Browse Source

!15227 add parallel operator for gathernd

From: @yangzhenzhang
Reviewed-by: @kisnwang,@stsuteng
Signed-off-by: @stsuteng
pull/15227/MERGE
mindspore-ci-bot Gitee 4 years ago
parent
commit
42ac3a477b
8 changed files with 395 additions and 13 deletions
  1. +1
    -0
      mindspore/ccsrc/frontend/parallel/auto_parallel/operator_costmodel.h
  2. +1
    -0
      mindspore/ccsrc/frontend/parallel/dynamic_creator.h
  3. +214
    -0
      mindspore/ccsrc/frontend/parallel/ops_info/gathernd_info.cc
  4. +58
    -0
      mindspore/ccsrc/frontend/parallel/ops_info/gathernd_info.h
  5. +1
    -0
      mindspore/ccsrc/frontend/parallel/ops_info/ops_info_head_files.h
  6. +1
    -0
      mindspore/ccsrc/frontend/parallel/ops_info/ops_utils.h
  7. +9
    -13
      mindspore/ccsrc/frontend/parallel/step_auto_parallel.cc
  8. +110
    -0
      tests/ut/python/parallel/test_gathernd.py

+ 1
- 0
mindspore/ccsrc/frontend/parallel/auto_parallel/operator_costmodel.h View File

@@ -608,6 +608,7 @@ using GreaterCost = SubCost;
using GreaterEqualCost = SubCost; using GreaterEqualCost = SubCost;
using LessCost = SubCost; using LessCost = SubCost;
using LessEqualCost = SubCost; using LessEqualCost = SubCost;
using GatherNdCost = SubCost;


class MulCost : public SubCost { class MulCost : public SubCost {
public: public:


+ 1
- 0
mindspore/ccsrc/frontend/parallel/dynamic_creator.h View File

@@ -191,6 +191,7 @@ REGISTER(StackInfo);
REGISTER(ConcatInfo); REGISTER(ConcatInfo);
REGISTER(SplitInfo); REGISTER(SplitInfo);
REGISTER(UniqueInfo); REGISTER(UniqueInfo);
REGISTER(GatherNdInfo);
} // namespace parallel } // namespace parallel
} // namespace mindspore } // namespace mindspore




+ 214
- 0
mindspore/ccsrc/frontend/parallel/ops_info/gathernd_info.cc View File

@@ -0,0 +1,214 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "frontend/parallel/ops_info/gathernd_info.h"

#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include <functional>
#include <string>

#include "frontend/parallel/device_matrix.h"
#include "frontend/parallel/strategy.h"
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
#include "pipeline/jit/resource.h"

namespace mindspore {
namespace parallel {
// the input can not be split, and the last dimension of indices can not be split
Status GatherNdInfo::CheckStrategy(const StrategyPtr &strategy) {
MS_EXCEPTION_IF_NULL(strategy);
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Invalid strategy";
return FAILED;
}

std::vector<Dimensions> stra = strategy->GetInputDim();
if (stra.size() != 2) {
MS_LOG(ERROR) << name_ << ": The size of strategies must be 2";
return FAILED;
}

int64_t input_split_size = std::accumulate(stra[0].begin(), stra[0].end(), 1, std::multiplies<int64_t>());
if (input_split_size != 1) {
MS_LOG(ERROR) << name_ << ": The input can not be split";
return FAILED;
}

if (stra[1].empty()) {
MS_LOG(ERROR) << name_ << ": The strategy of indices can not be empty";
return FAILED;
}

if (stra[1].back() != 1) {
MS_LOG(ERROR) << name_ << ": The last dimension of indices can not be split";
return FAILED;
}

return SUCCESS;
}

// the dev matrix is indices_strategy
Status GatherNdInfo::InferDevMatrixShape() {
MS_EXCEPTION_IF_NULL(strategy_);
std::vector<Dimensions> stra = strategy_->GetInputDim();
if (stra.size() != 2) {
MS_LOG(ERROR) << name_ << "The size of strategies must be 2";
return FAILED;
}

dev_matrix_shape_ = stra[1];
return SUCCESS;
}

// input shape: [x, y, z], indices shape: [a, b, c, 2], output shape: [a, b, c, z]
// strategy: ((1, 1, 1), (m, n, o, 1))
// dev-matrix: [m, n, o, 1]
// input map: [-1, -1, -1], indices map: [3, 2, 1, 0], output map: [3, 2, 1, -1]
Status GatherNdInfo::InferTensorMap() {
if (inputs_shape_.size() != 2) {
MS_LOG(ERROR) << name_ << "The size of input shapes must be 2";
return FAILED;
}

if (outputs_shape_.empty() || outputs_shape_[0].size() < (inputs_shape_[1].size() - 1)) {
MS_LOG(ERROR) << name_ << "invalid shapes";
return FAILED;
}

TensorMap input_tensor_map(inputs_shape_[0].size(), MAP_NONE); // the input can not split

// cannot use dev_matrix_shape_ replace inputs_shape_[0], because it may not be fully split in all devices.
TensorMap indices_tensor_map;
int64_t size = SizeToLong(inputs_shape_[0].size());
for (int64_t i = 0; i < size; ++i) {
indices_tensor_map.push_back(size - i - 1);
}

TensorMap output_tensor_map(outputs_shape_[0].size(), MAP_NONE);
for (size_t i = 0; i < (inputs_shape_[1].size() - 1); ++i) {
output_tensor_map[i] = indices_tensor_map[i];
}

inputs_tensor_map_.push_back(input_tensor_map);
inputs_tensor_map_.push_back(indices_tensor_map);
outputs_tensor_map_.push_back(output_tensor_map);
return SUCCESS;
}

Status GatherNdInfo::InferTensorInfo() {
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": Invalid args";
return FAILED;
}

TensorLayout input_layout, output_layout;
for (size_t i = 0; i < inputs_shape_.size(); ++i) {
// infer tensor layout
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[i], inputs_shape_[i]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
return FAILED;
}
TensorInfo input_tensor_info(input_layout);
inputs_tensor_info_.push_back(input_tensor_info);
}

if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
return FAILED;
}
TensorInfo output_tensor_info(output_layout);
outputs_tensor_info_.push_back(output_tensor_info);
return SUCCESS;
}

void GatherNdInfo::ReComputeBatchSplitFlagList() {
split_flag_list_[0] = false;
split_flag_list_[1] = true;
}

Status GatherNdInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }

Status GatherNdInfo::GenerateStrategies(int64_t stage_id) {
if (InferAttrs() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer attrs failed";
return FAILED;
}
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
return FAILED;
}

// to generate the indices' strategy
Shape input_split(inputs_shape_[1].size(), 1);
input_split.back() = 0;
Shapes splittable_input = {input_split};
Shapes tmp_inputs_shape = {inputs_shape_[1]};

std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, tmp_inputs_shape, splittable_input, &sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Generate strategies failed";
return FAILED;
}

// the others strategies are equal to the first input's strategy
for (auto &sp : sp_vector) {
if ((sp == nullptr) || sp->GetInputDim().empty()) {
MS_LOG(ERROR) << name_ << ": The strategy is null or empty";
return FAILED;
}
Strategys tmp_strategy;
Dimensions indices_strategy = sp->GetInputDim()[0];
Dimensions input_strategy(inputs_shape_[0].size(), 1);
tmp_strategy.push_back(input_strategy);
tmp_strategy.push_back(indices_strategy);
sp->ResetInputs(tmp_strategy);
}

size_t success = 0;
for (auto &sp : sp_vector) {
PrintStrategy(sp);
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
PrintStrategy(sp);
}
}
return SUCCESS;
}

Status GatherNdInfo::Init(const StrategyPtr &strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init success.";
return SUCCESS;
}

Status GatherNdInfo::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
return FAILED;
}

MS_LOG(INFO) << name_ << ": Init for cost model success.";
return SUCCESS;
}
} // namespace parallel
} // namespace mindspore

+ 58
- 0
mindspore/ccsrc/frontend/parallel/ops_info/gathernd_info.h View File

@@ -0,0 +1,58 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_GATHERND_INFO_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_GATHERND_INFO_H_

#include <string>
#include <memory>
#include <unordered_map>
#include <vector>

#include "ir/value.h"
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
#include "frontend/parallel/ops_info/operator_info.h"
#include "frontend/parallel/strategy.h"

namespace mindspore {
namespace parallel {
class GatherNdInfo : public OperatorInfo {
public:
GatherNdInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<GatherNdCost>()) {}
~GatherNdInfo() override = default;

Status Init(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int64_t) override;
Status SetCostUnderStrategy(const StrategyPtr &) override;
void ReComputeBatchSplitFlagList() override;

protected:
Status GetAttrs() override { return SUCCESS; }
Status CheckStrategy(const StrategyPtr &strategy) override;
Status InferForwardCommunication() override { return SUCCESS; }
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferTensorMap() override;
};

using GatherNdInfoPtr = std::shared_ptr<GatherNdInfo>;
} // namespace parallel
} // namespace mindspore

#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_GATHERND_INFO_H_

+ 1
- 0
mindspore/ccsrc/frontend/parallel/ops_info/ops_info_head_files.h View File

@@ -50,5 +50,6 @@
#include "frontend/parallel/ops_info/unique_info.h" #include "frontend/parallel/ops_info/unique_info.h"
#include "frontend/parallel/ops_info/uniform_candidate_sampler_info.h" #include "frontend/parallel/ops_info/uniform_candidate_sampler_info.h"
#include "frontend/parallel/ops_info/reluv2_info.h" #include "frontend/parallel/ops_info/reluv2_info.h"
#include "frontend/parallel/ops_info/gathernd_info.h"


#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_ #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_

+ 1
- 0
mindspore/ccsrc/frontend/parallel/ops_info/ops_utils.h View File

@@ -325,6 +325,7 @@ constexpr char DEPTHWISE_CONV2D[] = "DepthwiseConv2D";
constexpr char DROPOUT[] = "Dropout"; constexpr char DROPOUT[] = "Dropout";
constexpr char KStridedSlice[] = "StridedSlice"; constexpr char KStridedSlice[] = "StridedSlice";
constexpr char UNIQUE[] = "Unique"; constexpr char UNIQUE[] = "Unique";
constexpr char GATHERND[] = "GatherNd";


// Parallel don't care // Parallel don't care
constexpr char STRING_EQUAL[] = "string_equal"; constexpr char STRING_EQUAL[] = "string_equal";


+ 9
- 13
mindspore/ccsrc/frontend/parallel/step_auto_parallel.cc View File

@@ -163,7 +163,8 @@ bool IsSplittableOperator(const std::string &op_name) {
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2, BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM, SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM,
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER, SLICE, UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER, SLICE,
UNSORTED_SEGMENT_MAX};
UNSORTED_SEGMENT_MAX, GATHER_ND};

// clang-format on // clang-format on


auto iter = splittable_op.find(op_name); auto iter = splittable_op.find(op_name);
@@ -492,10 +493,9 @@ Status ConstructCostGraphNodesByUniqueIdTC(const std::vector<AnfNodePtr> &all_no
std::map<size_t, size_t> loop_to_ops; std::map<size_t, size_t> loop_to_ops;
// extract strategy from checkpoint for multi-train // extract strategy from checkpoint for multi-train
StrategyMap stra_map; StrategyMap stra_map;
if (StrategyCheckpoint::GetInstance().LoadCheckPointOn()) {
if (StrategyCheckpoint::GetInstance().Load(&stra_map) != SUCCESS) {
MS_LOG(EXCEPTION) << "Load strategy checkpoint failed";
}
if (StrategyCheckpoint::GetInstance().LoadCheckPointOn() &&
StrategyCheckpoint::GetInstance().Load(&stra_map) != SUCCESS) {
MS_LOG(EXCEPTION) << "Load strategy checkpoint failed";
} }
std::vector<std::string> last_forward_node_ids; std::vector<std::string> last_forward_node_ids;
if (!root->has_flag(TRAINING)) { if (!root->has_flag(TRAINING)) {
@@ -505,8 +505,7 @@ Status ConstructCostGraphNodesByUniqueIdTC(const std::vector<AnfNodePtr> &all_no
for (auto &node : all_nodes) { for (auto &node : all_nodes) {
// NOTE: we only care about splittable Primitive operators // NOTE: we only care about splittable Primitive operators
auto cnode = node->cast<CNodePtr>(); auto cnode = node->cast<CNodePtr>();
bool bool_result = (cnode == nullptr) || (!IsValueNode<Primitive>(cnode->input(0)));
if (bool_result) {
if ((cnode == nullptr) || (!IsValueNode<Primitive>(cnode->input(0)))) {
continue; continue;
} }
ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>(); ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>();
@@ -551,9 +550,8 @@ Status ConstructCostGraphNodesByUniqueIdTC(const std::vector<AnfNodePtr> &all_no
bool is_last_nodes = std::find(last_forward_node_ids.begin(), last_forward_node_ids.end(), cnode->UniqueId()) != bool is_last_nodes = std::find(last_forward_node_ids.begin(), last_forward_node_ids.end(), cnode->UniqueId()) !=
last_forward_node_ids.end(); last_forward_node_ids.end();
auto operator_info = CreateTheOperatorInfo(prim, cnode, is_last_nodes, &stra_map); auto operator_info = CreateTheOperatorInfo(prim, cnode, is_last_nodes, &stra_map);
if (operator_info == nullptr) {
return FAILED;
}
MS_EXCEPTION_IF_NULL(operator_info);

// Needed by rec_parser // Needed by rec_parser
operator_info->set_type(prim->name()); operator_info->set_type(prim->name());
operator_info->set_last_node_flag(is_last_nodes); operator_info->set_last_node_flag(is_last_nodes);
@@ -627,8 +625,7 @@ void ConstructCostGraphEdges(const std::vector<AnfNodePtr> &all_nodes) {
MS_LOG(INFO) << "Constructing edges for cost graph begins."; MS_LOG(INFO) << "Constructing edges for cost graph begins.";
for (auto &node : all_nodes) { for (auto &node : all_nodes) {
auto cnode = node->cast<CNodePtr>(); auto cnode = node->cast<CNodePtr>();
bool bool_result_cnode = (cnode == nullptr) || !IsValueNode<Primitive>(cnode->input(0));
if (bool_result_cnode) {
if ((cnode == nullptr) || !IsValueNode<Primitive>(cnode->input(0))) {
continue; continue;
} }
auto &inputs = cnode->inputs(); auto &inputs = cnode->inputs();
@@ -638,7 +635,6 @@ void ConstructCostGraphEdges(const std::vector<AnfNodePtr> &all_nodes) {
} }
PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node); PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node);
size_t edge_count = 0; size_t edge_count = 0;

auto node_op_info = cnode->user_data<OperatorInfo>(); auto node_op_info = cnode->user_data<OperatorInfo>();


for (size_t i = 1; i < inputs.size(); ++i) { for (size_t i = 1; i < inputs.size(); ++i) {


+ 110
- 0
tests/ut/python/parallel/test_gathernd.py View File

@@ -0,0 +1,110 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest

import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData


class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length

def __iter__(self):
return self

def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label

def reset(self):
self.index = 0


class Net(Cell):
def __init__(self, w1, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.w1 = Parameter(w1, "w1")
self.indices = Tensor(np.ones([16, 2]), dtype=ms.int32)
self.gathernd = P.GatherNd().shard(strategy2)

def construct(self, x, b):
out = self.mul(x, self.w1)
out = self.gathernd(out, self.indices)
return out


_x = Tensor(np.ones([16, 64]), dtype=ms.float32)
_b = Tensor(np.ones([16, 64]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64]), dtype=ms.float32)


def compile_net(net):
context.set_context(save_graphs=True)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, optimizer=opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()


def test_gathernd_data_parallel():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((8, 1), (8, 1))
strategy2 = ((1, 1), (8, 1))
net = Net(_w1, strategy1, strategy2)
compile_net(net)


def test_gathernd_model_parallel():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 4), (2, 4))
strategy2 = ((1, 1), (4, 1))
net = Net(_w1, strategy1, strategy2)
compile_net(net)


def test_gathernd_auto_parallel():
context.set_auto_parallel_context(
parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net(_w1)
compile_net(net)


def test_gathernd_strategy_error():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((8, 1), (8, 1))
strategy2 = ((1, 1), (2, 4))
net = Net(_w1, strategy1, strategy2)
with pytest.raises(RuntimeError):
compile_net(net)

Loading…
Cancel
Save