ 4. 10. 18.] | ||||
| @@ -1308,7 +1308,7 @@ class SquaredDifference(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([2.0, 4.0, 6.0]), mindspore.float32) | >>> input_y = Tensor(np.array([2.0, 4.0, 6.0]), mindspore.float32) | ||||
| >>> squared_difference = P.SquaredDifference() | |||||
| >>> squared_difference = ops.SquaredDifference() | |||||
| >>> output = squared_difference(input_x, input_y) | >>> output = squared_difference(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1. 4. 9.] | [1. 4. 9.] | ||||
| @@ -1334,7 +1334,7 @@ class Square(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | ||||
| >>> square = P.Square() | |||||
| >>> square = ops.Square() | |||||
| >>> output = square(input_x) | >>> output = square(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1. 4. 9.] | [1. 4. 9.] | ||||
| @@ -1376,7 +1376,7 @@ class Rsqrt(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor([[4, 4], [9, 9]], mindspore.float32) | >>> input_tensor = Tensor([[4, 4], [9, 9]], mindspore.float32) | ||||
| >>> rsqrt = P.Rsqrt() | |||||
| >>> rsqrt = ops.Rsqrt() | |||||
| >>> output = rsqrt(input_tensor) | >>> output = rsqrt(input_tensor) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0.5 0.5 ] | [[0.5 0.5 ] | ||||
| @@ -1419,7 +1419,7 @@ class Sqrt(PrimitiveWithCheck): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 4.0, 9.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 4.0, 9.0]), mindspore.float32) | ||||
| >>> sqrt = P.Sqrt() | |||||
| >>> sqrt = ops.Sqrt() | |||||
| >>> output = sqrt(input_x) | >>> output = sqrt(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1. 2. 3.] | [1. 2. 3.] | ||||
| @@ -1457,7 +1457,7 @@ class Reciprocal(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | ||||
| >>> reciprocal = P.Reciprocal() | |||||
| >>> reciprocal = ops.Reciprocal() | |||||
| >>> output = reciprocal(input_x) | >>> output = reciprocal(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1. 0.5 0.25] | [1. 0.5 0.25] | ||||
| @@ -1515,14 +1515,14 @@ class Pow(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | ||||
| >>> input_y = 3.0 | >>> input_y = 3.0 | ||||
| >>> pow = P.Pow() | |||||
| >>> pow = ops.Pow() | |||||
| >>> output = pow(input_x, input_y) | >>> output = pow(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 1. 8. 64.] | [ 1. 8. 64.] | ||||
| >>> | >>> | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([2.0, 4.0, 3.0]), mindspore.float32) | >>> input_y = Tensor(np.array([2.0, 4.0, 3.0]), mindspore.float32) | ||||
| >>> pow = P.Pow() | |||||
| >>> pow = ops.Pow() | |||||
| >>> output = pow(input_x, input_y) | >>> output = pow(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 1. 16. 64.] | [ 1. 16. 64.] | ||||
| @@ -1553,7 +1553,7 @@ class Exp(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | ||||
| >>> exp = P.Exp() | |||||
| >>> exp = ops.Exp() | |||||
| >>> output = exp(input_x) | >>> output = exp(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 2.718282 7.389056 54.598152] | [ 2.718282 7.389056 54.598152] | ||||
| @@ -1595,7 +1595,7 @@ class Expm1(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([0.0, 1.0, 2.0, 4.0]), mindspore.float32) | >>> input_x = Tensor(np.array([0.0, 1.0, 2.0, 4.0]), mindspore.float32) | ||||
| >>> expm1 = P.Expm1() | |||||
| >>> expm1 = ops.Expm1() | |||||
| >>> output = expm1(input_x) | >>> output = expm1(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 0. 1.718282 6.389056 53.598152] | [ 0. 1.718282 6.389056 53.598152] | ||||
| @@ -1637,7 +1637,7 @@ class HistogramFixedWidth(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mindspore.float16) | >>> x = Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mindspore.float16) | ||||
| >>> range = Tensor([0.0, 5.0], mindspore.float16) | >>> range = Tensor([0.0, 5.0], mindspore.float16) | ||||
| >>> hist = P.HistogramFixedWidth(5) | |||||
| >>> hist = ops.HistogramFixedWidth(5) | |||||
| >>> output = hist(x, range) | >>> output = hist(x, range) | ||||
| >>> print(output) | >>> print(output) | ||||
| [2 1 1 0 2] | [2 1 1 0 2] | ||||
| @@ -1677,7 +1677,7 @@ class Log(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | ||||
| >>> log = P.Log() | |||||
| >>> log = ops.Log() | |||||
| >>> output = log(input_x) | >>> output = log(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0. 0.6931472 1.38629444] | [0. 0.6931472 1.38629444] | ||||
| @@ -1718,7 +1718,7 @@ class Log1p(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | ||||
| >>> log1p = P.Log1p() | |||||
| >>> log1p = ops.Log1p() | |||||
| >>> output = log1p(input_x) | >>> output = log1p(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0.6931472 1.0986123 1.609438 ] | [0.6931472 1.0986123 1.609438 ] | ||||
| @@ -1752,7 +1752,7 @@ class Erf(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32) | >>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32) | ||||
| >>> erf = P.Erf() | |||||
| >>> erf = ops.Erf() | |||||
| >>> output = erf(input_x) | >>> output = erf(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [-0.8427168 0. 0.8427168 0.99530876 0.99997765] | [-0.8427168 0. 0.8427168 0.99530876 0.99997765] | ||||
| @@ -1786,7 +1786,7 @@ class Erfc(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32) | >>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32) | ||||
| >>> erfc = P.Erfc() | |||||
| >>> erfc = ops.Erfc() | |||||
| >>> output = erfc(input_x) | >>> output = erfc(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1.8427168e+00 1.0000000e+00 1.5728319e-01 4.6912432e-03 2.2351742e-05] | [1.8427168e+00 1.0000000e+00 1.5728319e-01 4.6912432e-03 2.2351742e-05] | ||||
| @@ -1832,7 +1832,7 @@ class Minimum(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32) | >>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32) | ||||
| >>> minimum = P.Minimum() | |||||
| >>> minimum = ops.Minimum() | |||||
| >>> output = minimum(input_x, input_y) | >>> output = minimum(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1. 2. 3.] | [1. 2. 3.] | ||||
| @@ -1875,7 +1875,7 @@ class Maximum(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32) | >>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32) | ||||
| >>> maximum = P.Maximum() | |||||
| >>> maximum = ops.Maximum() | |||||
| >>> output = maximum(input_x, input_y) | >>> output = maximum(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [4. 5. 6.] | [4. 5. 6.] | ||||
| @@ -1918,7 +1918,7 @@ class RealDiv(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32) | >>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32) | ||||
| >>> realdiv = P.RealDiv() | |||||
| >>> realdiv = ops.RealDiv() | |||||
| >>> output = realdiv(input_x, input_y) | >>> output = realdiv(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0.25 0.4 0.5 ] | [0.25 0.4 0.5 ] | ||||
| @@ -1962,7 +1962,7 @@ class Div(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32) | >>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32) | >>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32) | ||||
| >>> div = P.Div() | |||||
| >>> div = ops.Div() | |||||
| >>> output = div(input_x, input_y) | >>> output = div(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [-1.3333334 2.5 2. ] | [-1.3333334 2.5 2. ] | ||||
| @@ -2004,7 +2004,7 @@ class DivNoNan(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([-1.0, 0., 1.0, 5.0, 6.0]), mindspore.float32) | >>> input_x = Tensor(np.array([-1.0, 0., 1.0, 5.0, 6.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([0., 0., 0., 2.0, 3.0]), mindspore.float32) | >>> input_y = Tensor(np.array([0., 0., 0., 2.0, 3.0]), mindspore.float32) | ||||
| >>> div_no_nan = P.DivNoNan() | |||||
| >>> div_no_nan = ops.DivNoNan() | |||||
| >>> output = div_no_nan(input_x, input_y) | >>> output = div_no_nan(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0. 0. 0. 2.5 2. ] | [0. 0. 0. 2.5 2. ] | ||||
| @@ -2053,7 +2053,7 @@ class FloorDiv(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) | >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) | >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) | ||||
| >>> floor_div = P.FloorDiv() | |||||
| >>> floor_div = ops.FloorDiv() | |||||
| >>> output = floor_div(input_x, input_y) | >>> output = floor_div(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 0 1 -1] | [ 0 1 -1] | ||||
| @@ -2088,7 +2088,7 @@ class TruncateDiv(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) | >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) | >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) | ||||
| >>> truncate_div = P.TruncateDiv() | |||||
| >>> truncate_div = ops.TruncateDiv() | |||||
| >>> output = truncate_div(input_x, input_y) | >>> output = truncate_div(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0 1 0] | [0 1 0] | ||||
| @@ -2122,7 +2122,7 @@ class TruncateMod(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) | >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) | >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) | ||||
| >>> truncate_mod = P.TruncateMod() | |||||
| >>> truncate_mod = ops.TruncateMod() | |||||
| >>> output = truncate_mod(input_x, input_y) | >>> output = truncate_mod(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 2 1 -1] | [ 2 1 -1] | ||||
| @@ -2157,7 +2157,7 @@ class Mod(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32) | >>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32) | >>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32) | ||||
| >>> mod = P.Mod() | |||||
| >>> mod = ops.Mod() | |||||
| >>> output = mod(input_x, input_y) | >>> output = mod(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [-1. 1. 0.] | [-1. 1. 0.] | ||||
| @@ -2186,7 +2186,7 @@ class Floor(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32) | >>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32) | ||||
| >>> floor = P.Floor() | |||||
| >>> floor = ops.Floor() | |||||
| >>> output = floor(input_x) | >>> output = floor(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 1. 2. -2.] | [ 1. 2. -2.] | ||||
| @@ -2231,7 +2231,7 @@ class FloorMod(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) | >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) | >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) | ||||
| >>> floor_mod = P.FloorMod() | |||||
| >>> floor_mod = ops.FloorMod() | |||||
| >>> output = floor_mod(input_x, input_y) | >>> output = floor_mod(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [2 1 2] | [2 1 2] | ||||
| @@ -2253,7 +2253,7 @@ class Ceil(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32) | >>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32) | ||||
| >>> ceil_op = P.Ceil() | |||||
| >>> ceil_op = ops.Ceil() | |||||
| >>> output = ceil_op(input_x) | >>> output = ceil_op(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 2. 3. -1.] | [ 2. 3. -1.] | ||||
| @@ -2298,7 +2298,7 @@ class Xdivy(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.float32) | >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([2, 2, 2]), mindspore.float32) | >>> input_y = Tensor(np.array([2, 2, 2]), mindspore.float32) | ||||
| >>> xdivy = P.Xdivy() | |||||
| >>> xdivy = ops.Xdivy() | |||||
| >>> output = xdivy(input_x, input_y) | >>> output = xdivy(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 1. 2. -0.5] | [ 1. 2. -0.5] | ||||
| @@ -2337,7 +2337,7 @@ class Xlogy(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([-5, 0, 4]), mindspore.float32) | >>> input_x = Tensor(np.array([-5, 0, 4]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([2, 2, 2]), mindspore.float32) | >>> input_y = Tensor(np.array([2, 2, 2]), mindspore.float32) | ||||
| >>> xlogy = P.Xlogy() | |||||
| >>> xlogy = ops.Xlogy() | |||||
| >>> output = xlogy(input_x, input_y) | >>> output = xlogy(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [-3.465736 0. 2.7725887] | [-3.465736 0. 2.7725887] | ||||
| @@ -2361,7 +2361,7 @@ class Acosh(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> acosh = P.Acosh() | |||||
| >>> acosh = ops.Acosh() | |||||
| >>> input_x = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32) | >>> input_x = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32) | ||||
| >>> output = acosh(input_x) | >>> output = acosh(input_x) | ||||
| """ | """ | ||||
| @@ -2392,7 +2392,7 @@ class Cosh(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> cosh = P.Cosh() | |||||
| >>> cosh = ops.Cosh() | |||||
| >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | ||||
| >>> output = cosh(input_x) | >>> output = cosh(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -2425,7 +2425,7 @@ class Asinh(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> asinh = P.Asinh() | |||||
| >>> asinh = ops.Asinh() | |||||
| >>> input_x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32) | >>> input_x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32) | ||||
| >>> output = asinh(input_x) | >>> output = asinh(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -2458,7 +2458,7 @@ class Sinh(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> sinh = P.Sinh() | |||||
| >>> sinh = ops.Sinh() | |||||
| >>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32) | >>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32) | ||||
| >>> output = sinh(input_x) | >>> output = sinh(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -2515,13 +2515,13 @@ class Equal(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) | ||||
| >>> equal = P.Equal() | |||||
| >>> equal = ops.Equal() | |||||
| >>> equal(input_x, 2.0) | >>> equal(input_x, 2.0) | ||||
| [False, True, False] | [False, True, False] | ||||
| >>> | >>> | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) | >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) | ||||
| >>> equal = P.Equal() | |||||
| >>> equal = ops.Equal() | |||||
| >>> output = equal(input_x, input_y) | >>> output = equal(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ True True False] | [ True True False] | ||||
| @@ -2565,7 +2565,7 @@ class ApproximateEqual(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> x1 = Tensor(np.array([1, 2, 3]), mindspore.float32) | >>> x1 = Tensor(np.array([1, 2, 3]), mindspore.float32) | ||||
| >>> x2 = Tensor(np.array([2, 4, 6]), mindspore.float32) | >>> x2 = Tensor(np.array([2, 4, 6]), mindspore.float32) | ||||
| >>> approximate_equal = P.ApproximateEqual(2.) | |||||
| >>> approximate_equal = ops.ApproximateEqual(2.) | |||||
| >>> output = approximate_equal(x1, x2) | >>> output = approximate_equal(x1, x2) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ True True False] | [ True True False] | ||||
| @@ -2606,7 +2606,7 @@ class EqualCount(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) | >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) | ||||
| >>> equal_count = P.EqualCount() | |||||
| >>> equal_count = ops.EqualCount() | |||||
| >>> output = equal_count(input_x, input_y) | >>> output = equal_count(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [2] | [2] | ||||
| @@ -2651,14 +2651,14 @@ class NotEqual(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) | ||||
| >>> not_equal = P.NotEqual() | |||||
| >>> not_equal = ops.NotEqual() | |||||
| >>> output = not_equal(input_x, 2.0) | >>> output = not_equal(input_x, 2.0) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ True False True] | [ True False True] | ||||
| >>> | >>> | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) | >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) | ||||
| >>> not_equal = P.NotEqual() | |||||
| >>> not_equal = ops.NotEqual() | |||||
| >>> output = not_equal(input_x, input_y) | >>> output = not_equal(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [False False True] | [False False True] | ||||
| @@ -2694,7 +2694,7 @@ class Greater(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) | >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) | ||||
| >>> greater = P.Greater() | |||||
| >>> greater = ops.Greater() | |||||
| >>> output = greater(input_x, input_y) | >>> output = greater(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [False True False] | [False True False] | ||||
| @@ -2735,7 +2735,7 @@ class GreaterEqual(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) | >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) | ||||
| >>> greater_equal = P.GreaterEqual() | |||||
| >>> greater_equal = ops.GreaterEqual() | |||||
| >>> output = greater_equal(input_x, input_y) | >>> output = greater_equal(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ True True False] | [ True True False] | ||||
| @@ -2776,7 +2776,7 @@ class Less(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) | >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) | ||||
| >>> less = P.Less() | |||||
| >>> less = ops.Less() | |||||
| >>> output = less(input_x, input_y) | >>> output = less(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [False False True] | [False False True] | ||||
| @@ -2817,7 +2817,7 @@ class LessEqual(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | ||||
| >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) | >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) | ||||
| >>> less_equal = P.LessEqual() | |||||
| >>> less_equal = ops.LessEqual() | |||||
| >>> output = less_equal(input_x, input_y) | >>> output = less_equal(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ True False True] | [ True False True] | ||||
| @@ -2847,7 +2847,7 @@ class LogicalNot(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) | >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) | ||||
| >>> logical_not = P.LogicalNot() | |||||
| >>> logical_not = ops.LogicalNot() | |||||
| >>> output = logical_not(input_x) | >>> output = logical_not(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [False True False] | [False True False] | ||||
| @@ -2891,7 +2891,7 @@ class LogicalAnd(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) | >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) | ||||
| >>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_) | >>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_) | ||||
| >>> logical_and = P.LogicalAnd() | |||||
| >>> logical_and = ops.LogicalAnd() | |||||
| >>> output = logical_and(input_x, input_y) | >>> output = logical_and(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ True False False] | [ True False False] | ||||
| @@ -2926,7 +2926,7 @@ class LogicalOr(_LogicBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) | >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) | ||||
| >>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_) | >>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_) | ||||
| >>> logical_or = P.LogicalOr() | |||||
| >>> logical_or = ops.LogicalOr() | |||||
| >>> output = logical_or(input_x, input_y) | >>> output = logical_or(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ True True True] | [ True True True] | ||||
| @@ -2950,7 +2950,7 @@ class IsNan(PrimitiveWithInfer): | |||||
| ``GPU`` | ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> is_nan = P.IsNan() | |||||
| >>> is_nan = ops.IsNan() | |||||
| >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) | >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) | ||||
| >>> result = is_nan(input_x) | >>> result = is_nan(input_x) | ||||
| """ | """ | ||||
| @@ -2981,7 +2981,7 @@ class IsInf(PrimitiveWithInfer): | |||||
| ``GPU`` | ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> is_inf = P.IsInf() | |||||
| >>> is_inf = ops.IsInf() | |||||
| >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) | >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) | ||||
| >>> result = is_inf(input_x) | >>> result = is_inf(input_x) | ||||
| """ | """ | ||||
| @@ -3012,7 +3012,7 @@ class IsFinite(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> is_finite = P.IsFinite() | |||||
| >>> is_finite = ops.IsFinite() | |||||
| >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) | >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) | ||||
| >>> output = is_finite(input_x) | >>> output = is_finite(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3047,7 +3047,7 @@ class FloatStatus(PrimitiveWithInfer): | |||||
| ``GPU`` | ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> float_status = P.FloatStatus() | |||||
| >>> float_status = ops.FloatStatus() | |||||
| >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) | >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32) | ||||
| >>> result = float_status(input_x) | >>> result = float_status(input_x) | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -3083,7 +3083,7 @@ class NPUAllocFloatStatus(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> alloc_status = P.NPUAllocFloatStatus() | |||||
| >>> alloc_status = ops.NPUAllocFloatStatus() | |||||
| >>> output = alloc_status() | >>> output = alloc_status() | ||||
| >>> print(output) | >>> print(output) | ||||
| [0. 0. 0. 0. 0. 0. 0. 0.] | [0. 0. 0. 0. 0. 0. 0. 0.] | ||||
| @@ -3120,8 +3120,8 @@ class NPUGetFloatStatus(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> alloc_status = P.NPUAllocFloatStatus() | |||||
| >>> get_status = P.NPUGetFloatStatus() | |||||
| >>> alloc_status = ops.NPUAllocFloatStatus() | |||||
| >>> get_status = ops.NPUGetFloatStatus() | |||||
| >>> init = alloc_status() | >>> init = alloc_status() | ||||
| >>> output = get_status(init) | >>> output = get_status(init) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3165,9 +3165,9 @@ class NPUClearFloatStatus(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> alloc_status = P.NPUAllocFloatStatus() | |||||
| >>> get_status = P.NPUGetFloatStatus() | |||||
| >>> clear_status = P.NPUClearFloatStatus() | |||||
| >>> alloc_status = ops.NPUAllocFloatStatus() | |||||
| >>> get_status = ops.NPUGetFloatStatus() | |||||
| >>> clear_status = ops.NPUClearFloatStatus() | |||||
| >>> init = alloc_status() | >>> init = alloc_status() | ||||
| >>> flag = get_status(init) | >>> flag = get_status(init) | ||||
| >>> output = clear_status(init) | >>> output = clear_status(init) | ||||
| @@ -3205,7 +3205,7 @@ class Cos(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> cos = P.Cos() | |||||
| >>> cos = ops.Cos() | |||||
| >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | ||||
| >>> output = cos(input_x) | >>> output = cos(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3238,7 +3238,7 @@ class ACos(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> acos = P.ACos() | |||||
| >>> acos = ops.ACos() | |||||
| >>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32) | >>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32) | ||||
| >>> output = acos(input_x) | >>> output = acos(input_x) | ||||
| """ | """ | ||||
| @@ -3269,7 +3269,7 @@ class Sin(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> sin = P.Sin() | |||||
| >>> sin = ops.Sin() | |||||
| >>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32) | >>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32) | ||||
| >>> output = sin(input_x) | >>> output = sin(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3302,7 +3302,7 @@ class Asin(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> asin = P.Asin() | |||||
| >>> asin = ops.Asin() | |||||
| >>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32) | >>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32) | ||||
| >>> output = asin(input_x) | >>> output = asin(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3359,7 +3359,7 @@ class NMSWithMask(PrimitiveWithInfer): | |||||
| >>> bbox[:, 2] += bbox[:, 0] | >>> bbox[:, 2] += bbox[:, 0] | ||||
| >>> bbox[:, 3] += bbox[:, 1] | >>> bbox[:, 3] += bbox[:, 1] | ||||
| >>> inputs = Tensor(bbox, mindspore.float32) | >>> inputs = Tensor(bbox, mindspore.float32) | ||||
| >>> nms = P.NMSWithMask(0.5) | |||||
| >>> nms = ops.NMSWithMask(0.5) | |||||
| >>> output_boxes, indices, mask = nms(inputs) | >>> output_boxes, indices, mask = nms(inputs) | ||||
| """ | """ | ||||
| @@ -3398,7 +3398,7 @@ class Abs(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([-1.0, 1.0, 0.0]), mindspore.float32) | >>> input_x = Tensor(np.array([-1.0, 1.0, 0.0]), mindspore.float32) | ||||
| >>> abs = P.Abs() | |||||
| >>> abs = ops.Abs() | |||||
| >>> output = abs(input_x) | >>> output = abs(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1. 1. 0.] | [1. 1. 0.] | ||||
| @@ -3445,7 +3445,7 @@ class Sign(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[2.0, 0.0, -1.0]]), mindspore.float32) | >>> input_x = Tensor(np.array([[2.0, 0.0, -1.0]]), mindspore.float32) | ||||
| >>> sign = P.Sign() | |||||
| >>> sign = ops.Sign() | |||||
| >>> output = sign(input_x) | >>> output = sign(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[ 1. 0. -1.]] | [[ 1. 0. -1.]] | ||||
| @@ -3478,7 +3478,7 @@ class Round(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([0.8, 1.5, 2.3, 2.5, -4.5]), mindspore.float32) | >>> input_x = Tensor(np.array([0.8, 1.5, 2.3, 2.5, -4.5]), mindspore.float32) | ||||
| >>> round = P.Round() | |||||
| >>> round = ops.Round() | |||||
| >>> output = round(input_x) | >>> output = round(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 1. 2. 2. 2. -4.] | [ 1. 2. 2. 2. -4.] | ||||
| @@ -3512,7 +3512,7 @@ class Tan(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> tan = P.Tan() | |||||
| >>> tan = ops.Tan() | |||||
| >>> input_x = Tensor(np.array([-1.0, 0.0, 1.0]), mindspore.float32) | >>> input_x = Tensor(np.array([-1.0, 0.0, 1.0]), mindspore.float32) | ||||
| >>> output = tan(input_x) | >>> output = tan(input_x) | ||||
| [-1.5574081 0. 1.5574081] | [-1.5574081 0. 1.5574081] | ||||
| @@ -3546,9 +3546,9 @@ class Atan(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32) | >>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32) | ||||
| >>> tan = P.Tan() | |||||
| >>> tan = ops.Tan() | |||||
| >>> output_y = tan(input_x) | >>> output_y = tan(input_x) | ||||
| >>> atan = P.Atan() | |||||
| >>> atan = ops.Atan() | |||||
| >>> output = atan(output_y) | >>> output = atan(output_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1.047 0.7850001] | [1.047 0.7850001] | ||||
| @@ -3581,7 +3581,7 @@ class Atanh(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32) | >>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32) | ||||
| >>> atanh = P.Atanh() | |||||
| >>> atanh = ops.Atanh() | |||||
| >>> output = atanh(input_x) | >>> output = atanh(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1.8869909 1.058268 ] | [1.8869909 1.058268 ] | ||||
| @@ -3624,7 +3624,7 @@ class Atan2(_MathBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([0, 1]), mindspore.float32) | >>> input_x = Tensor(np.array([0, 1]), mindspore.float32) | ||||
| >>> input_y = Tensor(np.array([1, 1]), mindspore.float32) | >>> input_y = Tensor(np.array([1, 1]), mindspore.float32) | ||||
| >>> atan2 = P.Atan2() | |||||
| >>> atan2 = ops.Atan2() | |||||
| >>> output = atan2(input_x, input_y) | >>> output = atan2(input_x, input_y) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0. 0.7853982] | [0. 0.7853982] | ||||
| @@ -3652,7 +3652,7 @@ class SquareSumAll(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x1 = Tensor(np.array([0, 0, 2, 0]), mindspore.float32) | >>> input_x1 = Tensor(np.array([0, 0, 2, 0]), mindspore.float32) | ||||
| >>> input_x2 = Tensor(np.array([0, 0, 2, 4]), mindspore.float32) | >>> input_x2 = Tensor(np.array([0, 0, 2, 4]), mindspore.float32) | ||||
| >>> square_sum_all = P.SquareSumAll() | |||||
| >>> square_sum_all = ops.SquareSumAll() | |||||
| >>> output = square_sum_all(input_x1, input_x2) | >>> output = square_sum_all(input_x1, input_x2) | ||||
| >>> print(output) | >>> print(output) | ||||
| (Tensor(shape=[], dtype=Float32, value= 4), | (Tensor(shape=[], dtype=Float32, value= 4), | ||||
| @@ -3697,7 +3697,7 @@ class BitwiseAnd(_BitwiseBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16) | >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16) | ||||
| >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16) | >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16) | ||||
| >>> bitwise_and = P.BitwiseAnd() | |||||
| >>> bitwise_and = ops.BitwiseAnd() | |||||
| >>> output = bitwise_and(input_x1, input_x2) | >>> output = bitwise_and(input_x1, input_x2) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 0 0 1 -1 1 0 1] | [ 0 0 1 -1 1 0 1] | ||||
| @@ -3727,7 +3727,7 @@ class BitwiseOr(_BitwiseBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16) | >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16) | ||||
| >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16) | >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16) | ||||
| >>> bitwise_or = P.BitwiseOr() | |||||
| >>> bitwise_or = ops.BitwiseOr() | |||||
| >>> boutput = itwise_or(input_x1, input_x2) | >>> boutput = itwise_or(input_x1, input_x2) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 0 1 1 -1 -1 3 3] | [ 0 1 1 -1 -1 3 3] | ||||
| @@ -3757,7 +3757,7 @@ class BitwiseXor(_BitwiseBinaryOp): | |||||
| Examples: | Examples: | ||||
| >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16) | >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mindspore.int16) | ||||
| >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16) | >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mindspore.int16) | ||||
| >>> bitwise_xor = P.BitwiseXor() | |||||
| >>> bitwise_xor = ops.BitwiseXor() | |||||
| >>> output = bitwise_xor(input_x1, input_x2) | >>> output = bitwise_xor(input_x1, input_x2) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 0 1 0 0 -2 3 2] | [ 0 1 0 0 -2 3 2] | ||||
| @@ -3779,7 +3779,7 @@ class BesselI0e(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> bessel_i0e = P.BesselI0e() | |||||
| >>> bessel_i0e = ops.BesselI0e() | |||||
| >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | ||||
| >>> output = bessel_i0e(input_x) | >>> output = bessel_i0e(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3813,7 +3813,7 @@ class BesselI1e(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> bessel_i1e = P.BesselI1e() | |||||
| >>> bessel_i1e = ops.BesselI1e() | |||||
| >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32) | ||||
| >>> output = bessel_i1e(input_x) | >>> output = bessel_i1e(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3847,7 +3847,7 @@ class Inv(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> inv = P.Inv() | |||||
| >>> inv = ops.Inv() | |||||
| >>> input_x = Tensor(np.array([0.25, 0.4, 0.31, 0.52]), mindspore.float32) | >>> input_x = Tensor(np.array([0.25, 0.4, 0.31, 0.52]), mindspore.float32) | ||||
| >>> output = inv(input_x) | >>> output = inv(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3881,7 +3881,7 @@ class Invert(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> invert = P.Invert() | |||||
| >>> invert = ops.Invert() | |||||
| >>> input_x = Tensor(np.array([25, 4, 13, 9]), mindspore.int16) | >>> input_x = Tensor(np.array([25, 4, 13, 9]), mindspore.int16) | ||||
| >>> output = invert(input_x) | >>> output = invert(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -3915,7 +3915,7 @@ class Eps(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor([4, 1, 2, 3], mindspore.float32) | >>> input_x = Tensor([4, 1, 2, 3], mindspore.float32) | ||||
| >>> output = P.Eps()(input_x) | |||||
| >>> output = ops.Eps()(input_x) | |||||
| >>> print(output) | >>> print(output) | ||||
| [1.5258789e-05 1.5258789e-05 1.5258789e-05 1.5258789e-05] | [1.5258789e-05 1.5258789e-05 1.5258789e-05 1.5258789e-05] | ||||
| """ | """ | ||||
| @@ -91,7 +91,7 @@ class Flatten(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32) | >>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32) | ||||
| >>> flatten = P.Flatten() | |||||
| >>> flatten = ops.Flatten() | |||||
| >>> output = flatten(input_tensor) | >>> output = flatten(input_tensor) | ||||
| >>> print(output.shape) | >>> print(output.shape) | ||||
| (1, 24) | (1, 24) | ||||
| @@ -138,7 +138,7 @@ class Softmax(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | ||||
| >>> softmax = P.Softmax() | |||||
| >>> softmax = ops.Softmax() | |||||
| >>> output = softmax(input_x) | >>> output = softmax(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ] | [0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ] | ||||
| @@ -192,7 +192,7 @@ class LogSoftmax(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | ||||
| >>> log_softmax = P.LogSoftmax() | |||||
| >>> log_softmax = ops.LogSoftmax() | |||||
| >>> output = log_softmax(input_x) | >>> output = log_softmax(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144] | [-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144] | ||||
| @@ -233,7 +233,7 @@ class Softplus(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | ||||
| >>> softplus = P.Softplus() | |||||
| >>> softplus = ops.Softplus() | |||||
| >>> output = softplus(input_x) | >>> output = softplus(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [1.3132615 2.126928 3.0485873 4.01815 5.0067153] | [1.3132615 2.126928 3.0485873 4.01815 5.0067153] | ||||
| @@ -272,7 +272,7 @@ class Softsign(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32) | >>> input_x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32) | ||||
| >>> softsign = P.Softsign() | |||||
| >>> softsign = ops.Softsign() | |||||
| >>> output = softsign(input_x) | >>> output = softsign(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ 0. -0.5 0.6666667 0.9677419 -0.9677419] | [ 0. -0.5 0.6666667 0.9677419 -0.9677419] | ||||
| @@ -308,7 +308,7 @@ class ReLU(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | ||||
| >>> relu = P.ReLU() | |||||
| >>> relu = ops.ReLU() | |||||
| >>> output = relu(input_x) | >>> output = relu(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0. 4. 0.] | [[0. 4. 0.] | ||||
| @@ -345,7 +345,7 @@ class ReLU6(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | ||||
| >>> relu6 = P.ReLU6() | |||||
| >>> relu6 = ops.ReLU6() | |||||
| >>> result = relu6(input_x) | >>> result = relu6(input_x) | ||||
| >>> print(result) | >>> print(result) | ||||
| [[0. 4. 0.] | [[0. 4. 0.] | ||||
| @@ -383,7 +383,7 @@ class ReLUV2(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32) | >>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32) | ||||
| >>> relu_v2 = P.ReLUV2() | |||||
| >>> relu_v2 = ops.ReLUV2() | |||||
| >>> output, mask= relu_v2(input_x) | >>> output, mask= relu_v2(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[[1. 0.] | [[[[1. 0.] | ||||
| @@ -464,7 +464,7 @@ class Elu(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | ||||
| >>> elu = P.Elu() | |||||
| >>> elu = ops.Elu() | |||||
| >>> output = elu(input_x) | >>> output = elu(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[-0.63212055 4. -0.99966455] | [[-0.63212055 4. -0.99966455] | ||||
| @@ -508,7 +508,7 @@ class HSwish(PrimitiveWithInfer): | |||||
| ``GPU`` | ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> hswish = P.HSwish() | |||||
| >>> hswish = ops.HSwish() | |||||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | ||||
| >>> result = hswish(input_x) | >>> result = hswish(input_x) | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -549,7 +549,7 @@ class Sigmoid(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | ||||
| >>> sigmoid = P.Sigmoid() | |||||
| >>> sigmoid = ops.Sigmoid() | |||||
| >>> output = sigmoid(input_x) | >>> output = sigmoid(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0.7310586 0.880797 0.95257413 0.98201376 0.9933072 ] | [0.7310586 0.880797 0.95257413 0.98201376 0.9933072 ] | ||||
| @@ -590,7 +590,7 @@ class HSigmoid(PrimitiveWithInfer): | |||||
| ``GPU`` | ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> hsigmoid = P.HSigmoid() | |||||
| >>> hsigmoid = ops.HSigmoid() | |||||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | ||||
| >>> result = hsigmoid(input_x) | >>> result = hsigmoid(input_x) | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -631,7 +631,7 @@ class Tanh(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | ||||
| >>> tanh = P.Tanh() | |||||
| >>> tanh = ops.Tanh() | |||||
| >>> output = tanh(input_x) | >>> output = tanh(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0.7615941 0.9640276 0.9950547 0.9993293 0.9999092] | [0.7615941 0.9640276 0.9950547 0.9993293 0.9999092] | ||||
| @@ -697,11 +697,11 @@ class FusedBatchNorm(Primitive): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Parameter | >>> from mindspore import Parameter | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class FusedBatchNormNet(nn.Cell): | >>> class FusedBatchNormNet(nn.Cell): | ||||
| >>> def __init__(self): | >>> def __init__(self): | ||||
| >>> super(FusedBatchNormNet, self).__init__() | >>> super(FusedBatchNormNet, self).__init__() | ||||
| >>> self.fused_batch_norm = P.FusedBatchNorm() | |||||
| >>> self.fused_batch_norm = ops.FusedBatchNorm() | |||||
| >>> self.scale = Parameter(Tensor(np.ones([64]), mindspore.float32), name="scale") | >>> self.scale = Parameter(Tensor(np.ones([64]), mindspore.float32), name="scale") | ||||
| >>> self.bias = Parameter(Tensor(np.ones([64]), mindspore.float32), name="bias") | >>> self.bias = Parameter(Tensor(np.ones([64]), mindspore.float32), name="bias") | ||||
| >>> self.mean = Parameter(Tensor(np.ones([64]), mindspore.float32), name="mean") | >>> self.mean = Parameter(Tensor(np.ones([64]), mindspore.float32), name="mean") | ||||
| @@ -794,11 +794,11 @@ class FusedBatchNormEx(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Parameter | >>> from mindspore import Parameter | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class FusedBatchNormExNet(nn.Cell): | >>> class FusedBatchNormExNet(nn.Cell): | ||||
| >>> def __init__(self): | >>> def __init__(self): | ||||
| >>> super(FusedBatchNormExNet, self).__init__() | >>> super(FusedBatchNormExNet, self).__init__() | ||||
| >>> self.fused_batch_norm_ex = P.FusedBatchNormEx() | |||||
| >>> self.fused_batch_norm_ex = ops.FusedBatchNormEx() | |||||
| >>> self.scale = Parameter(Tensor(np.ones([64]), mindspore.float32), name="scale") | >>> self.scale = Parameter(Tensor(np.ones([64]), mindspore.float32), name="scale") | ||||
| >>> self.bias = Parameter(Tensor(np.ones([64]), mindspore.float32), name="bias") | >>> self.bias = Parameter(Tensor(np.ones([64]), mindspore.float32), name="bias") | ||||
| >>> self.mean = Parameter(Tensor(np.ones([64]), mindspore.float32), name="mean") | >>> self.mean = Parameter(Tensor(np.ones([64]), mindspore.float32), name="mean") | ||||
| @@ -874,7 +874,7 @@ class BNTrainingReduce(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.ones([128, 3, 32, 3]), mindspore.float32) | >>> input_x = Tensor(np.ones([128, 3, 32, 3]), mindspore.float32) | ||||
| >>> bn_training_reduce = P.BNTrainingReduce() | |||||
| >>> bn_training_reduce = ops.BNTrainingReduce() | |||||
| >>> output = bn_training_reduce(input_x) | >>> output = bn_training_reduce(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| ([1.22880000e+04, 1.22880000e+04, 1.22880000e+04], | ([1.22880000e+04, 1.22880000e+04, 1.22880000e+04], | ||||
| @@ -940,7 +940,7 @@ class BNTrainingUpdate(PrimitiveWithInfer): | |||||
| >>> offset = Tensor(np.ones([2]), mindspore.float32) | >>> offset = Tensor(np.ones([2]), mindspore.float32) | ||||
| >>> mean = Tensor(np.ones([2]), mindspore.float32) | >>> mean = Tensor(np.ones([2]), mindspore.float32) | ||||
| >>> variance = Tensor(np.ones([2]), mindspore.float32) | >>> variance = Tensor(np.ones([2]), mindspore.float32) | ||||
| >>> bn_training_update = P.BNTrainingUpdate() | |||||
| >>> bn_training_update = ops.BNTrainingUpdate() | |||||
| >>> output = bn_training_update(input_x, sum, square_sum, scale, offset, mean, variance) | >>> output = bn_training_update(input_x, sum, square_sum, scale, offset, mean, variance) | ||||
| >>> print(output) | >>> print(output) | ||||
| ([[[[2.73200464e+00, 2.73200464e+00], | ([[[[2.73200464e+00, 2.73200464e+00], | ||||
| @@ -1041,7 +1041,7 @@ class BatchNorm(PrimitiveWithInfer): | |||||
| >>> bias = Tensor(np.ones([2]), mindspore.float32) | >>> bias = Tensor(np.ones([2]), mindspore.float32) | ||||
| >>> mean = Tensor(np.ones([2]), mindspore.float32) | >>> mean = Tensor(np.ones([2]), mindspore.float32) | ||||
| >>> variance = Tensor(np.ones([2]), mindspore.float32) | >>> variance = Tensor(np.ones([2]), mindspore.float32) | ||||
| >>> batch_norm = P.BatchNorm() | |||||
| >>> batch_norm = ops.BatchNorm() | |||||
| >>> output = batch_norm(input_x, scale, bias, mean, variance) | >>> output = batch_norm(input_x, scale, bias, mean, variance) | ||||
| >>> print(output) | >>> print(output) | ||||
| ([[1.0, 1.0], | ([[1.0, 1.0], | ||||
| @@ -1147,7 +1147,7 @@ class Conv2D(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32) | >>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32) | ||||
| >>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) | >>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) | ||||
| >>> conv2d = P.Conv2D(out_channel=32, kernel_size=3) | |||||
| >>> conv2d = ops.Conv2D(out_channel=32, kernel_size=3) | |||||
| >>> output = conv2d(input, weight) | >>> output = conv2d(input, weight) | ||||
| >>> print(output.shape) | >>> print(output.shape) | ||||
| (10, 32, 30, 30) | (10, 32, 30, 30) | ||||
| @@ -1295,7 +1295,7 @@ class DepthwiseConv2dNative(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32) | >>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32) | ||||
| >>> weight = Tensor(np.ones([1, 32, 3, 3]), mindspore.float32) | >>> weight = Tensor(np.ones([1, 32, 3, 3]), mindspore.float32) | ||||
| >>> depthwise_conv2d = P.DepthwiseConv2dNative(channel_multiplier = 3, kernel_size = (3, 3)) | |||||
| >>> depthwise_conv2d = ops.DepthwiseConv2dNative(channel_multiplier = 3, kernel_size = (3, 3)) | |||||
| >>> output = depthwise_conv2d(input, weight) | >>> output = depthwise_conv2d(input, weight) | ||||
| >>> print(output.shape) | >>> print(output.shape) | ||||
| (10, 96, 30, 30) | (10, 96, 30, 30) | ||||
| @@ -1508,7 +1508,7 @@ class MaxPool(_Pool): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32) | >>> input_tensor = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32) | ||||
| >>> maxpool_op = P.MaxPool(padding="VALID", ksize=2, strides=1) | |||||
| >>> maxpool_op = ops.MaxPool(padding="VALID", ksize=2, strides=1) | |||||
| >>> output_tensor = maxpool_op(input_tensor) | >>> output_tensor = maxpool_op(input_tensor) | ||||
| """ | """ | ||||
| @@ -1563,7 +1563,7 @@ class MaxPoolWithArgmax(_Pool): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32) | >>> input_tensor = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32) | ||||
| >>> maxpool_arg_op = P.MaxPoolWithArgmax(padding="VALID", ksize=2, strides=1) | |||||
| >>> maxpool_arg_op = ops.MaxPoolWithArgmax(padding="VALID", ksize=2, strides=1) | |||||
| >>> output_tensor, argmax = maxpool_arg_op(input_tensor) | >>> output_tensor, argmax = maxpool_arg_op(input_tensor) | ||||
| """ | """ | ||||
| @@ -1649,11 +1649,11 @@ class AvgPool(_Pool): | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.avgpool_op = P.AvgPool(padding="VALID", ksize=2, strides=1) | |||||
| ... self.avgpool_op = ops.AvgPool(padding="VALID", ksize=2, strides=1) | |||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... result = self.avgpool_op(x) | ... result = self.avgpool_op(x) | ||||
| @@ -1720,7 +1720,7 @@ class Conv2DBackpropInput(PrimitiveWithInfer): | |||||
| >>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32) | >>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32) | ||||
| >>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) | >>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) | ||||
| >>> x = Tensor(np.ones([10, 32, 32, 32])) | >>> x = Tensor(np.ones([10, 32, 32, 32])) | ||||
| >>> conv2d_backprop_input = P.Conv2DBackpropInput(out_channel=32, kernel_size=3) | |||||
| >>> conv2d_backprop_input = ops.Conv2DBackpropInput(out_channel=32, kernel_size=3) | |||||
| >>> output = conv2d_backprop_input(dout, weight, F.shape(x)) | >>> output = conv2d_backprop_input(dout, weight, F.shape(x)) | ||||
| >>> print(output.shape) | >>> print(output.shape) | ||||
| (10, 32, 32, 32) | (10, 32, 32, 32) | ||||
| @@ -1840,7 +1840,7 @@ class BiasAdd(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32) | >>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32) | ||||
| >>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32) | >>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32) | ||||
| >>> bias_add = P.BiasAdd() | |||||
| >>> bias_add = ops.BiasAdd() | |||||
| >>> output = bias_add(input_x, bias) | >>> output = bias_add(input_x, bias) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0.4662124 1.2493685 2.3611782] | [[0.4662124 1.2493685 2.3611782] | ||||
| @@ -1890,7 +1890,7 @@ class TopK(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> topk = P.TopK(sorted=True) | |||||
| >>> topk = ops.TopK(sorted=True) | |||||
| >>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16) | >>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16) | ||||
| >>> k = 3 | >>> k = 3 | ||||
| >>> values, indices = topk(input_x, k) | >>> values, indices = topk(input_x, k) | ||||
| @@ -1944,7 +1944,7 @@ class SoftmaxCrossEntropyWithLogits(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> logits = Tensor([[2, 4, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32) | >>> logits = Tensor([[2, 4, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32) | ||||
| >>> labels = Tensor([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0]], mindspore.float32) | >>> labels = Tensor([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0]], mindspore.float32) | ||||
| >>> softmax_cross = P.SoftmaxCrossEntropyWithLogits() | |||||
| >>> softmax_cross = ops.SoftmaxCrossEntropyWithLogits() | |||||
| >>> loss, dlogits = softmax_cross(logits, labels) | >>> loss, dlogits = softmax_cross(logits, labels) | ||||
| >>> print(loss) | >>> print(loss) | ||||
| [0.5899297 0.52374405] | [0.5899297 0.52374405] | ||||
| @@ -2125,7 +2125,7 @@ class SmoothL1Loss(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> loss = P.SmoothL1Loss() | |||||
| >>> loss = ops.SmoothL1Loss() | |||||
| >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) | >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) | ||||
| >>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32) | >>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32) | ||||
| >>> output = loss(input_data, target_data) | >>> output = loss(input_data, target_data) | ||||
| @@ -2172,7 +2172,7 @@ class L2Loss(PrimitiveWithInfer): | |||||
| Examples | Examples | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16) | ||||
| >>> l2_loss = P.L2Loss() | |||||
| >>> l2_loss = ops.L2Loss() | |||||
| >>> output = l2_loss(input_x) | >>> output = l2_loss(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| 7.0 | 7.0 | ||||
| @@ -2212,7 +2212,7 @@ class DataFormatDimMap(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor([0, 1, 2, 3], mindspore.int32) | >>> x = Tensor([0, 1, 2, 3], mindspore.int32) | ||||
| >>> dfdm = P.DataFormatDimMap() | |||||
| >>> dfdm = ops.DataFormatDimMap() | |||||
| >>> output = dfdm(x) | >>> output = dfdm(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [0 3 1 2] | [0 3 1 2] | ||||
| @@ -2261,7 +2261,7 @@ class RNNTLoss(PrimitiveWithInfer): | |||||
| >>> labels = np.array([[1, 2]]).astype(np.int32) | >>> labels = np.array([[1, 2]]).astype(np.int32) | ||||
| >>> input_length = np.array([T] * B).astype(np.int32) | >>> input_length = np.array([T] * B).astype(np.int32) | ||||
| >>> label_length = np.array([len(l) for l in labels]).astype(np.int32) | >>> label_length = np.array([len(l) for l in labels]).astype(np.int32) | ||||
| >>> rnnt_loss = P.RNNTLoss(blank_label=blank) | |||||
| >>> rnnt_loss = ops.RNNTLoss(blank_label=blank) | |||||
| >>> costs, grads = rnnt_loss(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length)) | >>> costs, grads = rnnt_loss(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length)) | ||||
| """ | """ | ||||
| @@ -2324,7 +2324,7 @@ class SGD(PrimitiveWithCheck): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> sgd = P.SGD() | |||||
| >>> sgd = ops.SGD() | |||||
| >>> parameters = Tensor(np.array([2, -0.5, 1.7, 4]), mindspore.float32) | >>> parameters = Tensor(np.array([2, -0.5, 1.7, 4]), mindspore.float32) | ||||
| >>> gradient = Tensor(np.array([1, -1, 0.5, 2]), mindspore.float32) | >>> gradient = Tensor(np.array([1, -1, 0.5, 2]), mindspore.float32) | ||||
| >>> learning_rate = Tensor(0.01, mindspore.float32) | >>> learning_rate = Tensor(0.01, mindspore.float32) | ||||
| @@ -2406,7 +2406,7 @@ class ApplyRMSProp(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> apply_rms = P.ApplyRMSProp() | |||||
| >>> apply_rms = ops.ApplyRMSProp() | |||||
| >>> input_x = Tensor(1., mindspore.float32) | >>> input_x = Tensor(1., mindspore.float32) | ||||
| >>> mean_square = Tensor(2., mindspore.float32) | >>> mean_square = Tensor(2., mindspore.float32) | ||||
| >>> moment = Tensor(1., mindspore.float32) | >>> moment = Tensor(1., mindspore.float32) | ||||
| @@ -2508,7 +2508,7 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> centered_rms_prop = P.ApplyCenteredRMSProp() | |||||
| >>> centered_rms_prop = ops.ApplyCenteredRMSProp() | |||||
| >>> input_x = Tensor(np.arange(-2, 2).astype(np.float32).reshape(2, 2), mindspore.float32) | >>> input_x = Tensor(np.arange(-2, 2).astype(np.float32).reshape(2, 2), mindspore.float32) | ||||
| >>> mean_grad = Tensor(np.arange(4).astype(np.float32).reshape(2, 2), mindspore.float32) | >>> mean_grad = Tensor(np.arange(4).astype(np.float32).reshape(2, 2), mindspore.float32) | ||||
| >>> mean_square = Tensor(np.arange(-3, 1).astype(np.float32).reshape(2, 2), mindspore.float32) | >>> mean_square = Tensor(np.arange(-3, 1).astype(np.float32).reshape(2, 2), mindspore.float32) | ||||
| @@ -2605,7 +2605,7 @@ class LayerNorm(Primitive): | |||||
| >>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32) | >>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32) | ||||
| >>> gamma = Tensor(np.ones([3]), mindspore.float32) | >>> gamma = Tensor(np.ones([3]), mindspore.float32) | ||||
| >>> beta = Tensor(np.ones([3]), mindspore.float32) | >>> beta = Tensor(np.ones([3]), mindspore.float32) | ||||
| >>> layer_norm = P.LayerNorm() | |||||
| >>> layer_norm = ops.LayerNorm() | |||||
| >>> output, mean, variance = layer_norm(input_x, gamma, beta) | >>> output, mean, variance = layer_norm(input_x, gamma, beta) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[-0.2247448 1. 2.2247448] | [[-0.2247448 1. 2.2247448] | ||||
| @@ -2650,7 +2650,7 @@ class L2Normalize(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> l2_normalize = P.L2Normalize() | |||||
| >>> l2_normalize = ops.L2Normalize() | |||||
| >>> input_x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32) | >>> input_x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32) | ||||
| >>> output = l2_normalize(input_x) | >>> output = l2_normalize(input_x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -2697,7 +2697,7 @@ class DropoutGenMask(Primitive): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> dropout_gen_mask = P.DropoutGenMask() | |||||
| >>> dropout_gen_mask = ops.DropoutGenMask() | |||||
| >>> shape = (2, 4, 5) | >>> shape = (2, 4, 5) | ||||
| >>> keep_prob = Tensor(0.5, mindspore.float32) | >>> keep_prob = Tensor(0.5, mindspore.float32) | ||||
| >>> output = dropout_gen_mask(shape, keep_prob) | >>> output = dropout_gen_mask(shape, keep_prob) | ||||
| @@ -2738,8 +2738,8 @@ class DropoutDoMask(PrimitiveWithInfer): | |||||
| >>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32) | >>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32) | ||||
| >>> shape = (2, 2, 3) | >>> shape = (2, 2, 3) | ||||
| >>> keep_prob = Tensor(0.5, mindspore.float32) | >>> keep_prob = Tensor(0.5, mindspore.float32) | ||||
| >>> dropout_gen_mask = P.DropoutGenMask() | |||||
| >>> dropout_do_mask = P.DropoutDoMask() | |||||
| >>> dropout_gen_mask = ops.DropoutGenMask() | |||||
| >>> dropout_do_mask = ops.DropoutDoMask() | |||||
| >>> mask = dropout_gen_mask(shape, keep_prob) | >>> mask = dropout_gen_mask(shape, keep_prob) | ||||
| >>> output = dropout_do_mask(x, mask, keep_prob) | >>> output = dropout_do_mask(x, mask, keep_prob) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -2810,7 +2810,7 @@ class ResizeBilinear(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32) | >>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32) | ||||
| >>> resize_bilinear = P.ResizeBilinear((5, 5)) | |||||
| >>> resize_bilinear = ops.ResizeBilinear((5, 5)) | |||||
| >>> output = resize_bilinear(tensor) | >>> output = resize_bilinear(tensor) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[[1. 2. 3. 4. 5.] | [[[[1. 2. 3. 4. 5.] | ||||
| @@ -2870,7 +2870,7 @@ class OneHot(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32) | >>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32) | ||||
| >>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32) | >>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32) | ||||
| >>> onehot = P.OneHot() | |||||
| >>> onehot = ops.OneHot() | |||||
| >>> output = onehot(indices, depth, on_value, off_value) | >>> output = onehot(indices, depth, on_value, off_value) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[1. 0. 0.] | [[1. 0. 0.] | ||||
| @@ -2929,7 +2929,7 @@ class Gelu(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | >>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | ||||
| >>> gelu = P.Gelu() | |||||
| >>> gelu = ops.Gelu() | |||||
| >>> result = gelu(tensor) | >>> result = gelu(tensor) | ||||
| >>> print(result) | >>> print(result) | ||||
| [0.841192 1.9545976 2.9963627] | [0.841192 1.9545976 2.9963627] | ||||
| @@ -2974,7 +2974,7 @@ class GetNext(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> get_next = P.GetNext([mindspore.float32, mindspore.int32], [[32, 1, 28, 28], [10]], 2, 'shared_name') | |||||
| >>> get_next = ops.GetNext([mindspore.float32, mindspore.int32], [[32, 1, 28, 28], [10]], 2, 'shared_name') | |||||
| >>> feature, label = get_next() | >>> feature, label = get_next() | ||||
| """ | """ | ||||
| @@ -3026,11 +3026,11 @@ class PReLU(PrimitiveWithInfer): | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| >>> def __init__(self): | >>> def __init__(self): | ||||
| >>> super(Net, self).__init__() | >>> super(Net, self).__init__() | ||||
| >>> self.prelu = P.PReLU() | |||||
| >>> self.prelu = ops.PReLU() | |||||
| >>> def construct(self, input_x, weight): | >>> def construct(self, input_x, weight): | ||||
| >>> result = self.prelu(input_x, weight) | >>> result = self.prelu(input_x, weight) | ||||
| >>> return result | >>> return result | ||||
| @@ -3214,7 +3214,7 @@ class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) | >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) | ||||
| >>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32)) | >>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32)) | ||||
| >>> sigmoid = P.SigmoidCrossEntropyWithLogits() | |||||
| >>> sigmoid = ops.SigmoidCrossEntropyWithLogits() | |||||
| >>> output = sigmoid(logits, labels) | >>> output = sigmoid(logits, labels) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0.6111007 0.5032824 0.26318604] | [[0.6111007 0.5032824 0.26318604] | ||||
| @@ -3257,7 +3257,7 @@ class Pad(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) | ||||
| >>> pad_op = P.Pad(((1, 2), (2, 1))) | |||||
| >>> pad_op = ops.Pad(((1, 2), (2, 1))) | |||||
| >>> output = pad_op(input_tensor) | >>> output = pad_op(input_tensor) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[ 0. 0. 0. 0. 0. 0. ], | [[ 0. 0. 0. 0. 0. 0. ], | ||||
| @@ -3325,13 +3325,13 @@ class MirrorPad(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.pad = P.MirrorPad(mode="REFLECT") | |||||
| ... self.pad = ops.MirrorPad(mode="REFLECT") | |||||
| ... def construct(self, x, paddings): | ... def construct(self, x, paddings): | ||||
| ... return self.pad(x, paddings) | ... return self.pad(x, paddings) | ||||
| ... | ... | ||||
| @@ -3411,7 +3411,7 @@ class ROIAlign(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_tensor = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32) | >>> input_tensor = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32) | ||||
| >>> rois = Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), mindspore.float32) | >>> rois = Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), mindspore.float32) | ||||
| >>> roi_align = P.ROIAlign(2, 2, 0.5, 2) | |||||
| >>> roi_align = ops.ROIAlign(2, 2, 0.5, 2) | |||||
| >>> output = roi_align(input_tensor, rois) | >>> output = roi_align(input_tensor, rois) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[[1.775 2.025] | [[[[1.775 2.025] | ||||
| @@ -3501,11 +3501,11 @@ class Adam(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_adam = P.Adam() | |||||
| ... self.apply_adam = ops.Adam() | |||||
| ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") | ||||
| ... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m") | ... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m") | ||||
| ... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v") | ... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v") | ||||
| @@ -3604,12 +3604,12 @@ class AdamNoUpdateParam(PrimitiveWithInfer): | |||||
| >>> import mindspore as ms | >>> import mindspore as ms | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> | >>> | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| >>> def __init__(self): | >>> def __init__(self): | ||||
| >>> super(Net, self).__init__() | >>> super(Net, self).__init__() | ||||
| >>> self.adam = P.AdamNoUpdateParam() | |||||
| >>> self.adam = ops.AdamNoUpdateParam() | |||||
| >>> self.m = Parameter(Tensor(np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]).astype(np.float32)), | >>> self.m = Parameter(Tensor(np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]).astype(np.float32)), | ||||
| >>> name="m") | >>> name="m") | ||||
| >>> self.v = Parameter(Tensor(np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]).astype(np.float32)), | >>> self.v = Parameter(Tensor(np.array([[0.1, 0.1, 0.1], [0.2, 0.2, 0.2]]).astype(np.float32)), | ||||
| @@ -3717,12 +3717,12 @@ class FusedSparseAdam(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.common.dtype as mstype | >>> import mindspore.common.dtype as mstype | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.sparse_apply_adam = P.FusedSparseAdam() | |||||
| ... self.sparse_apply_adam = ops.FusedSparseAdam() | |||||
| ... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") | ||||
| ... self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") | ... self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") | ||||
| ... self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") | ... self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") | ||||
| @@ -3855,12 +3855,12 @@ class FusedSparseLazyAdam(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.common.dtype as mstype | >>> import mindspore.common.dtype as mstype | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.sparse_apply_lazyadam = P.FusedSparseLazyAdam() | |||||
| ... self.sparse_apply_lazyadam = ops.FusedSparseLazyAdam() | |||||
| ... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") | ||||
| ... self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") | ... self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") | ||||
| ... self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") | ... self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") | ||||
| @@ -3969,11 +3969,11 @@ class FusedSparseFtrl(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Parameter | >>> from mindspore import Parameter | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class SparseApplyFtrlNet(nn.Cell): | >>> class SparseApplyFtrlNet(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(SparseApplyFtrlNet, self).__init__() | ... super(SparseApplyFtrlNet, self).__init__() | ||||
| ... self.sparse_apply_ftrl = P.FusedSparseFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) | |||||
| ... self.sparse_apply_ftrl = ops.FusedSparseFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) | |||||
| ... self.var = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="accum") | ||||
| ... self.linear = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="linear") | ... self.linear = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="linear") | ||||
| @@ -4068,11 +4068,11 @@ class FusedSparseProximalAdagrad(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.sparse_apply_proximal_adagrad = P.FusedSparseProximalAdagrad() | |||||
| ... self.sparse_apply_proximal_adagrad = ops.FusedSparseProximalAdagrad() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="accum") | ||||
| ... self.lr = Tensor(0.01, mstype.float32) | ... self.lr = Tensor(0.01, mstype.float32) | ||||
| @@ -4162,11 +4162,11 @@ class KLDivLoss(PrimitiveWithInfer): | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.kldiv_loss = P.KLDivLoss() | |||||
| ... self.kldiv_loss = ops.KLDivLoss() | |||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... result = self.kldiv_loss(x, y) | ... result = self.kldiv_loss(x, y) | ||||
| ... return result | ... return result | ||||
| @@ -4241,11 +4241,11 @@ class BinaryCrossEntropy(PrimitiveWithInfer): | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.binary_cross_entropy = P.BinaryCrossEntropy() | |||||
| ... self.binary_cross_entropy = ops.BinaryCrossEntropy() | |||||
| ... def construct(self, x, y, weight): | ... def construct(self, x, y, weight): | ||||
| ... result = self.binary_cross_entropy(x, y, weight) | ... result = self.binary_cross_entropy(x, y, weight) | ||||
| ... return result | ... return result | ||||
| @@ -4341,12 +4341,12 @@ class ApplyAdaMax(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.common.dtype as mstype | >>> import mindspore.common.dtype as mstype | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_ada_max = P.ApplyAdaMax() | |||||
| ... self.apply_ada_max = ops.ApplyAdaMax() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.m = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="m") | ... self.m = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="m") | ||||
| ... self.v = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="v") | ... self.v = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="v") | ||||
| @@ -4473,12 +4473,12 @@ class ApplyAdadelta(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.common.dtype as mstype | >>> import mindspore.common.dtype as mstype | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_adadelta = P.ApplyAdadelta() | |||||
| ... self.apply_adadelta = ops.ApplyAdadelta() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum") | ||||
| ... self.accum_update = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum_update") | ... self.accum_update = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum_update") | ||||
| @@ -4585,12 +4585,12 @@ class ApplyAdagrad(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.common.dtype as mstype | >>> import mindspore.common.dtype as mstype | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_adagrad = P.ApplyAdagrad() | |||||
| ... self.apply_adagrad = ops.ApplyAdagrad() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum") | ||||
| ... def construct(self, lr, grad): | ... def construct(self, lr, grad): | ||||
| @@ -4678,12 +4678,12 @@ class ApplyAdagradV2(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.common.dtype as mstype | >>> import mindspore.common.dtype as mstype | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_adagrad_v2 = P.ApplyAdagradV2(epsilon=1e-6) | |||||
| ... self.apply_adagrad_v2 = ops.ApplyAdagradV2(epsilon=1e-6) | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum") | ||||
| ... def construct(self, lr, grad): | ... def construct(self, lr, grad): | ||||
| @@ -4772,12 +4772,12 @@ class SparseApplyAdagrad(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.common.dtype as mstype | >>> import mindspore.common.dtype as mstype | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.sparse_apply_adagrad = P.SparseApplyAdagrad(lr=1e-8) | |||||
| ... self.sparse_apply_adagrad = ops.SparseApplyAdagrad(lr=1e-8) | |||||
| ... self.var = Parameter(Tensor(np.ones([1, 1, 1]).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.ones([1, 1, 1]).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.ones([1, 1, 1]).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.ones([1, 1, 1]).astype(np.float32)), name="accum") | ||||
| ... def construct(self, grad, indices): | ... def construct(self, grad, indices): | ||||
| @@ -4867,12 +4867,12 @@ class SparseApplyAdagradV2(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.common.dtype as mstype | >>> import mindspore.common.dtype as mstype | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.sparse_apply_adagrad_v2 = P.SparseApplyAdagradV2(lr=1e-8, epsilon=1e-6) | |||||
| ... self.sparse_apply_adagrad_v2 = ops.SparseApplyAdagradV2(lr=1e-8, epsilon=1e-6) | |||||
| ... self.var = Parameter(Tensor(np.ones([1, 1, 1]).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.ones([1, 1, 1]).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.ones([1, 1, 1]).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.ones([1, 1, 1]).astype(np.float32)), name="accum") | ||||
| ... | ... | ||||
| @@ -4962,11 +4962,11 @@ class ApplyProximalAdagrad(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_proximal_adagrad = P.ApplyProximalAdagrad() | |||||
| ... self.apply_proximal_adagrad = ops.ApplyProximalAdagrad() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="accum") | ||||
| ... self.lr = 0.01 | ... self.lr = 0.01 | ||||
| @@ -5076,11 +5076,11 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad() | |||||
| ... self.sparse_apply_proximal_adagrad = ops.SparseApplyProximalAdagrad() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(1, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(1, 2).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(1, 2).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(1, 2).astype(np.float32)), name="accum") | ||||
| ... self.lr = 0.01 | ... self.lr = 0.01 | ||||
| @@ -5175,11 +5175,11 @@ class ApplyAddSign(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_add_sign = P.ApplyAddSign() | |||||
| ... self.apply_add_sign = ops.ApplyAddSign() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.m = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="m") | ... self.m = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="m") | ||||
| ... self.lr = 0.001 | ... self.lr = 0.001 | ||||
| @@ -5293,11 +5293,11 @@ class ApplyPowerSign(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_power_sign = P.ApplyPowerSign() | |||||
| ... self.apply_power_sign = ops.ApplyPowerSign() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.m = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="m") | ... self.m = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="m") | ||||
| ... self.lr = 0.001 | ... self.lr = 0.001 | ||||
| @@ -5393,11 +5393,11 @@ class ApplyGradientDescent(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_gradient_descent = P.ApplyGradientDescent() | |||||
| ... self.apply_gradient_descent = ops.ApplyGradientDescent() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.alpha = 0.001 | ... self.alpha = 0.001 | ||||
| ... def construct(self, delta): | ... def construct(self, delta): | ||||
| @@ -5471,11 +5471,11 @@ class ApplyProximalGradientDescent(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> from mindspore import Tensor, Parameter | >>> from mindspore import Tensor, Parameter | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.apply_proximal_gradient_descent = P.ApplyProximalGradientDescent() | |||||
| ... self.apply_proximal_gradient_descent = ops.ApplyProximalGradientDescent() | |||||
| ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(2, 2).astype(np.float32)), name="var") | ||||
| ... self.alpha = 0.001 | ... self.alpha = 0.001 | ||||
| ... self.l1 = 0.0 | ... self.l1 = 0.0 | ||||
| @@ -5555,18 +5555,17 @@ class LARSUpdate(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import functional as F | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.lars = P.LARSUpdate() | |||||
| ... self.reduce = P.ReduceSum() | |||||
| ... self.lars = ops.LARSUpdate() | |||||
| ... self.reduce = ops.ReduceSum() | |||||
| ... def construct(self, weight, gradient): | ... def construct(self, weight, gradient): | ||||
| ... w_square_sum = self.reduce(F.square(weight)) | |||||
| ... grad_square_sum = self.reduce(F.square(gradient)) | |||||
| ... w_square_sum = self.reduce(ops.square(weight)) | |||||
| ... grad_square_sum = self.reduce(ops.square(gradient)) | |||||
| ... grad_t = self.lars(weight, gradient, w_square_sum, grad_square_sum, 0.0, 1.0) | ... grad_t = self.lars(weight, gradient, w_square_sum, grad_square_sum, 0.0, 1.0) | ||||
| ... return grad_t | ... return grad_t | ||||
| ... | ... | ||||
| @@ -5649,11 +5648,11 @@ class ApplyFtrl(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Parameter | >>> from mindspore import Parameter | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class ApplyFtrlNet(nn.Cell): | >>> class ApplyFtrlNet(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(ApplyFtrlNet, self).__init__() | ... super(ApplyFtrlNet, self).__init__() | ||||
| ... self.apply_ftrl = P.ApplyFtrl() | |||||
| ... self.apply_ftrl = ops.ApplyFtrl() | |||||
| ... self.lr = 0.001 | ... self.lr = 0.001 | ||||
| ... self.l1 = 0.0 | ... self.l1 = 0.0 | ||||
| ... self.l2 = 0.0 | ... self.l2 = 0.0 | ||||
| @@ -5748,11 +5747,11 @@ class SparseApplyFtrl(PrimitiveWithCheck): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Parameter | >>> from mindspore import Parameter | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class SparseApplyFtrlNet(nn.Cell): | >>> class SparseApplyFtrlNet(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(SparseApplyFtrlNet, self).__init__() | ... super(SparseApplyFtrlNet, self).__init__() | ||||
| ... self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) | |||||
| ... self.sparse_apply_ftrl = ops.SparseApplyFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) | |||||
| ... self.var = Parameter(Tensor(np.random.rand(1, 1).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(1, 1).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(1, 1).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(1, 1).astype(np.float32)), name="accum") | ||||
| ... self.linear = Parameter(Tensor(np.random.rand(1, 1).astype(np.float32)), name="linear") | ... self.linear = Parameter(Tensor(np.random.rand(1, 1).astype(np.float32)), name="linear") | ||||
| @@ -5853,11 +5852,11 @@ class SparseApplyFtrlV2(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Parameter | >>> from mindspore import Parameter | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class SparseApplyFtrlV2Net(nn.Cell): | >>> class SparseApplyFtrlV2Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(SparseApplyFtrlV2Net, self).__init__() | ... super(SparseApplyFtrlV2Net, self).__init__() | ||||
| ... self.sparse_apply_ftrl_v2 = P.SparseApplyFtrlV2(lr=0.01, l1=0.0, l2=0.0, | |||||
| ... self.sparse_apply_ftrl_v2 = ops.SparseApplyFtrlV2(lr=0.01, l1=0.0, l2=0.0, | |||||
| ... l2_shrinkage=0.0, lr_power=-0.5) | ... l2_shrinkage=0.0, lr_power=-0.5) | ||||
| ... self.var = Parameter(Tensor(np.random.rand(1, 2).astype(np.float32)), name="var") | ... self.var = Parameter(Tensor(np.random.rand(1, 2).astype(np.float32)), name="var") | ||||
| ... self.accum = Parameter(Tensor(np.random.rand(1, 2).astype(np.float32)), name="accum") | ... self.accum = Parameter(Tensor(np.random.rand(1, 2).astype(np.float32)), name="accum") | ||||
| @@ -5932,7 +5931,7 @@ class Dropout(PrimitiveWithInfer): | |||||
| - **mask** (Tensor) - with the same shape as the input tensor. | - **mask** (Tensor) - with the same shape as the input tensor. | ||||
| Examples: | Examples: | ||||
| >>> dropout = P.Dropout(keep_prob=0.5) | |||||
| >>> dropout = ops.Dropout(keep_prob=0.5) | |||||
| >>> x = Tensor((20, 16, 50, 50), mindspore.float32) | >>> x = Tensor((20, 16, 50, 50), mindspore.float32) | ||||
| >>> output, mask = dropout(x) | >>> output, mask = dropout(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -5994,7 +5993,7 @@ class CTCLoss(PrimitiveWithInfer): | |||||
| >>> labels_indices = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int64) | >>> labels_indices = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int64) | ||||
| >>> labels_values = Tensor(np.array([2, 2]), mindspore.int32) | >>> labels_values = Tensor(np.array([2, 2]), mindspore.int32) | ||||
| >>> sequence_length = Tensor(np.array([2, 2]), mindspore.int32) | >>> sequence_length = Tensor(np.array([2, 2]), mindspore.int32) | ||||
| >>> ctc_loss = P.CTCLoss() | |||||
| >>> ctc_loss = ops.CTCLoss() | |||||
| >>> loss, gradient = ctc_loss(inputs, labels_indices, labels_values, sequence_length) | >>> loss, gradient = ctc_loss(inputs, labels_indices, labels_values, sequence_length) | ||||
| >>> print(loss) | >>> print(loss) | ||||
| [0.69121575 0.5381993 ] | [0.69121575 0.5381993 ] | ||||
| @@ -6072,7 +6071,7 @@ class CTCGreedyDecoder(PrimitiveWithInfer): | |||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(CTCGreedyDecoderNet, self).__init__() | ... super(CTCGreedyDecoderNet, self).__init__() | ||||
| ... self.ctc_greedy_decoder = P.CTCGreedyDecoder() | ... self.ctc_greedy_decoder = P.CTCGreedyDecoder() | ||||
| ... self.assert_op = P.Assert(300) | |||||
| ... self.assert_op = ops.Assert(300) | |||||
| ... | ... | ||||
| ... def construct(self, inputs, sequence_length): | ... def construct(self, inputs, sequence_length): | ||||
| ... out = self.ctc_greedy_decoder(inputs,sequence_length) | ... out = self.ctc_greedy_decoder(inputs,sequence_length) | ||||
| @@ -6175,7 +6174,7 @@ class BasicLSTMCell(PrimitiveWithInfer): | |||||
| >>> c = Tensor(np.random.rand(1, 2).astype(np.float16)) | >>> c = Tensor(np.random.rand(1, 2).astype(np.float16)) | ||||
| >>> w = Tensor(np.random.rand(34, 8).astype(np.float16)) | >>> w = Tensor(np.random.rand(34, 8).astype(np.float16)) | ||||
| >>> b = Tensor(np.random.rand(8, ).astype(np.float16)) | >>> b = Tensor(np.random.rand(8, ).astype(np.float16)) | ||||
| >>> lstm = P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh') | |||||
| >>> lstm = ops.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh') | |||||
| >>> output = lstm(x, h, c, w, b) | >>> output = lstm(x, h, c, w, b) | ||||
| >>> print(output) | >>> print(output) | ||||
| (Tensor(shape=[1, 2], dtype=Float16, value= | (Tensor(shape=[1, 2], dtype=Float16, value= | ||||
| @@ -6288,13 +6287,13 @@ class DynamicRNN(PrimitiveWithInfer): | |||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Parameter | >>> from mindspore import Parameter | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> import mindspore.context as context | >>> import mindspore.context as context | ||||
| >>> context.set_context(mode=context.GRAPH_MODE) | >>> context.set_context(mode=context.GRAPH_MODE) | ||||
| >>> class DynamicRNNNet(nn.Cell): | >>> class DynamicRNNNet(nn.Cell): | ||||
| >>> def __init__(self): | >>> def __init__(self): | ||||
| >>> super(DynamicRNNNet, self).__init__() | >>> super(DynamicRNNNet, self).__init__() | ||||
| >>> self.dynamic_rnn = P.DynamicRNN() | |||||
| >>> self.dynamic_rnn = ops.DynamicRNN() | |||||
| >>> | >>> | ||||
| >>> def construct(self, x, w, b, init_h, init_c): | >>> def construct(self, x, w, b, init_h, init_c): | ||||
| >>> out = self.dynamic_rnn(x, w, b, None, init_h, init_c) | >>> out = self.dynamic_rnn(x, w, b, None, init_h, init_c) | ||||
| @@ -6395,7 +6394,7 @@ class InTopK(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32) | >>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32) | ||||
| >>> x2 = Tensor(np.array([1, 3]), mindspore.int32) | >>> x2 = Tensor(np.array([1, 3]), mindspore.int32) | ||||
| >>> in_top_k = P.InTopK(3) | |||||
| >>> in_top_k = ops.InTopK(3) | |||||
| >>> output = in_top_k(x1, x2) | >>> output = in_top_k(x1, x2) | ||||
| >>> print(output) | >>> print(output) | ||||
| [ True False] | [ True False] | ||||
| @@ -6442,7 +6441,7 @@ class LRN(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> x = Tensor(np.random.rand(1, 2, 2, 2), mindspore.float32) | >>> x = Tensor(np.random.rand(1, 2, 2, 2), mindspore.float32) | ||||
| >>> lrn = P.LRN() | |||||
| >>> lrn = ops.LRN() | |||||
| >>> output = lrn(x) | >>> output = lrn(x) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[[[0.18990143 0.59475636] | [[[[0.18990143 0.59475636] | ||||
| @@ -47,7 +47,7 @@ class Assign(PrimitiveWithCheck): | |||||
| ... self.y = mindspore.Parameter(Tensor([1.0], mindspore.float32), name="y") | ... self.y = mindspore.Parameter(Tensor([1.0], mindspore.float32), name="y") | ||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... P.Assign()(self.y, x) | |||||
| ... ops.Assign()(self.y, x) | |||||
| ... return self.y | ... return self.y | ||||
| ... | ... | ||||
| >>> x = Tensor([2.0], mindspore.float32) | >>> x = Tensor([2.0], mindspore.float32) | ||||
| @@ -85,7 +85,7 @@ class InplaceAssign(PrimitiveWithInfer): | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.inplace_assign = P.InplaceAssign() | |||||
| ... self.inplace_assign = ops.InplaceAssign() | |||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... val = x - 1.0 | ... val = x - 1.0 | ||||
| @@ -129,7 +129,7 @@ class BoundingBoxEncode(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> anchor_box = Tensor([[4,1,2,1],[2,2,2,3]],mindspore.float32) | >>> anchor_box = Tensor([[4,1,2,1],[2,2,2,3]],mindspore.float32) | ||||
| >>> groundtruth_box = Tensor([[3,1,2,2],[1,2,1,4]],mindspore.float32) | >>> groundtruth_box = Tensor([[3,1,2,2],[1,2,1,4]],mindspore.float32) | ||||
| >>> boundingbox_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)) | |||||
| >>> boundingbox_encode = ops.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)) | |||||
| >>> output = boundingbox_encode(anchor_box, groundtruth_box) | >>> output = boundingbox_encode(anchor_box, groundtruth_box) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[ 5.0000000e-01 5.0000000e-01 -6.5504000e+04 6.9335938e-01] | [[ 5.0000000e-01 5.0000000e-01 -6.5504000e+04 6.9335938e-01] | ||||
| @@ -185,7 +185,7 @@ class BoundingBoxDecode(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> anchor_box = Tensor([[4,1,2,1],[2,2,2,3]],mindspore.float32) | >>> anchor_box = Tensor([[4,1,2,1],[2,2,2,3]],mindspore.float32) | ||||
| >>> deltas = Tensor([[3,1,2,2],[1,2,1,4]],mindspore.float32) | >>> deltas = Tensor([[3,1,2,2],[1,2,1,4]],mindspore.float32) | ||||
| >>> boundingbox_decode = P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), | |||||
| >>> boundingbox_decode = ops.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), | |||||
| ... max_shape=(768, 1280), wh_ratio_clip=0.016) | ... max_shape=(768, 1280), wh_ratio_clip=0.016) | ||||
| >>> output = boundingbox_decode(anchor_box, deltas) | >>> output = boundingbox_decode(anchor_box, deltas) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -245,11 +245,11 @@ class CheckValid(PrimitiveWithInfer): | |||||
| >>> import mindspore.nn as nn | >>> import mindspore.nn as nn | ||||
| >>> import numpy as np | >>> import numpy as np | ||||
| >>> from mindspore import Tensor | >>> from mindspore import Tensor | ||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import operations as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.check_valid = P.CheckValid() | |||||
| ... self.check_valid = ops.CheckValid() | |||||
| ... def construct(self, x, y): | ... def construct(self, x, y): | ||||
| ... valid_result = self.check_valid(x, y) | ... valid_result = self.check_valid(x, y) | ||||
| ... return valid_result | ... return valid_result | ||||
| @@ -313,7 +313,7 @@ class IOU(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> iou = P.IOU() | |||||
| >>> iou = ops.IOU() | |||||
| >>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16) | >>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16) | ||||
| >>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16) | >>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16) | ||||
| >>> output = iou(anchor_boxes, gt_boxes) | >>> output = iou(anchor_boxes, gt_boxes) | ||||
| @@ -363,16 +363,16 @@ class MakeRefKey(Primitive): | |||||
| ``Ascend`` ``GPU`` ``CPU`` | ``Ascend`` ``GPU`` ``CPU`` | ||||
| Examples: | Examples: | ||||
| >>> from mindspore.ops import functional as F | |||||
| >>> from mindspore.ops import functional as ops | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self): | ... def __init__(self): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.y = mindspore.Parameter(Tensor(np.ones([6, 8, 10]), mindspore.int32), name="y") | ... self.y = mindspore.Parameter(Tensor(np.ones([6, 8, 10]), mindspore.int32), name="y") | ||||
| ... self.make_ref_key = P.MakeRefKey("y") | |||||
| ... self.make_ref_key = ops.MakeRefKey("y") | |||||
| ... | ... | ||||
| ... def construct(self, x): | ... def construct(self, x): | ||||
| ... key = self.make_ref_key() | ... key = self.make_ref_key() | ||||
| ... ref = F.make_ref(key, x, self.y) | |||||
| ... ref = ops.make_ref(key, x, self.y) | |||||
| ... return ref * x | ... return ref * x | ||||
| ... | ... | ||||
| >>> x = Tensor(np.ones([3, 4, 5]), mindspore.int32) | >>> x = Tensor(np.ones([3, 4, 5]), mindspore.int32) | ||||
| @@ -451,7 +451,7 @@ class CheckBprop(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input_x = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),) | >>> input_x = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),) | ||||
| >>> input_y = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),) | >>> input_y = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),) | ||||
| >>> out = P.CheckBprop()(input_x, input_y) | |||||
| >>> out = ops.CheckBprop()(input_x, input_y) | |||||
| """ | """ | ||||
| @prim_attr_register | @prim_attr_register | ||||
| @@ -519,7 +519,7 @@ class ConfusionMatrix(PrimitiveWithInfer): | |||||
| Tensor, the confusion matrix, with shape (`num_classes`, `num_classes`). | Tensor, the confusion matrix, with shape (`num_classes`, `num_classes`). | ||||
| Examples: | Examples: | ||||
| >>> confusion_matrix = P.ConfusionMatrix(4) | |||||
| >>> confusion_matrix = ops.ConfusionMatrix(4) | |||||
| >>> labels = Tensor([0, 1, 1, 3], mindspore.int32) | >>> labels = Tensor([0, 1, 1, 3], mindspore.int32) | ||||
| >>> predictions = Tensor([1, 2, 1, 3], mindspore.int32) | >>> predictions = Tensor([1, 2, 1, 3], mindspore.int32) | ||||
| >>> output = confusion_matrix(labels, predictions) | >>> output = confusion_matrix(labels, predictions) | ||||
| @@ -567,7 +567,7 @@ class PopulationCount(PrimitiveWithInfer): | |||||
| ``Ascend`` | ``Ascend`` | ||||
| Examples: | Examples: | ||||
| >>> population_count = P.PopulationCount() | |||||
| >>> population_count = ops.PopulationCount() | |||||
| >>> x_input = Tensor([0, 1, 3], mindspore.int16) | >>> x_input = Tensor([0, 1, 3], mindspore.int16) | ||||
| >>> output = population_count(x_input) | >>> output = population_count(x_input) | ||||
| >>> print(output) | >>> print(output) | ||||
| @@ -39,7 +39,7 @@ class StandardNormal(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> shape = (4, 16) | >>> shape = (4, 16) | ||||
| >>> stdnormal = P.StandardNormal(seed=2) | |||||
| >>> stdnormal = ops.StandardNormal(seed=2) | |||||
| >>> output = stdnormal(shape) | >>> output = stdnormal(shape) | ||||
| >>> result = output.shape | >>> result = output.shape | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -90,7 +90,7 @@ class StandardLaplace(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> shape = (4, 16) | >>> shape = (4, 16) | ||||
| >>> stdlaplace = P.StandardLaplace(seed=2) | |||||
| >>> stdlaplace = ops.StandardLaplace(seed=2) | |||||
| >>> output = stdlaplace(shape) | >>> output = stdlaplace(shape) | ||||
| >>> result = output.shape | >>> result = output.shape | ||||
| >>> print(result) | >>> print(result) | ||||
| @@ -148,7 +148,7 @@ class Gamma(PrimitiveWithInfer): | |||||
| >>> shape = (2, 2) | >>> shape = (2, 2) | ||||
| >>> alpha = Tensor(1.0, mstype.float32) | >>> alpha = Tensor(1.0, mstype.float32) | ||||
| >>> beta = Tensor(1.0, mstype.float32) | >>> beta = Tensor(1.0, mstype.float32) | ||||
| >>> gamma = P.Gamma(seed=3) | |||||
| >>> gamma = ops.Gamma(seed=3) | |||||
| >>> output = gamma(shape, alpha, beta) | >>> output = gamma(shape, alpha, beta) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0.21962446 0.33740655] | [[0.21962446 0.33740655] | ||||
| @@ -206,7 +206,7 @@ class Poisson(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> shape = (4, 16) | >>> shape = (4, 16) | ||||
| >>> mean = Tensor(5.0, mstype.float32) | >>> mean = Tensor(5.0, mstype.float32) | ||||
| >>> poisson = P.Poisson(seed=5) | |||||
| >>> poisson = ops.Poisson(seed=5) | |||||
| >>> output = poisson(shape, mean) | >>> output = poisson(shape, mean) | ||||
| """ | """ | ||||
| @@ -265,7 +265,7 @@ class UniformInt(PrimitiveWithInfer): | |||||
| >>> shape = (2, 4) | >>> shape = (2, 4) | ||||
| >>> minval = Tensor(1, mstype.int32) | >>> minval = Tensor(1, mstype.int32) | ||||
| >>> maxval = Tensor(5, mstype.int32) | >>> maxval = Tensor(5, mstype.int32) | ||||
| >>> uniform_int = P.UniformInt(seed=10) | |||||
| >>> uniform_int = ops.UniformInt(seed=10) | |||||
| >>> output = uniform_int(shape, minval, maxval) | >>> output = uniform_int(shape, minval, maxval) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[4 2 1 3] | [[4 2 1 3] | ||||
| @@ -318,7 +318,7 @@ class UniformReal(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> shape = (2, 2) | >>> shape = (2, 2) | ||||
| >>> uniformreal = P.UniformReal(seed=2) | |||||
| >>> uniformreal = ops.UniformReal(seed=2) | |||||
| >>> output = uniformreal(shape) | >>> output = uniformreal(shape) | ||||
| >>> print(output) | >>> print(output) | ||||
| [[0.4359949 0.18508208] | [[0.4359949 0.18508208] | ||||
| @@ -374,7 +374,7 @@ class RandomChoiceWithMask(PrimitiveWithInfer): | |||||
| ``Ascend`` ``GPU`` | ``Ascend`` ``GPU`` | ||||
| Examples: | Examples: | ||||
| >>> rnd_choice_mask = P.RandomChoiceWithMask() | |||||
| >>> rnd_choice_mask = ops.RandomChoiceWithMask() | |||||
| >>> input_x = Tensor(np.ones(shape=[240000, 4]).astype(np.bool)) | >>> input_x = Tensor(np.ones(shape=[240000, 4]).astype(np.bool)) | ||||
| >>> output_y, output_mask = rnd_choice_mask(input_x) | >>> output_y, output_mask = rnd_choice_mask(input_x) | ||||
| >>> result = output_y.shape | >>> result = output_y.shape | ||||
| @@ -426,7 +426,7 @@ class RandomCategorical(PrimitiveWithInfer): | |||||
| >>> class Net(nn.Cell): | >>> class Net(nn.Cell): | ||||
| ... def __init__(self, num_sample): | ... def __init__(self, num_sample): | ||||
| ... super(Net, self).__init__() | ... super(Net, self).__init__() | ||||
| ... self.random_categorical = P.RandomCategorical(mindspore.int64) | |||||
| ... self.random_categorical = ops.RandomCategorical(mindspore.int64) | |||||
| ... self.num_sample = num_sample | ... self.num_sample = num_sample | ||||
| ... def construct(self, logits, seed=0): | ... def construct(self, logits, seed=0): | ||||
| ... return self.random_categorical(logits, self.num_sample, seed) | ... return self.random_categorical(logits, self.num_sample, seed) | ||||
| @@ -502,7 +502,7 @@ class Multinomial(PrimitiveWithInfer): | |||||
| Examples: | Examples: | ||||
| >>> input = Tensor([0., 9., 4., 0.], mstype.float32) | >>> input = Tensor([0., 9., 4., 0.], mstype.float32) | ||||
| >>> multinomial = P.Multinomial(seed=10) | |||||
| >>> multinomial = ops.Multinomial(seed=10) | |||||
| >>> output = multinomial(input, 2) | >>> output = multinomial(input, 2) | ||||
| """ | """ | ||||
| @@ -561,7 +561,7 @@ class UniformCandidateSampler(PrimitiveWithInfer): | |||||
| each of sampled_candidates. Shape: (num_sampled, ). | each of sampled_candidates. Shape: (num_sampled, ). | ||||
| Examples: | Examples: | ||||
| >>> sampler = P.UniformCandidateSampler(1, 3, False, 4) | |||||
| >>> sampler = ops.UniformCandidateSampler(1, 3, False, 4) | |||||
| >>> output1, output2, output3 = sampler(Tensor(np.array([[1],[3],[4],[6],[3]], dtype=np.int32))) | >>> output1, output2, output3 = sampler(Tensor(np.array([[1],[3],[4],[6],[3]], dtype=np.int32))) | ||||
| >>> print(output1, output2, output3) | >>> print(output1, output2, output3) | ||||
| [1, 1, 3], [[0.75], [0.75], [0.75], [0.75], [0.75]], [0.75, 0.75, 0.75] | [1, 1, 3], [[0.75], [0.75], [0.75], [0.75], [0.75]], [0.75, 0.75, 0.75] | ||||
| @@ -38,7 +38,7 @@ class SparseToDense(PrimitiveWithInfer): | |||||
| >>> indices = Tensor([[0, 1], [1, 2]]) | >>> indices = Tensor([[0, 1], [1, 2]]) | ||||
| >>> values = Tensor([1, 2], dtype=ms.float32) | >>> values = Tensor([1, 2], dtype=ms.float32) | ||||
| >>> dense_shape = (3, 4) | >>> dense_shape = (3, 4) | ||||
| >>> out = P.SparseToDense()(indices, values, dense_shape) | |||||
| >>> out = ops.SparseToDense()(indices, values, dense_shape) | |||||
| """ | """ | ||||
| @prim_attr_register | @prim_attr_register | ||||