| @@ -0,0 +1,47 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| network config setting, will be used in train.py and eval.py | |||
| """ | |||
| from easydict import EasyDict as ed | |||
| config = ed({ | |||
| "class_num": 1001, | |||
| "batch_size": 32, | |||
| "eval_interval": 1, | |||
| "eval_batch_size": 50, | |||
| "loss_scale": 1024, | |||
| "momentum": 0.9, | |||
| "weight_decay": 1e-4, | |||
| "use_nesterov": True, | |||
| "epoch_size": 90, | |||
| "pretrained_epoch_size": 1, | |||
| "buffer_size": 1000, | |||
| "image_height": 224, | |||
| "image_width": 224, | |||
| "save_checkpoint": False, | |||
| "save_checkpoint_epochs": 5, | |||
| "keep_checkpoint_max": 10, | |||
| "save_checkpoint_path": "./", | |||
| "warmup_epochs": 0, | |||
| "lr_decay_mode": "cosine", | |||
| "use_label_smooth": True, | |||
| "label_smooth_factor": 0.1, | |||
| "lr_init": 0, | |||
| "lr_max": 0.1, | |||
| "use_lars": True, | |||
| "lars_epsilon": 1e-8, | |||
| "lars_coefficient": 0.001 | |||
| }) | |||
| @@ -0,0 +1,79 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """create train or eval dataset.""" | |||
| import os | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.dataset.engine as de | |||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||
| import mindspore.dataset.transforms.c_transforms as C2 | |||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||
| """ | |||
| create a train or eval dataset. | |||
| Args: | |||
| dataset_path(string): the path of dataset. | |||
| do_train(bool): whether dataset is used for train or eval. | |||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||
| batch_size(int): the batch size of dataset. Default: 32 | |||
| Returns: | |||
| dataset | |||
| """ | |||
| device_num = int(os.getenv("RANK_SIZE")) | |||
| rank_id = int(os.getenv("RANK_ID")) | |||
| if device_num == 1: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) | |||
| else: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, | |||
| num_shards=device_num, shard_id=rank_id) | |||
| image_size = 224 | |||
| mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] | |||
| std = [0.229 * 255, 0.224 * 255, 0.225 * 255] | |||
| # define map operations | |||
| if do_train: | |||
| trans = [ | |||
| C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), | |||
| C.RandomHorizontalFlip(prob=0.5), | |||
| C.Normalize(mean=mean, std=std), | |||
| C.HWC2CHW() | |||
| ] | |||
| else: | |||
| trans = [ | |||
| C.Decode(), | |||
| C.Resize((256, 256)), | |||
| C.CenterCrop(image_size), | |||
| C.Normalize(mean=mean, std=std), | |||
| C.HWC2CHW() | |||
| ] | |||
| type_cast_op = C2.TypeCast(mstype.int32) | |||
| ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans) | |||
| ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op) | |||
| # apply batch operations | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| # apply dataset repeat operation | |||
| ds = ds.repeat(repeat_num) | |||
| return ds | |||
| @@ -0,0 +1,87 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """learning rate generator""" | |||
| import math | |||
| import numpy as np | |||
| def get_learning_rate(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode): | |||
| """ | |||
| generate learning rate array | |||
| Args: | |||
| lr_init(float): init learning rate | |||
| lr_end(float): end learning rate | |||
| lr_max(float): max learning rate | |||
| warmup_epochs(int): number of warmup epochs | |||
| total_epochs(int): total epoch of training | |||
| steps_per_epoch(int): steps of one epoch | |||
| lr_decay_mode(string): learning rate decay mode, including steps, poly, cosine or default | |||
| Returns: | |||
| np.array, learning rate array | |||
| """ | |||
| lr_each_step = [] | |||
| total_steps = steps_per_epoch * total_epochs | |||
| warmup_steps = steps_per_epoch * warmup_epochs | |||
| if lr_decay_mode == 'steps': | |||
| decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps] | |||
| for i in range(total_steps): | |||
| if i < decay_epoch_index[0]: | |||
| lr = lr_max | |||
| elif i < decay_epoch_index[1]: | |||
| lr = lr_max * 0.1 | |||
| elif i < decay_epoch_index[2]: | |||
| lr = lr_max * 0.01 | |||
| else: | |||
| lr = lr_max * 0.001 | |||
| lr_each_step.append(lr) | |||
| elif lr_decay_mode == 'poly': | |||
| if warmup_steps != 0: | |||
| inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps) | |||
| else: | |||
| inc_each_step = 0 | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = float(lr_init) + inc_each_step * float(i) | |||
| else: | |||
| base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps))) | |||
| lr = float(lr_max) * base * base | |||
| if lr < 0.0: | |||
| lr = 0.0 | |||
| lr_each_step.append(lr) | |||
| elif lr_decay_mode == 'cosine': | |||
| decay_steps = total_steps - warmup_steps | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps) | |||
| lr = float(lr_init) + lr_inc * (i + 1) | |||
| else: | |||
| linear_decay = (total_steps - i) / decay_steps | |||
| cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps)) | |||
| decayed = linear_decay * cosine_decay + 0.00001 | |||
| lr = lr_max * decayed | |||
| lr_each_step.append(lr) | |||
| else: | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = lr_init + (lr_max - lr_init) * i / warmup_steps | |||
| else: | |||
| lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps) | |||
| lr_each_step.append(lr) | |||
| learning_rate = np.array(lr_each_step).astype(np.float32) | |||
| return learning_rate | |||
| @@ -0,0 +1,132 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """evaluation metric.""" | |||
| from mindspore.communication.management import GlobalComm | |||
| from mindspore.ops import operations as P | |||
| import mindspore.nn as nn | |||
| import mindspore.common.dtype as mstype | |||
| class ClassifyCorrectCell(nn.Cell): | |||
| r""" | |||
| Cell that returns correct count of the prediction in classification network. | |||
| This Cell accepts a network as arguments. | |||
| It returns orrect count of the prediction to calculate the metrics. | |||
| Args: | |||
| network (Cell): The network Cell. | |||
| Inputs: | |||
| - **data** (Tensor) - Tensor of shape :math:`(N, \ldots)`. | |||
| - **label** (Tensor) - Tensor of shape :math:`(N, \ldots)`. | |||
| Outputs: | |||
| Tuple, containing a scalar correct count of the prediction | |||
| Examples: | |||
| >>> # For a defined network Net without loss function | |||
| >>> net = Net() | |||
| >>> eval_net = nn.ClassifyCorrectCell(net) | |||
| """ | |||
| def __init__(self, network): | |||
| super(ClassifyCorrectCell, self).__init__(auto_prefix=False) | |||
| self._network = network | |||
| self.argmax = P.Argmax() | |||
| self.equal = P.Equal() | |||
| self.cast = P.Cast() | |||
| self.reduce_sum = P.ReduceSum() | |||
| self.allreduce = P.AllReduce(P.ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP) | |||
| def construct(self, data, label): | |||
| outputs = self._network(data) | |||
| y_pred = self.argmax(outputs) | |||
| y_pred = self.cast(y_pred, mstype.int32) | |||
| y_correct = self.equal(y_pred, label) | |||
| y_correct = self.cast(y_correct, mstype.float32) | |||
| y_correct = self.reduce_sum(y_correct) | |||
| total_correct = self.allreduce(y_correct) | |||
| return (total_correct,) | |||
| class DistAccuracy(nn.Metric): | |||
| r""" | |||
| Calculates the accuracy for classification data in distributed mode. | |||
| The accuracy class creates two local variables, correct number and total number that are used to compute the | |||
| frequency with which predictions matches labels. This frequency is ultimately returned as the accuracy: an | |||
| idempotent operation that simply divides correct number by total number. | |||
| .. math:: | |||
| \text{accuracy} =\frac{\text{true_positive} + \text{true_negative}} | |||
| {\text{true_positive} + \text{true_negative} + \text{false_positive} + \text{false_negative}} | |||
| Args: | |||
| eval_type (str): Metric to calculate the accuracy over a dataset, for classification (single-label). | |||
| Examples: | |||
| >>> y_correct = Tensor(np.array([20])) | |||
| >>> metric = nn.DistAccuracy(batch_size=3, device_num=8) | |||
| >>> metric.clear() | |||
| >>> metric.update(y_correct) | |||
| >>> accuracy = metric.eval() | |||
| """ | |||
| def __init__(self, batch_size, device_num): | |||
| super(DistAccuracy, self).__init__() | |||
| self.clear() | |||
| self.batch_size = batch_size | |||
| self.device_num = device_num | |||
| def clear(self): | |||
| """Clears the internal evaluation result.""" | |||
| self._correct_num = 0 | |||
| self._total_num = 0 | |||
| def update(self, *inputs): | |||
| """ | |||
| Updates the internal evaluation result :math:`y_{pred}` and :math:`y`. | |||
| Args: | |||
| inputs: Input `y_correct`. `y_correct` is a `scalar Tensor`. | |||
| `y_correct` is the right prediction count that gathered from all devices | |||
| it's a scalar in float type | |||
| Raises: | |||
| ValueError: If the number of the input is not 1. | |||
| """ | |||
| if len(inputs) != 1: | |||
| raise ValueError('Distribute accuracy needs 1 input (y_correct), but got {}'.format(len(inputs))) | |||
| y_correct = self._convert_data(inputs[0]) | |||
| self._correct_num += y_correct | |||
| self._total_num += self.batch_size * self.device_num | |||
| def eval(self): | |||
| """ | |||
| Computes the accuracy. | |||
| Returns: | |||
| Float, the computed result. | |||
| Raises: | |||
| RuntimeError: If the sample size is 0. | |||
| """ | |||
| if self._total_num == 0: | |||
| raise RuntimeError('Accuracy can not be calculated, because the number of samples is 0.') | |||
| return self._correct_num / self._total_num | |||
| @@ -0,0 +1,39 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| network config setting, will be used in train.py and eval.py | |||
| """ | |||
| from easydict import EasyDict as ed | |||
| config = ed({ | |||
| "class_num": 1000, | |||
| "batch_size": 32, | |||
| "loss_scale": 128, | |||
| "momentum": 0.9, | |||
| "weight_decay": 5e-4, | |||
| "epoch_size": 45, | |||
| "buffer_size": 1000, | |||
| "image_height": 224, | |||
| "image_width": 224, | |||
| "save_checkpoint": True, | |||
| "save_checkpoint_steps": 5004, | |||
| "keep_checkpoint_max": 20, | |||
| "save_checkpoint_path": "./", | |||
| "label_smooth": 1, | |||
| "label_smooth_factor": 0.1, | |||
| "frequency": 834, | |||
| "eval_interval": 1, | |||
| "eval_batch_size": 32 | |||
| }) | |||
| @@ -0,0 +1,82 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """create train or eval dataset.""" | |||
| import os | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.dataset as dataset | |||
| import mindspore.dataset.engine as de | |||
| import mindspore.dataset.transforms.c_transforms as C2 | |||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||
| dataset.config.set_seed(1) | |||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||
| """ | |||
| Create a train or eval dataset. | |||
| Args: | |||
| dataset_path(string): the path of dataset. | |||
| do_train(bool): whether dataset is used for train or eval. | |||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||
| batch_size(int): the batch size of dataset. Default: 32 | |||
| Returns: | |||
| dataset | |||
| """ | |||
| device_num = int(os.getenv("RANK_SIZE")) | |||
| rank_id = int(os.getenv("RANK_ID")) | |||
| if device_num == 1: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) | |||
| else: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, | |||
| num_shards=device_num, shard_id=rank_id) | |||
| image_size = 224 | |||
| mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] | |||
| std = [0.229 * 255, 0.224 * 255, 0.225 * 255] | |||
| # define map operations | |||
| if do_train: | |||
| trans = [ | |||
| C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), | |||
| C.RandomHorizontalFlip(prob=0.5), | |||
| C.Normalize(mean=mean, std=std), | |||
| C.HWC2CHW() | |||
| ] | |||
| else: | |||
| trans = [ | |||
| C.Decode(), | |||
| C.Resize((256, 256)), | |||
| C.CenterCrop(image_size), | |||
| C.Normalize(mean=mean, std=std), | |||
| C.HWC2CHW() | |||
| ] | |||
| type_cast_op = C2.TypeCast(mstype.int32) | |||
| ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans) | |||
| ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op) | |||
| # apply batch operations | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| # apply dataset repeat operation | |||
| ds = ds.repeat(repeat_num) | |||
| return ds | |||
| @@ -0,0 +1,120 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Dataset help for minddata dataset""" | |||
| from mindspore._checkparam import check_bool | |||
| from mindspore.parallel._utils import _get_device_num, _get_parallel_mode | |||
| from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \ | |||
| _to_full_shapes | |||
| from mindspore.train.parallel_utils import ParallelMode | |||
| class DatasetHelper: | |||
| """ | |||
| Help function to use the Minddata dataset. | |||
| According to different context, change the iter of dataset, to use the same for loop in different context. | |||
| Note: | |||
| The iter of DatasetHelper will give one epoch data. | |||
| Args: | |||
| dataset (DataSet): The dataset. | |||
| dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host. | |||
| Default: True. | |||
| iter_first_order (int): The iteration of first-order subgraph. | |||
| Default: 1. | |||
| Examples: | |||
| >>> dataset_helper = DatasetHelper(dataset) | |||
| >>> for inputs in dataset_helper: | |||
| >>> outputs = network(*inputs) | |||
| """ | |||
| def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0): | |||
| check_bool(dataset_sink_mode) | |||
| self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order) | |||
| def __iter__(self): | |||
| return self.iter.__iter__() | |||
| # A temp solution for loop sink. Delete later | |||
| def types_shapes(self): | |||
| """Get the types and shapes from dataset on current config.""" | |||
| return self.iter.types_shapes() | |||
| def loop_size(self): | |||
| """Get loop_size for every iteration.""" | |||
| return self.iter.loop_size | |||
| class _DatasetIter: | |||
| """Base iter for dataset help""" | |||
| def __init__(self, dataset): | |||
| self.loop_size = 1 | |||
| if not hasattr(dataset, '__ME_INITED__'): | |||
| if not hasattr(dataset, '__loop_size__'): | |||
| self.loop_size = dataset.get_dataset_size() | |||
| else: | |||
| self.loop_size = dataset.__loop_size__ | |||
| dataset.__ME_INITED__ = _exec_datagraph(dataset, self.loop_size).queue_name | |||
| self.ind = 0 | |||
| self.dataset = dataset | |||
| dataset_types, dataset_shapes = _get_types_and_shapes(dataset) | |||
| self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes | |||
| def __iter__(self): | |||
| self.ind = 0 | |||
| return self | |||
| def __next__(self): | |||
| if self.ind >= self.loop_count: | |||
| raise StopIteration() | |||
| self.ind += 1 | |||
| return self.op() | |||
| def types_shapes(self): | |||
| return self.dataset_types, self.dataset_shapes | |||
| def get_loop_count(self, dataset): | |||
| loop_count = 1 | |||
| if hasattr(dataset, '__loop_size__'): | |||
| loop_size = dataset.__loop_size__ | |||
| if dataset.get_dataset_size() % loop_size != 0: | |||
| raise ValueError(f'Dataset size {dataset.get_dataset_size()} and ' | |||
| f'loop_size {loop_size} are not matched.') | |||
| loop_count = int(dataset.get_dataset_size() / loop_size) | |||
| return loop_count | |||
| class _DatasetIterMSLoopSink(_DatasetIter): | |||
| """Iter for context (device_target=Ascend)""" | |||
| def __init__(self, dataset, iter_first_order): | |||
| super(_DatasetIterMSLoopSink, self).__init__(dataset) | |||
| loop_size = dataset.__loop_size__ + iter_first_order | |||
| self.loop_count = int(dataset.get_dataset_size() / loop_size * 2) | |||
| # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to | |||
| # compile, and slice tensor to run. The batch dimension of tensors for compile is device_number | |||
| # times the batch dimension of tensors for run. Now only support LoopSink. | |||
| if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): | |||
| device_num = _get_device_num() | |||
| self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num) | |||
| def op(): | |||
| return tuple() | |||
| self.op = op | |||
| @@ -0,0 +1,184 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """grad_reducer_thor""" | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.communication.management import GlobalComm, get_group_size | |||
| from mindspore.nn.cell import Cell | |||
| from mindspore.ops import functional as F, composite as C, operations as P | |||
| from mindspore.ops.operations.comm_ops import AllReduce, ReduceOp | |||
| reduce_opt = C.MultitypeFuncGraph("reduce_opt") | |||
| _all_reduce_A = AllReduce() | |||
| def _init_optimizer_allreduce(group): | |||
| global _all_reduce_A | |||
| _all_reduce_A = AllReduce(ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP) | |||
| _all_reduce_A.add_prim_attr('fusion', group) | |||
| @reduce_opt.register("Function", "Number", "Tensor") | |||
| def _tensors_allreduce_mean(mul, degree, grad): | |||
| degree = F.scalar_cast(degree, F.dtype(grad)) | |||
| grad = _all_reduce_A(grad) | |||
| cast_op = P.Cast() | |||
| return mul(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad))) | |||
| @reduce_opt.register("Bool", "Tensor") | |||
| def _tensors_allreduce(allreduce_filter, grad): | |||
| if allreduce_filter: | |||
| return _all_reduce_A(grad) | |||
| return grad | |||
| _get_datatype = C.MultitypeFuncGraph("_get_datatype") | |||
| @_get_datatype.register("Tensor") | |||
| def _tensors_get_datatype(grad): | |||
| """ | |||
| Acquire gradient datatype. | |||
| Args: | |||
| grad (Tensor): The gradient tensor before operation. | |||
| Returns: | |||
| mstype, the datatype of gradient. | |||
| """ | |||
| return F.dtype(grad) | |||
| _cast_datatype = C.MultitypeFuncGraph("_cast_datatype") | |||
| @_cast_datatype.register("TypeType", "Tensor") | |||
| def _tensors_cast_datatype(datatype, grad): | |||
| """ | |||
| Cast gradient to datatype. | |||
| Args: | |||
| datatype (mstype): the destination datatype of gradient. | |||
| grad (Tensor): The gradient tensor before operation. | |||
| Returns: | |||
| Tensor, the gradient tensor after operation. | |||
| """ | |||
| return F.cast(grad, datatype) | |||
| class DistributedGradReducerThor(Cell): | |||
| """ | |||
| A distributed optimizer. | |||
| Constructs a gradient reducer Cell, which applies communication and average operations on | |||
| single-process gradient values. | |||
| Args: | |||
| parameters (list): the parameters to be updated. | |||
| group (int): the different group to allreduce. | |||
| mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients. Default: False. | |||
| degree (int): The mean coefficient. Usually it equals to device number. Default: None. | |||
| Raises: | |||
| ValueError: If degree is not a int or less than 0. | |||
| Examples: | |||
| >>> from mindspore.communication import init, get_group_size | |||
| >>> from mindspore.ops import composite as C | |||
| >>> from mindspore.ops import operations as P | |||
| >>> from mindspore.ops import functional as F | |||
| >>> from mindspore import context | |||
| >>> from mindspore import nn | |||
| >>> from mindspore import ParallelMode, ParameterTuple | |||
| >>> | |||
| >>> device_id = int(os.environ["DEVICE_ID"]) | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, | |||
| >>> device_id=int(device_id), enable_hccl=True) | |||
| >>> init() | |||
| >>> context.reset_auto_parallel_context() | |||
| >>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL) | |||
| >>> | |||
| >>> | |||
| >>> class TrainingWrapper(nn.Cell): | |||
| >>> def __init__(self, network, optimizer, sens=1.0): | |||
| >>> super(TrainingWrapper, self).__init__(auto_prefix=False) | |||
| >>> self.network = network | |||
| >>> self.network.add_flags(defer_inline=True) | |||
| >>> self.weights = ParameterTuple(network.trainable_params()) | |||
| >>> self.optimizer = optimizer | |||
| >>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||
| >>> self.sens = sens | |||
| >>> self.reducer_flag = False | |||
| >>> self.grad_reducer = None | |||
| >>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | |||
| >>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL, | |||
| >>> ParallelMode.HYBRID_PARALLEL]: | |||
| >>> self.reducer_flag = True | |||
| >>> if self.reducer_flag: | |||
| >>> mean = context.get_auto_parallel_context("mirror_mean") | |||
| >>> if mean.get_device_num_is_set(): | |||
| >>> degree = context.get_auto_parallel_context("device_num") | |||
| >>> else: | |||
| >>> degree = get_group_size() | |||
| >>> self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree) | |||
| >>> | |||
| >>> def construct(self, *args): | |||
| >>> weights = self.weights | |||
| >>> loss = self.network(*args) | |||
| >>> sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) | |||
| >>> grads = self.grad(self.network, weights)(*args, sens) | |||
| >>> if self.reducer_flag: | |||
| >>> # apply grad reducer on grads | |||
| >>> grads = self.grad_reducer(grads) | |||
| >>> return F.depend(loss, self.optimizer(grads)) | |||
| >>> | |||
| >>> network = Net() | |||
| >>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| >>> train_cell = TrainingWrapper(network, optimizer) | |||
| >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) | |||
| >>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) | |||
| >>> grads = train_cell(inputs, label) | |||
| """ | |||
| def __init__(self, parameters, group, mean=True, degree=None): | |||
| super(DistributedGradReducerThor, self).__init__(auto_prefix=False) | |||
| self.hyper_map = C.HyperMap() | |||
| self.mul = P.Mul() | |||
| if degree is None: | |||
| self.degree = get_group_size() | |||
| else: | |||
| if not isinstance(degree, int) or degree <= 0: | |||
| raise ValueError("Parameter 'degree' in DistributedGradReducer should large than 0 and be int") | |||
| self.degree = degree | |||
| self.mean = mean | |||
| self.allreduce_filter = tuple(x.layerwise_parallel is False for x in parameters) | |||
| _init_optimizer_allreduce(group) | |||
| def construct(self, grads): | |||
| # In some circumstances, the data precision of grads could be mixed with float16 and float32. Thus, the | |||
| # result of AllReduce is unreliable. To solve the problem, grads should be cast to float32 before AllReduce, | |||
| # and cast back after the operation. | |||
| datatypes = self.hyper_map(F.partial(_get_datatype), grads) | |||
| grads = self.hyper_map(F.partial(_cast_datatype, mstype.float32), grads) | |||
| if self.mean: | |||
| new_grad = self.hyper_map(F.partial(reduce_opt, self.mul, self.degree), grads) | |||
| else: | |||
| new_grad = self.hyper_map(F.partial(reduce_opt), self.allreduce_filter, grads) | |||
| new_grad = self.hyper_map(F.partial(_cast_datatype), datatypes, new_grad) | |||
| return new_grad | |||
| @@ -0,0 +1,88 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """learning rate generator""" | |||
| import math | |||
| import numpy as np | |||
| def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode): | |||
| """ | |||
| generate learning rate array | |||
| Args: | |||
| lr_init(float): init learning rate | |||
| lr_end(float): end learning rate | |||
| lr_max(float): max learning rate | |||
| warmup_epochs(int): number of warmup epochs | |||
| total_epochs(int): total epoch of training | |||
| steps_per_epoch(int): steps of one epoch | |||
| lr_decay_mode(string): learning rate decay mode, including steps, poly, cosine or default | |||
| Returns: | |||
| np.array, learning rate array | |||
| """ | |||
| lr_each_step = [] | |||
| total_steps = steps_per_epoch * total_epochs | |||
| warmup_steps = steps_per_epoch * warmup_epochs | |||
| if lr_decay_mode == 'steps': | |||
| decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps] | |||
| for i in range(total_steps): | |||
| if i < decay_epoch_index[0]: | |||
| lr = lr_max | |||
| elif i < decay_epoch_index[1]: | |||
| lr = lr_max * 0.1 | |||
| elif i < decay_epoch_index[2]: | |||
| lr = lr_max * 0.01 | |||
| else: | |||
| lr = lr_max * 0.001 | |||
| lr_each_step.append(lr) | |||
| elif lr_decay_mode == 'poly': | |||
| if warmup_steps != 0: | |||
| inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps) | |||
| else: | |||
| inc_each_step = 0 | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = float(lr_init) + inc_each_step * float(i) | |||
| else: | |||
| base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps))) | |||
| lr = float(lr_max) * base * base | |||
| if lr < 0.0: | |||
| lr = 0.0 | |||
| lr_each_step.append(lr) | |||
| elif lr_decay_mode == 'cosine': | |||
| decay_steps = total_steps - warmup_steps | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps) | |||
| lr = float(lr_init) + lr_inc * (i + 1) | |||
| else: | |||
| linear_decay = (total_steps - i) / decay_steps | |||
| cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps)) | |||
| decayed = linear_decay * cosine_decay + 0.00001 | |||
| lr = lr_max * decayed | |||
| lr_each_step.append(lr) | |||
| else: | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = lr_init + (lr_max - lr_init) * i / warmup_steps | |||
| else: | |||
| lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps) | |||
| lr_each_step.append(lr) | |||
| learning_rate = np.array(lr_each_step).astype(np.float32) | |||
| return learning_rate | |||
| @@ -0,0 +1,132 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """evaluation metric.""" | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.nn as nn | |||
| from mindspore.communication.management import GlobalComm | |||
| from mindspore.ops import operations as P | |||
| class ClassifyCorrectCell(nn.Cell): | |||
| r""" | |||
| Cell that returns correct count of the prediction in classification network. | |||
| This Cell accepts a network as arguments. | |||
| It returns orrect count of the prediction to calculate the metrics. | |||
| Args: | |||
| network (Cell): The network Cell. | |||
| Inputs: | |||
| - **data** (Tensor) - Tensor of shape :math:`(N, \ldots)`. | |||
| - **label** (Tensor) - Tensor of shape :math:`(N, \ldots)`. | |||
| Outputs: | |||
| Tuple, containing a scalar correct count of the prediction | |||
| Examples: | |||
| >>> # For a defined network Net without loss function | |||
| >>> net = Net() | |||
| >>> eval_net = nn.ClassifyCorrectCell(net) | |||
| """ | |||
| def __init__(self, network): | |||
| super(ClassifyCorrectCell, self).__init__(auto_prefix=False) | |||
| self._network = network | |||
| self.argmax = P.Argmax() | |||
| self.equal = P.Equal() | |||
| self.cast = P.Cast() | |||
| self.reduce_sum = P.ReduceSum() | |||
| self.allreduce = P.AllReduce(P.ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP) | |||
| def construct(self, data, label): | |||
| outputs = self._network(data) | |||
| y_pred = self.argmax(outputs) | |||
| y_pred = self.cast(y_pred, mstype.int32) | |||
| y_correct = self.equal(y_pred, label) | |||
| y_correct = self.cast(y_correct, mstype.float32) | |||
| y_correct = self.reduce_sum(y_correct) | |||
| total_correct = self.allreduce(y_correct) | |||
| return (total_correct,) | |||
| class DistAccuracy(nn.Metric): | |||
| r""" | |||
| Calculates the accuracy for classification data in distributed mode. | |||
| The accuracy class creates two local variables, correct number and total number that are used to compute the | |||
| frequency with which predictions matches labels. This frequency is ultimately returned as the accuracy: an | |||
| idempotent operation that simply divides correct number by total number. | |||
| .. math:: | |||
| \text{accuracy} =\frac{\text{true_positive} + \text{true_negative}} | |||
| {\text{true_positive} + \text{true_negative} + \text{false_positive} + \text{false_negative}} | |||
| Args: | |||
| batch_size (int): eval batch size. | |||
| device_num (int): device number to eval. | |||
| Examples: | |||
| >>> y_correct = Tensor(np.array([20])) | |||
| >>> metric = nn.DistAccuracy(batch_size=3, device_num=8) | |||
| >>> metric.clear() | |||
| >>> metric.update(y_correct) | |||
| >>> accuracy = metric.eval() | |||
| """ | |||
| def __init__(self, batch_size, device_num): | |||
| super(DistAccuracy, self).__init__() | |||
| self.clear() | |||
| self.batch_size = batch_size | |||
| self.device_num = device_num | |||
| def clear(self): | |||
| """Clears the internal evaluation result.""" | |||
| self._correct_num = 0 | |||
| self._total_num = 0 | |||
| def update(self, *inputs): | |||
| """ | |||
| Updates the internal evaluation result :math:`y_{pred}` and :math:`y`. | |||
| Args: | |||
| inputs: Input `y_correct`. `y_correct` is a `scalar Tensor`. | |||
| `y_correct` is the right prediction count that gathered from all devices | |||
| it's a scalar in float type | |||
| Raises: | |||
| ValueError: If the number of the input is not 1. | |||
| """ | |||
| if len(inputs) != 1: | |||
| raise ValueError('Distribute accuracy needs 1 input (y_correct), but got {}'.format(len(inputs))) | |||
| y_correct = self._convert_data(inputs[0]) | |||
| self._correct_num += y_correct | |||
| self._total_num += self.batch_size * self.device_num | |||
| def eval(self): | |||
| """ | |||
| Computes the accuracy. | |||
| Returns: | |||
| Float, the computed result. | |||
| Raises: | |||
| RuntimeError: If the sample size is 0. | |||
| """ | |||
| if self._total_num == 0: | |||
| raise RuntimeError('Accuracy can not be calculated, because the number of samples is 0.') | |||
| return self._correct_num / self._total_num | |||
| @@ -0,0 +1,743 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Model.""" | |||
| import numpy as np | |||
| from mindspore import context | |||
| from mindspore import log as logger | |||
| from mindspore import nn | |||
| from mindspore._c_expression import init_exec_dataset | |||
| from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.common.dtype import pytype_to_dtype | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.nn.metrics import Loss | |||
| from mindspore.nn.metrics import get_metrics | |||
| from mindspore.nn.wrap.cell_wrapper import _VirtualDatasetCell | |||
| from mindspore.parallel._utils import _get_parallel_mode, _get_device_num, _get_global_rank, \ | |||
| _get_parameter_broadcast, _device_number_check, _parameter_broadcast_check | |||
| from mindspore.train import amp | |||
| from mindspore.train.callback import _InternalCallbackParam, RunContext, _build_callbacks | |||
| from mindspore.train.parallel_utils import ParallelMode | |||
| from .dataset_helper import DatasetHelper | |||
| def _convert_type(types): | |||
| """ | |||
| Convert from numpy type to tensor type. | |||
| Args: | |||
| types (list): Numpy type list of element in dataset. | |||
| Returns: | |||
| list, list of element in dataset. | |||
| """ | |||
| ms_types = [] | |||
| for np_type in types: | |||
| ms_type = pytype_to_dtype(np_type) | |||
| ms_types.append(ms_type) | |||
| return ms_types | |||
| def _get_types_and_shapes(dataset): | |||
| """Get dataset types and shapes.""" | |||
| dataset_types = _convert_type(dataset.output_types()) | |||
| dataset_shapes = dataset.output_shapes() | |||
| return dataset_types, dataset_shapes | |||
| def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'): | |||
| """Initialize and execute the dataset graph.""" | |||
| batch_size = exec_dataset.get_batch_size() | |||
| input_indexs = exec_dataset.input_indexs | |||
| # transform data format | |||
| dataset_types, dataset_shapes = _get_types_and_shapes(exec_dataset) | |||
| init_exec_dataset(exec_dataset.__ME_INITED__, | |||
| dataset_size, | |||
| batch_size, | |||
| dataset_types, | |||
| dataset_shapes, | |||
| input_indexs, | |||
| phase=phase, | |||
| need_run=False) | |||
| class Model: | |||
| """ | |||
| High-Level API for Training or Testing. | |||
| `Model` groups layers into an object with training and inference features. | |||
| Args: | |||
| network (Cell): The training or testing network. | |||
| loss_fn (Cell): Objective function, if loss_fn is None, the | |||
| network should contain the logic of loss and grads calculation, and the logic | |||
| of parallel if needed. Default: None. | |||
| optimizer (Cell): Optimizer for updating the weights. Default: None. | |||
| metrics (Union[dict, set]): Dict or set of metrics to be evaluated by the model during | |||
| training and testing. eg: {'accuracy', 'recall'}. Default: None. | |||
| eval_network (Cell): Network for evaluation. If not defined, `network` and `loss_fn` would be wrapped as | |||
| `eval_network`. Default: None. | |||
| eval_indexes (list): In case of defining the `eval_network`, if `eval_indexes` is None, all outputs of | |||
| `eval_network` would be passed to metrics, otherwise `eval_indexes` must contain three | |||
| elements, representing the positions of loss value, predict value and label, the loss | |||
| value would be passed to `Loss` metric, predict value and label would be passed to other | |||
| metric. Default: None. | |||
| amp_level (str): Option for argument `level` in `mindspore.amp.build_train_network`, level for mixed | |||
| precision training. Supports [O0, O2]. Default: "O0". | |||
| - O0: Do not change. | |||
| - O2: Cast network to float16, keep batchnorm run in float32, using dynamic loss scale. | |||
| loss_scale_manager (Union[None, LossScaleManager]): If None, not scale the loss, or else | |||
| scale the loss by LossScaleManager. If it is set, overwrite the level setting. It's a eyword argument. | |||
| e.g. Use `loss_scale_manager=None` to set the value. | |||
| keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32`. If set, overwrite the level setting. Default: True. | |||
| Examples: | |||
| >>> class Net(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(Net, self).__init__() | |||
| >>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') | |||
| >>> self.bn = nn.BatchNorm2d(64) | |||
| >>> self.relu = nn.ReLU() | |||
| >>> self.flatten = nn.Flatten() | |||
| >>> self.fc = nn.Dense(64*224*224, 12) # padding=0 | |||
| >>> | |||
| >>> def construct(self, x): | |||
| >>> x = self.conv(x) | |||
| >>> x = self.bn(x) | |||
| >>> x = self.relu(x) | |||
| >>> x = self.flatten(x) | |||
| >>> out = self.fc(x) | |||
| >>> return out | |||
| >>> | |||
| >>> net = Net() | |||
| >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||
| >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) | |||
| >>> dataset = get_dataset() | |||
| >>> model.train(2, dataset) | |||
| """ | |||
| def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None, | |||
| eval_indexes=None, amp_level="O0", frequency=278, stop_epoch=100, **kwargs): | |||
| self._network = network | |||
| self._loss_fn = loss_fn | |||
| self._optimizer = optimizer | |||
| self._loss_scale_manager = None | |||
| self._loss_scale_manager_set = False | |||
| self._keep_bn_fp32 = True | |||
| self._check_kwargs(kwargs) | |||
| self._amp_level = amp_level | |||
| self._process_amp_args(kwargs) | |||
| self._parallel_mode = _get_parallel_mode() | |||
| self._device_number = _get_device_num() | |||
| self._global_rank = _get_global_rank() | |||
| self._parameter_broadcast = _get_parameter_broadcast() | |||
| self._frequency = frequency | |||
| self._stop_epoch = stop_epoch | |||
| self._has_do_dataset_init = False | |||
| self._train_network = self._build_train_network() | |||
| self._build_eval_network(metrics, eval_network, eval_indexes) | |||
| self._build_predict_network() | |||
| def _process_amp_args(self, kwargs): | |||
| if self._amp_level == "O0": | |||
| self._keep_bn_fp32 = False | |||
| if 'keep_batchnorm_fp32' in kwargs: | |||
| self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32'] | |||
| if 'loss_scale_manager' in kwargs: | |||
| self._loss_scale_manager = kwargs['loss_scale_manager'] | |||
| self._loss_scale_manager_set = True | |||
| def _check_kwargs(self, kwargs): | |||
| for arg in kwargs: | |||
| if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']: | |||
| raise ValueError(f"Unsupport arg '{arg}'") | |||
| def _build_train_network(self): | |||
| """Build train network""" | |||
| network = self._network | |||
| if self._optimizer: | |||
| if self._loss_scale_manager_set: | |||
| network = amp.build_train_network(network, | |||
| self._optimizer, | |||
| self._loss_fn, | |||
| level=self._amp_level, | |||
| loss_scale_manager=self._loss_scale_manager, | |||
| keep_batchnorm_fp32=self._keep_bn_fp32) | |||
| else: | |||
| network = amp.build_train_network(network, | |||
| self._optimizer, | |||
| self._loss_fn, | |||
| level=self._amp_level, | |||
| keep_batchnorm_fp32=self._keep_bn_fp32) | |||
| elif self._loss_fn: | |||
| network = nn.WithLossCell(network, self._loss_fn) | |||
| # If need to check if loss_fn is not None, but optimizer is None | |||
| if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): | |||
| network.set_auto_parallel() | |||
| return network | |||
| def _build_eval_network(self, metrics, eval_network, eval_indexes): | |||
| """Build the network for evaluation.""" | |||
| self._metric_fns = get_metrics(metrics) | |||
| if not self._metric_fns: | |||
| return | |||
| if eval_network is not None: | |||
| if eval_indexes is not None and not (isinstance(eval_indexes, list) and len(eval_indexes) == 3): | |||
| raise ValueError("Eval_indexes must be a list or None. If eval_indexes is a list, length of it \ | |||
| must be three. But got {}".format(eval_indexes)) | |||
| self._eval_network = eval_network | |||
| self._eval_indexes = eval_indexes | |||
| else: | |||
| if self._loss_fn is None: | |||
| raise ValueError("loss_fn can not be None.") | |||
| self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level == "O2") | |||
| self._eval_indexes = [0, 1, 2] | |||
| if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): | |||
| self._eval_network.set_auto_parallel() | |||
| def _build_predict_network(self): | |||
| """Build the network for prediction.""" | |||
| self._predict_network = self._network | |||
| if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): | |||
| self._predict_network = _VirtualDatasetCell(self._network) | |||
| self._predict_network.set_auto_parallel() | |||
| def _clear_metrics(self): | |||
| """Clear metrics local values.""" | |||
| for metric in self._metric_fns.values(): | |||
| metric.clear() | |||
| def _update_metrics(self, outputs): | |||
| """Update metrics local values.""" | |||
| if not isinstance(outputs, tuple): | |||
| raise ValueError("The `outputs` is not tuple.") | |||
| if self._eval_indexes is not None and len(outputs) < 3: | |||
| raise ValueError("The length of `outputs` must be greater than or equal to 3, \ | |||
| but got {}".format(len(outputs))) | |||
| for metric in self._metric_fns.values(): | |||
| if self._eval_indexes is None: | |||
| metric.update(*outputs) | |||
| else: | |||
| if isinstance(metric, Loss): | |||
| metric.update(outputs[self._eval_indexes[0]]) | |||
| else: | |||
| metric.update(outputs[self._eval_indexes[1]], outputs[self._eval_indexes[2]]) | |||
| def _get_metrics(self): | |||
| """Get metrics local values.""" | |||
| metrics = dict() | |||
| for key, value in self._metric_fns.items(): | |||
| metrics[key] = value.eval() | |||
| return metrics | |||
| def _get_scaling_sens(self): | |||
| """get the scaling sens""" | |||
| scaling_sens = 1 | |||
| if self._loss_scale_manager is not None: | |||
| scaling_sens = self._loss_scale_manager.get_loss_scale() | |||
| if self._parallel_mode == ParallelMode.DATA_PARALLEL: | |||
| scaling_sens /= self._device_number | |||
| return scaling_sens | |||
| def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode, iter_first_order=1): | |||
| """Initializes dataset.""" | |||
| need_wrap = False | |||
| if dataset_sink_mode: | |||
| # remove later to deal with loop sink | |||
| if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \ | |||
| and not context.get_context("enable_ge"): | |||
| need_wrap = True | |||
| if not is_train: | |||
| dataset.__loop_size__ = 1 | |||
| dataset_helper = DatasetHelper(dataset, dataset_sink_mode, iter_first_order) | |||
| # remove later to deal with loop sink | |||
| if need_wrap: | |||
| network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__) | |||
| network.set_train(is_train) | |||
| network.phase = phase | |||
| return dataset_helper, network | |||
| def init(self, train_dataset=None, valid_dataset=None): | |||
| """ | |||
| Initializes compute graphs and data graphs with sink mode. | |||
| Note: | |||
| Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently. | |||
| Args: | |||
| train_dataset (Dataset): A training dataset iterator. If define `train_dataset`, training graphs will be | |||
| initialized. Default: None. | |||
| valid_dataset (Dataset): A evaluating dataset iterator. If define `valid_dataset`, evaluation graphs will | |||
| be initialized, and `metrics` in `Model` can not be None. Default: None. | |||
| Examples: | |||
| >>> train_dataset = get_train_dataset() | |||
| >>> valid_dataset = get_valid_dataset() | |||
| >>> net = Net() | |||
| >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||
| >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'}) | |||
| >>> model.init(train_dataset, valid_dataset) | |||
| >>> model.train(2, train_dataset) | |||
| >>> model.eval(valid_dataset) | |||
| """ | |||
| if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend": | |||
| raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.') | |||
| if not train_dataset and not valid_dataset: | |||
| raise ValueError('Both train_dataset and valid_dataset can not be None or empty.') | |||
| _device_number_check(self._parallel_mode, self._device_number) | |||
| if train_dataset: | |||
| _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) | |||
| self._train_network.set_train() | |||
| self._train_network.phase = 'train' | |||
| if self._parameter_broadcast: | |||
| self._train_network.set_broadcast_flag() | |||
| iter_first_order = self._frequency - 1 | |||
| iter_second_order = 1 | |||
| train_dataset.__loop_size__ = iter_second_order | |||
| train_dataset_helper, train_network = self._exec_preprocess(self._train_network, | |||
| is_train=True, | |||
| phase='train', | |||
| dataset=train_dataset, | |||
| dataset_sink_mode=True, | |||
| iter_first_order=iter_first_order) | |||
| self._train_network = train_network | |||
| switch_branch_one = True | |||
| index = 0 | |||
| for inputs in train_dataset_helper: | |||
| if switch_branch_one: | |||
| self._train_network.add_flags_recursive(thor=True) | |||
| self._train_network.phase = 'train0' | |||
| else: | |||
| self._train_network.add_flags_recursive(thor=False) | |||
| self._train_network.phase = 'train1' | |||
| if not self._has_do_dataset_init: | |||
| _exec_datagraph(train_dataset, iter_first_order, phase='train1_dataset') | |||
| self._has_do_dataset_init = True | |||
| switch_branch_one = not switch_branch_one | |||
| self._train_network.compile(*inputs) | |||
| if index >= 1: | |||
| break | |||
| index += 1 | |||
| if valid_dataset: | |||
| if not self._metric_fns: | |||
| raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.') | |||
| self._eval_network.set_train(False) | |||
| self._eval_network.phase = 'eval' | |||
| valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network, | |||
| is_train=False, | |||
| phase='eval', | |||
| dataset=valid_dataset, | |||
| dataset_sink_mode=True) | |||
| self._eval_network = eval_network | |||
| for inputs in valid_dataset_helper: | |||
| self._eval_network.compile(*inputs) | |||
| break | |||
| def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True): | |||
| """ | |||
| Training. | |||
| Args: | |||
| epoch (int): Total number of iterations on the data. | |||
| train_dataset (Dataset): A training dataset iterator. If there is no | |||
| loss_fn, a tuple with multiply data (data1, data2, data3, ...) will be | |||
| returned and passed to the network. Otherwise, a tuple (data, label) will | |||
| be returned, and the data and label are passed to the network and loss | |||
| function respectively. | |||
| callbacks (list): List of callback object. Callbacks which should be executed while training. Default: None. | |||
| dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. | |||
| Configure pynative mode, the training process will be performed with | |||
| dataset not sink. | |||
| """ | |||
| epoch = check_int_positive(epoch) | |||
| self._train_network.set_train() | |||
| if self._parameter_broadcast: | |||
| self._train_network.set_broadcast_flag() | |||
| # build callback list | |||
| list_callback = _build_callbacks(callbacks) | |||
| cb_params = _InternalCallbackParam() | |||
| cb_params.train_network = self._train_network | |||
| cb_params.epoch_num = epoch | |||
| cb_params.batch_num = train_dataset.get_dataset_size() | |||
| cb_params.mode = "train" | |||
| cb_params.loss_fn = self._loss_fn | |||
| cb_params.optimizer = self._optimizer | |||
| cb_params.parallel_mode = self._parallel_mode | |||
| cb_params.device_number = self._device_number | |||
| cb_params.train_dataset = train_dataset | |||
| cb_params.list_callback = list_callback | |||
| if dataset_sink_mode: | |||
| if context.get_context("mode") == context.PYNATIVE_MODE: | |||
| logger.warning("The pynative mode cannot support dataset sink mode currently." | |||
| "So the training process will be performed with dataset not sink.") | |||
| self._train_process(epoch, train_dataset, list_callback, cb_params) | |||
| else: | |||
| self._train_dataset_sink_process(epoch, train_dataset, list_callback, cb_params) | |||
| else: | |||
| self._train_process(epoch, train_dataset, list_callback, cb_params) | |||
| def _train_dataset_sink_process(self, epoch, train_dataset, list_callback=None, cb_params=None): | |||
| """ | |||
| Training process. The data would be passed to network through dataset channel. | |||
| Args: | |||
| epoch (int): Total number of iterations on the data. | |||
| train_dataset (Dataset): A training dataset iterator. If there is no | |||
| loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be | |||
| returned and passed to the network. Otherwise, a tuple (data, label) should | |||
| be returned, and the data and label are passed to the network and loss | |||
| function respectively. | |||
| list_callback (_ListCallback): Executor of callback list. Default: None. | |||
| cb_params (_InternalCallbackParam): Callback parameters. Default: None. | |||
| """ | |||
| iter_first_order = self._frequency - 1 | |||
| iter_second_order = 1 | |||
| train_dataset.__loop_size__ = iter_second_order | |||
| dataset_helper, train_network = self._exec_preprocess(self._train_network, | |||
| is_train=True, | |||
| phase='train', | |||
| dataset=train_dataset, | |||
| dataset_sink_mode=True, | |||
| iter_first_order=iter_first_order) | |||
| self._train_network = train_network | |||
| cb_params.train_network = self._train_network | |||
| cb_params.cur_step_num = 0 | |||
| loop_size = dataset_helper.loop_size() | |||
| run_context = RunContext(cb_params) | |||
| list_callback.begin(run_context) | |||
| # used to stop training for early stop, such as stopAtTIme or stopATStep | |||
| should_stop = False | |||
| switch_branch_one = True | |||
| for i in range(epoch): | |||
| cb_params.cur_epoch_num = i + 1 | |||
| list_callback.epoch_begin(run_context) | |||
| # for data sink dataset_helper only iter once, other wise iter epoch_size times. | |||
| for inputs in dataset_helper: | |||
| list_callback.step_begin(run_context) | |||
| if switch_branch_one: | |||
| cb_params.cur_step_num += loop_size | |||
| self._train_network.add_flags_recursive(thor=True) | |||
| self._train_network.phase = 'train0' | |||
| else: | |||
| cb_params.cur_step_num += iter_first_order | |||
| self._train_network.add_flags_recursive(thor=False) | |||
| self._train_network.phase = 'train1' | |||
| if not self._has_do_dataset_init: | |||
| _exec_datagraph(train_dataset, iter_first_order, phase='train1_dataset') | |||
| self._has_do_dataset_init = True | |||
| switch_branch_one = not switch_branch_one | |||
| outputs = self._train_network(*inputs) | |||
| cb_params.net_outputs = outputs | |||
| list_callback.step_end(run_context) | |||
| list_callback.epoch_end(run_context) | |||
| should_stop = should_stop or run_context.get_stop_requested() | |||
| if should_stop: | |||
| break | |||
| list_callback.end(run_context) | |||
| def _train_process(self, epoch, train_dataset, list_callback=None, cb_params=None): | |||
| """ | |||
| Training process. The data would be passed to network directly. | |||
| Args: | |||
| epoch (int): Total number of iterations on the data. | |||
| train_dataset (Dataset): A training dataset iterator. If there is no | |||
| loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be | |||
| returned and passed to the network. Otherwise, a tuple (data, label) should | |||
| be returned, and the data and label are passed to the network and loss | |||
| function respectively. | |||
| list_callback (_ListCallback): Executor of callback list. Default: None. | |||
| cb_params (_InternalCallbackParam): Callback parameters. Default: None. | |||
| """ | |||
| dataset_helper, _ = self._exec_preprocess(self._train_network, | |||
| is_train=True, | |||
| phase='train', | |||
| dataset=train_dataset, | |||
| dataset_sink_mode=False) | |||
| cb_params.cur_step_num = 0 | |||
| run_context = RunContext(cb_params) | |||
| list_callback.begin(run_context) | |||
| # used to stop training for early stop, such as stopAtTIme or stopATStep | |||
| should_stop = False | |||
| for i in range(epoch): | |||
| cb_params.cur_epoch_num = i + 1 | |||
| list_callback.epoch_begin(run_context) | |||
| for next_element in dataset_helper: | |||
| len_element = len(next_element) | |||
| if self._loss_fn and len_element != 2: | |||
| raise ValueError("when loss_fn is not None, train_dataset should" | |||
| "return two elements, but got {}".format(len_element)) | |||
| cb_params.cur_step_num += 1 | |||
| list_callback.step_begin(run_context) | |||
| overflow = False | |||
| if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update(): | |||
| scaling_sens = self._get_scaling_sens() | |||
| next_element = tuple(next_element) + (Tensor(scaling_sens, mstype.float32),) | |||
| outputs = self._train_network(*next_element) | |||
| cb_params.net_outputs = outputs | |||
| if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update(): | |||
| _, overflow, _ = outputs | |||
| overflow = np.all(overflow.asnumpy()) | |||
| self._loss_scale_manager.update_loss_scale(overflow) | |||
| list_callback.step_end(run_context) | |||
| should_stop = should_stop or run_context.get_stop_requested() | |||
| if should_stop: | |||
| break | |||
| train_dataset.reset() | |||
| list_callback.epoch_end(run_context) | |||
| should_stop = should_stop or run_context.get_stop_requested() | |||
| if should_stop: | |||
| break | |||
| list_callback.end(run_context) | |||
| def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True): | |||
| """ | |||
| Training API where the iteration is controlled by python front-end. | |||
| When setting pynative mode, the training process will be performed with dataset not sink. | |||
| Note: | |||
| CPU is not supported when dataset_sink_mode is true. | |||
| If dataset_sink_mode is True, epoch of training should be equal to the count of repeat | |||
| operation in dataset processing. Otherwise, errors could occur since the amount of data | |||
| is not the amount training requires. | |||
| If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features | |||
| of data will be transferred one by one. The limitation of data transmission per time is 256M. | |||
| Args: | |||
| epoch (int): Total number of iterations on the data. | |||
| train_dataset (Dataset): A training dataset iterator. If there is no | |||
| loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be | |||
| returned and passed to the network. Otherwise, a tuple (data, label) should | |||
| be returned, and the data and label are passed to the network and loss | |||
| function respectively. | |||
| callbacks (list): List of callback object. Callbacks which should be excuted while training. Default: None. | |||
| dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. | |||
| Configure pynative mode, the training process will be performed with | |||
| dataset not sink. | |||
| Examples: | |||
| >>> dataset = get_dataset() | |||
| >>> net = Net() | |||
| >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||
| >>> loss_scale_manager = FixedLossScaleManager() | |||
| >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager) | |||
| >>> model.train(2, dataset) | |||
| """ | |||
| repeat_count = train_dataset.get_repeat_count() | |||
| if epoch != repeat_count and dataset_sink_mode is True: | |||
| logger.warning(f"The epoch_size {epoch} is not the same with dataset repeat_count {repeat_count}") | |||
| check_bool(dataset_sink_mode) | |||
| _device_number_check(self._parallel_mode, self._device_number) | |||
| _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) | |||
| self._train(epoch, | |||
| train_dataset, | |||
| callbacks=callbacks, | |||
| dataset_sink_mode=dataset_sink_mode) | |||
| def _eval_dataset_sink_process(self, valid_dataset, list_callback=None, cb_params=None): | |||
| """ | |||
| Evaluation. The data would be passed to network through dataset channel. | |||
| Args: | |||
| valid_dataset (Dataset): Dataset to evaluate the model. | |||
| list_callback (ListCallback): Executor of callback list. Default: None. | |||
| cb_params (_InternalCallbackParam): Callback parameters. Default: None. | |||
| Returns: | |||
| Dict, returns the loss value & metrics values for the model in test mode. | |||
| """ | |||
| run_context = RunContext(cb_params) | |||
| dataset_helper, eval_network = self._exec_preprocess(self._eval_network, | |||
| is_train=False, | |||
| phase='eval', | |||
| dataset=valid_dataset, | |||
| dataset_sink_mode=True) | |||
| self._eval_network = eval_network | |||
| cb_params.eval_network = self._eval_network | |||
| list_callback.begin(run_context) | |||
| for inputs in dataset_helper: | |||
| cb_params.cur_step_num += 1 | |||
| list_callback.step_begin(run_context) | |||
| outputs = self._eval_network(*inputs) | |||
| cb_params.net_outputs = outputs | |||
| list_callback.step_end(run_context) | |||
| self._update_metrics(outputs) | |||
| metrics = self._get_metrics() | |||
| cb_params.metrics = metrics | |||
| list_callback.end(run_context) | |||
| return metrics | |||
| def _eval_process(self, valid_dataset, list_callback=None, cb_params=None): | |||
| """ | |||
| Evaluation. The data would be passed to network directly. | |||
| Args: | |||
| valid_dataset (Dataset): Dataset to evaluate the model. | |||
| list_callback (ListCallback): Executor of callback list. Default: None. | |||
| cb_params (_InternalCallbackParam): Callback parameters. Default: None. | |||
| Returns: | |||
| Dict, returns the loss value & metrics values for the model in test mode. | |||
| """ | |||
| run_context = RunContext(cb_params) | |||
| list_callback.begin(run_context) | |||
| dataset_helper, _ = self._exec_preprocess(self._eval_network, | |||
| is_train=False, | |||
| phase='eval', | |||
| dataset=valid_dataset, | |||
| dataset_sink_mode=False) | |||
| for next_element in dataset_helper: | |||
| cb_params.cur_step_num += 1 | |||
| list_callback.step_begin(run_context) | |||
| outputs = self._eval_network(*next_element) | |||
| cb_params.net_outputs = outputs | |||
| list_callback.step_end(run_context) | |||
| self._update_metrics(outputs) | |||
| metrics = self._get_metrics() | |||
| cb_params.metrics = metrics | |||
| list_callback.end(run_context) | |||
| return metrics | |||
| def eval(self, valid_dataset, callbacks=None, dataset_sink_mode=True): | |||
| """ | |||
| Evaluation API where the iteration is controlled by python front-end. | |||
| Configure to pynative mode, the evaluation will be performed with dataset non-sink mode. | |||
| Note: | |||
| CPU is not supported when dataset_sink_mode is true. | |||
| If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features | |||
| of data will be transferred one by one. The limitation of data transmission per time is 256M. | |||
| Args: | |||
| valid_dataset (Dataset): Dataset to evaluate the model. | |||
| callbacks (list): List of callback object. Callbacks which should be excuted | |||
| while training. Default: None. | |||
| dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. | |||
| Returns: | |||
| Dict, returns the loss value & metrics values for the model in test mode. | |||
| Examples: | |||
| >>> dataset = get_dataset() | |||
| >>> net = Net() | |||
| >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||
| >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) | |||
| >>> model.eval(dataset) | |||
| """ | |||
| check_bool(dataset_sink_mode) | |||
| _device_number_check(self._parallel_mode, self._device_number) | |||
| if not self._metric_fns: | |||
| raise ValueError("metric fn can not be None or empty.") | |||
| list_callback = _build_callbacks(callbacks) | |||
| cb_params = _InternalCallbackParam() | |||
| cb_params.eval_network = self._eval_network | |||
| cb_params.valid_dataset = valid_dataset | |||
| cb_params.batch_num = valid_dataset.get_dataset_size() | |||
| cb_params.mode = "eval" | |||
| cb_params.cur_step_num = 0 | |||
| self._eval_network.set_train(mode=False) | |||
| self._eval_network.phase = 'eval' | |||
| self._clear_metrics() | |||
| if dataset_sink_mode: | |||
| return self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params) | |||
| return self._eval_process(valid_dataset, list_callback, cb_params) | |||
| def predict(self, *predict_data): | |||
| """ | |||
| Generates output predictions for the input samples. | |||
| Data could be single tensor, or list of tensor, tuple of tensor. | |||
| Note: | |||
| Batch data should be put together in one tensor. | |||
| Args: | |||
| predict_data (Tensor): Tensor of predict data. can be array, list or tuple. | |||
| Returns: | |||
| Tensor, array(s) of predictions. | |||
| Examples: | |||
| >>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32) | |||
| >>> model = Model(Net()) | |||
| >>> model.predict(input_data) | |||
| """ | |||
| self._predict_network.set_train(False) | |||
| check_input_data(*predict_data, data_class=Tensor) | |||
| result = self._predict_network(*predict_data) | |||
| check_output_data(result) | |||
| return result | |||
| __all__ = ["Model"] | |||
| @@ -0,0 +1,359 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ResNet.""" | |||
| import math | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.ops import operations as P | |||
| from .thor_layer import Conv2d_Thor, Dense_Thor | |||
| def calculate_gain(nonlinearity, param=None): | |||
| """calculate_gain""" | |||
| linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] | |||
| res = 0 | |||
| if nonlinearity in linear_fns or nonlinearity == 'sigmoid': | |||
| res = 1 | |||
| elif nonlinearity == 'tanh': | |||
| res = 5.0 / 3 | |||
| elif nonlinearity == 'relu': | |||
| res = math.sqrt(2.0) | |||
| elif nonlinearity == 'leaky_relu': | |||
| if param is None: | |||
| negative_slope = 0.01 | |||
| elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): | |||
| # True/False are instances of int, hence check above | |||
| negative_slope = param | |||
| else: | |||
| raise ValueError("negative_slope {} not a valid number".format(param)) | |||
| res = math.sqrt(2.0 / (1 + negative_slope ** 2)) | |||
| else: | |||
| raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) | |||
| return res | |||
| def _calculate_fan_in_and_fan_out(tensor): | |||
| """_calculate_fan_in_and_fan_out""" | |||
| dimensions = len(tensor) | |||
| if dimensions < 2: | |||
| raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions") | |||
| if dimensions == 2: # Linear | |||
| fan_in = tensor[1] | |||
| fan_out = tensor[0] | |||
| else: | |||
| num_input_fmaps = tensor[1] | |||
| num_output_fmaps = tensor[0] | |||
| receptive_field_size = 1 | |||
| if dimensions > 2: | |||
| receptive_field_size = tensor[2] * tensor[3] | |||
| fan_in = num_input_fmaps * receptive_field_size | |||
| fan_out = num_output_fmaps * receptive_field_size | |||
| return fan_in, fan_out | |||
| def _calculate_correct_fan(tensor, mode): | |||
| mode = mode.lower() | |||
| valid_modes = ['fan_in', 'fan_out'] | |||
| if mode not in valid_modes: | |||
| raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) | |||
| fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | |||
| return fan_in if mode == 'fan_in' else fan_out | |||
| def kaiming_normal(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'): | |||
| fan = _calculate_correct_fan(inputs_shape, mode) | |||
| gain = calculate_gain(nonlinearity, a) | |||
| std = gain / math.sqrt(fan) | |||
| return np.random.normal(0, std, size=inputs_shape).astype(np.float32) | |||
| def kaiming_uniform(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'): | |||
| fan = _calculate_correct_fan(inputs_shape, mode) | |||
| gain = calculate_gain(nonlinearity, a) | |||
| std = gain / math.sqrt(fan) | |||
| bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation | |||
| return np.random.uniform(-bound, bound, size=inputs_shape).astype(np.float32) | |||
| def _conv3x3(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278): | |||
| weight_shape = (out_channel, in_channel, 3, 3) | |||
| weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu')) | |||
| return Conv2d_Thor(in_channel, out_channel, | |||
| kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight, | |||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||
| def _conv1x1(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278): | |||
| weight_shape = (out_channel, in_channel, 1, 1) | |||
| weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu')) | |||
| return Conv2d_Thor(in_channel, out_channel, | |||
| kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight, | |||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||
| def _conv7x7(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278): | |||
| weight_shape = (out_channel, in_channel, 7, 7) | |||
| weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu')) | |||
| return Conv2d_Thor(in_channel, out_channel, | |||
| kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight, | |||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||
| def _bn(channel): | |||
| return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9, | |||
| gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1) | |||
| def _bn_last(channel): | |||
| return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9, | |||
| gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1) | |||
| def _fc(in_channel, out_channel, damping, loss_scale, frequency): | |||
| weight_shape = (out_channel, in_channel) | |||
| weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5))) | |||
| return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight, | |||
| bias_init=0, damping=damping, loss_scale=loss_scale, frequency=frequency) | |||
| class ResidualBlock(nn.Cell): | |||
| """ | |||
| ResNet V1 residual block definition. | |||
| Args: | |||
| in_channel (int): Input channel. | |||
| out_channel (int): Output channel. | |||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> ResidualBlock(3, 256, stride=2) | |||
| """ | |||
| expansion = 4 | |||
| def __init__(self, | |||
| in_channel, | |||
| out_channel, | |||
| stride=1, | |||
| damping=0.03, | |||
| loss_scale=1, | |||
| frequency=278): | |||
| super(ResidualBlock, self).__init__() | |||
| channel = out_channel // self.expansion | |||
| self.conv1 = _conv1x1(in_channel, channel, stride=1, damping=damping, loss_scale=loss_scale, | |||
| frequency=frequency) | |||
| self.bn1 = _bn(channel) | |||
| self.conv2 = _conv3x3(channel, channel, stride=stride, damping=damping, loss_scale=loss_scale, | |||
| frequency=frequency) | |||
| self.bn2 = _bn(channel) | |||
| self.conv3 = _conv1x1(channel, out_channel, stride=1, damping=damping, loss_scale=loss_scale, | |||
| frequency=frequency) | |||
| self.bn3 = _bn_last(out_channel) | |||
| self.relu = nn.ReLU() | |||
| self.down_sample = False | |||
| if stride != 1 or in_channel != out_channel: | |||
| self.down_sample = True | |||
| self.down_sample_layer = None | |||
| if self.down_sample: | |||
| self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride, | |||
| damping=damping, loss_scale=loss_scale, | |||
| frequency=frequency), | |||
| _bn(out_channel)]) | |||
| self.add = P.TensorAdd() | |||
| def construct(self, x): | |||
| identity = x | |||
| out = self.conv1(x) | |||
| out = self.bn1(out) | |||
| out = self.relu(out) | |||
| out = self.conv2(out) | |||
| out = self.bn2(out) | |||
| out = self.relu(out) | |||
| out = self.conv3(out) | |||
| out = self.bn3(out) | |||
| if self.down_sample: | |||
| identity = self.down_sample_layer(identity) | |||
| out = self.add(out, identity) | |||
| out = self.relu(out) | |||
| return out | |||
| class ResNet(nn.Cell): | |||
| """ | |||
| ResNet architecture. | |||
| Args: | |||
| block (Cell): Block for network. | |||
| layer_nums (list): Numbers of block in different layers. | |||
| in_channels (list): Input channel in each layer. | |||
| out_channels (list): Output channel in each layer. | |||
| strides (list): Stride size in each layer. | |||
| num_classes (int): The number of classes that the training images are belonging to. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> ResNet(ResidualBlock, | |||
| >>> [3, 4, 6, 3], | |||
| >>> [64, 256, 512, 1024], | |||
| >>> [256, 512, 1024, 2048], | |||
| >>> [1, 2, 2, 2], | |||
| >>> 10) | |||
| """ | |||
| def __init__(self, | |||
| block, | |||
| layer_nums, | |||
| in_channels, | |||
| out_channels, | |||
| strides, | |||
| num_classes, | |||
| damping, | |||
| loss_scale, | |||
| frequency): | |||
| super(ResNet, self).__init__() | |||
| if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: | |||
| raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!") | |||
| self.conv1 = _conv7x7(3, 64, stride=2, damping=damping, loss_scale=loss_scale, frequency=frequency) | |||
| self.bn1 = _bn(64) | |||
| self.relu = P.ReLU() | |||
| self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2) | |||
| self.layer1 = self._make_layer(block, | |||
| layer_nums[0], | |||
| in_channel=in_channels[0], | |||
| out_channel=out_channels[0], | |||
| stride=strides[0], | |||
| damping=damping, | |||
| loss_scale=loss_scale, | |||
| frequency=frequency) | |||
| self.layer2 = self._make_layer(block, | |||
| layer_nums[1], | |||
| in_channel=in_channels[1], | |||
| out_channel=out_channels[1], | |||
| stride=strides[1], | |||
| damping=damping, | |||
| loss_scale=loss_scale, | |||
| frequency=frequency) | |||
| self.layer3 = self._make_layer(block, | |||
| layer_nums[2], | |||
| in_channel=in_channels[2], | |||
| out_channel=out_channels[2], | |||
| stride=strides[2], damping=damping, | |||
| loss_scale=loss_scale, | |||
| frequency=frequency) | |||
| self.layer4 = self._make_layer(block, | |||
| layer_nums[3], | |||
| in_channel=in_channels[3], | |||
| out_channel=out_channels[3], | |||
| stride=strides[3], | |||
| damping=damping, | |||
| loss_scale=loss_scale, | |||
| frequency=frequency) | |||
| self.mean = P.ReduceMean(keep_dims=True) | |||
| self.flatten = nn.Flatten() | |||
| self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale, frequency=frequency) | |||
| def _make_layer(self, block, layer_num, in_channel, out_channel, stride, | |||
| damping, loss_scale, frequency): | |||
| """ | |||
| Make stage network of ResNet. | |||
| Args: | |||
| block (Cell): Resnet block. | |||
| layer_num (int): Layer number. | |||
| in_channel (int): Input channel. | |||
| out_channel (int): Output channel. | |||
| stride (int): Stride size for the first convolutional layer. | |||
| Returns: | |||
| SequentialCell, the output layer. | |||
| Examples: | |||
| >>> _make_layer(ResidualBlock, 3, 128, 256, 2) | |||
| """ | |||
| layers = [] | |||
| resnet_block = block(in_channel, out_channel, stride=stride, | |||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||
| layers.append(resnet_block) | |||
| for _ in range(1, layer_num): | |||
| resnet_block = block(out_channel, out_channel, stride=1, | |||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||
| layers.append(resnet_block) | |||
| return nn.SequentialCell(layers) | |||
| def construct(self, x): | |||
| x = self.conv1(x) | |||
| x = self.bn1(x) | |||
| x = self.relu(x) | |||
| c1, _ = self.maxpool(x) | |||
| c2 = self.layer1(c1) | |||
| c3 = self.layer2(c2) | |||
| c4 = self.layer3(c3) | |||
| c5 = self.layer4(c4) | |||
| out = self.mean(c5, (2, 3)) | |||
| out = self.flatten(out) | |||
| out = self.end_point(out) | |||
| return out | |||
| def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278): | |||
| """ | |||
| Get ResNet50 neural network. | |||
| Args: | |||
| class_num (int): Class number. | |||
| Returns: | |||
| Cell, cell instance of ResNet50 neural network. | |||
| Examples: | |||
| >>> net = resnet50(10) | |||
| """ | |||
| return ResNet(ResidualBlock, | |||
| [3, 4, 6, 3], | |||
| [64, 256, 512, 1024], | |||
| [256, 512, 1024, 2048], | |||
| [1, 2, 2, 2], | |||
| class_num, | |||
| damping, | |||
| loss_scale, | |||
| frequency) | |||
| @@ -0,0 +1,201 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """momentum""" | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.common.parameter import ParameterTuple | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.nn.optim.optimizer import Optimizer | |||
| from mindspore.ops import functional as F, composite as C, operations as P | |||
| from mindspore.parallel._utils import _get_device_num, _get_mirror_mean | |||
| from .grad_reducer_thor import DistributedGradReducerThor | |||
| momentum_opt = C.MultitypeFuncGraph("momentum_opt") | |||
| @momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor") | |||
| def _tensor_run_opt_ext(opt, learning_rate, momentum, gradient, weight, moment): | |||
| """Apply momentum optimizer to the weight parameter using Tensor.""" | |||
| success = True | |||
| success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum)) | |||
| return success | |||
| op_add = P.AddN() | |||
| apply_decay = C.MultitypeFuncGraph("apply_decay") | |||
| @apply_decay.register("Number", "Bool", "Tensor", "Tensor") | |||
| def _tensor_apply_decay(weight_decay, if_apply, weight, gradient): | |||
| """Get grad with weight_decay.""" | |||
| if if_apply: | |||
| return op_add((weight * weight_decay, gradient)) | |||
| return gradient | |||
| class THOR(Optimizer): | |||
| """THOR""" | |||
| def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0, | |||
| loss_scale=1.0, | |||
| decay_filter=lambda x: x.name not in []): | |||
| super(THOR, self).__init__(learning_rate, params, weight_decay, loss_scale) | |||
| if isinstance(momentum, float) and momentum < 0.0: | |||
| raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum)) | |||
| self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum") | |||
| self.params = self.parameters | |||
| self.moments = self.params.clone(prefix="moments", init='zeros') | |||
| self.hyper_map = C.HyperMap() | |||
| self.opt = P.ApplyMomentum() | |||
| self.matrix_A = ParameterTuple(matrix_A) | |||
| self.matrix_G = ParameterTuple(matrix_G) | |||
| self.A_inv_max = ParameterTuple(A_inv_max) | |||
| self.G_inv_max = ParameterTuple(G_inv_max) | |||
| self.cube_matmul_left = P.CusMatMulCubeFraczLeftCast() | |||
| self.cube_matmul_left_fc = P.CusMatMulCubeDenseLeft() | |||
| self.cube_matmul_right_fc = P.CusMatMulCubeDenseRight() | |||
| self.cube_matmul_right_mul = P.CusMatMulCubeFraczRightMul() | |||
| self.transpose = P.Transpose() | |||
| self.shape = P.Shape() | |||
| self.reshape = P.Reshape() | |||
| self.mul = P.Mul() | |||
| self.weight_idx = [] | |||
| for i in range(len(self.params)): | |||
| if "conv" in self.params[i].name or "end_point" in self.params[i].name: | |||
| self.weight_idx.append(i) | |||
| self.weight_idx.append(len(self.params)) | |||
| self.feature_map = [1.0 / 12544, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, | |||
| 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, | |||
| 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, | |||
| 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, | |||
| 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, | |||
| 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, | |||
| 1.0 / 196, 1.0 / 196, 1.0 / 196, | |||
| 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, | |||
| 1.0] | |||
| mean = _get_mirror_mean() | |||
| degree = _get_device_num() | |||
| self.grad_reducer_Amax = DistributedGradReducerThor(self.parameters, 2, mean, degree) | |||
| self.grad_reducer_Gmax = DistributedGradReducerThor(self.parameters, 5, mean, degree) | |||
| self.grad_reducer_A = DistributedGradReducerThor(self.parameters, 3, mean, degree) | |||
| self.grad_reducer_G = DistributedGradReducerThor(self.parameters, 4, mean, degree) | |||
| self.matrix_A_inv = () | |||
| self.matrix_G_inv = () | |||
| self.matrix_max_inv = () | |||
| for i in range(54): | |||
| self.matrix_max_inv = self.matrix_max_inv + ( | |||
| Parameter(initializer(1, [1], mstype.float32), name="matrix_max" + str(i), requires_grad=False),) | |||
| self.log = P.Log() | |||
| self.exp = P.Exp() | |||
| self.sqrt = P.Sqrt() | |||
| self.matrix_max_inv = ParameterTuple(self.matrix_max_inv) | |||
| self.assign = P.Assign() | |||
| self.cast = P.Cast() | |||
| self.thor = True | |||
| self.weight_decay = weight_decay * loss_scale | |||
| self.decay_flags = tuple(decay_filter(x) for x in self.parameters) | |||
| def construct(self, gradients): | |||
| params = self.params | |||
| moments = self.moments | |||
| if self.thor: | |||
| matrix_A_allreduce = () | |||
| matrix_G_allreduce = () | |||
| matrix_A_max_allreduce = () | |||
| matrix_G_max_allreduce = () | |||
| for i in range(54): | |||
| g = gradients[i * 3] | |||
| matrix_A = self.matrix_A[i] | |||
| matrix_G = self.matrix_G[i] | |||
| A_max = self.A_inv_max[i] | |||
| G_max = self.G_inv_max[i] | |||
| matrix_A = F.depend(matrix_A, g) | |||
| matrix_G = F.depend(matrix_G, g) | |||
| A_max = F.depend(A_max, g) | |||
| G_max = F.depend(G_max, g) | |||
| matrix_A_allreduce = matrix_A_allreduce + (matrix_A,) | |||
| matrix_G_allreduce = matrix_G_allreduce + (matrix_G,) | |||
| matrix_A_max_allreduce = matrix_A_max_allreduce + (A_max,) | |||
| matrix_G_max_allreduce = matrix_G_max_allreduce + (G_max,) | |||
| matrix_A_allreduce = self.grad_reducer_A(matrix_A_allreduce) | |||
| matrix_G_allreduce = self.grad_reducer_G(matrix_G_allreduce) | |||
| matrix_A_max_allreduce = self.grad_reducer_Amax(matrix_A_max_allreduce) | |||
| matrix_G_max_allreduce = self.grad_reducer_Gmax(matrix_G_max_allreduce) | |||
| new_grads = () | |||
| for i in range(54): | |||
| g = gradients[i * 3] | |||
| temp_a = matrix_A_allreduce[i] | |||
| temp_g = matrix_G_allreduce[i] | |||
| temp_a = self.cast(temp_a, mstype.float32) | |||
| temp_g = self.cast(temp_g, mstype.float32) | |||
| matrix_A_inv_max = self.log(matrix_A_max_allreduce[i]) | |||
| matrix_A_inv_max = self.mul(matrix_A_inv_max, -1) | |||
| matrix_A_inv_max = self.exp(matrix_A_inv_max) | |||
| temp_a = self.mul(temp_a, matrix_A_inv_max) | |||
| matrix_G_inv_max = self.log(matrix_G_max_allreduce[i]) | |||
| matrix_G_inv_max = self.mul(matrix_G_inv_max, -1) | |||
| matrix_G_inv_max = self.exp(matrix_G_inv_max) | |||
| temp_g = self.mul(temp_g, matrix_G_inv_max) | |||
| temp_max = self.mul(matrix_A_max_allreduce[i], matrix_G_max_allreduce[i]) | |||
| temp_max = self.mul(temp_max, self.feature_map[i]) | |||
| temp_a = self.cast(temp_a, mstype.float16) | |||
| temp_g = self.cast(temp_g, mstype.float16) | |||
| if i == 53: | |||
| g = self.cube_matmul_left_fc(temp_g, g) | |||
| g = self.cube_matmul_right_fc(g, temp_a, temp_max) | |||
| else: | |||
| g = self.cube_matmul_left(temp_g, g) | |||
| g = self.cube_matmul_right_mul(g, temp_a, temp_max) | |||
| fake_A = self.assign(self.matrix_A[i], temp_a) | |||
| fake_G = self.assign(self.matrix_G[i], temp_g) | |||
| fake_max = self.assign(self.matrix_max_inv[i], temp_max) | |||
| g = F.depend(g, fake_A) | |||
| g = F.depend(g, fake_G) | |||
| g = F.depend(g, fake_max) | |||
| if i == 53: | |||
| new_grads = new_grads + (g,) | |||
| else: | |||
| new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2]) | |||
| gradients = new_grads | |||
| else: | |||
| new_grads = () | |||
| for i in range(54): | |||
| g = gradients[i * 3] | |||
| matrix_A = self.matrix_A[i] | |||
| matrix_G = self.matrix_G[i] | |||
| matrix_max = self.matrix_max_inv[i] | |||
| matrix_A = F.depend(matrix_A, g) | |||
| matrix_G = F.depend(matrix_G, g) | |||
| matrix_max = F.depend(matrix_max, g) | |||
| if i == 53: | |||
| g = self.cube_matmul_left_fc(matrix_G, g) | |||
| g = self.cube_matmul_right_fc(g, matrix_A, matrix_max) | |||
| new_grads = new_grads + (g,) | |||
| else: | |||
| g = self.cube_matmul_left(matrix_G, g) | |||
| g = self.cube_matmul_right_mul(g, matrix_A, matrix_max) | |||
| new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2]) | |||
| gradients = new_grads | |||
| if self.weight_decay > 0: | |||
| gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags, | |||
| params, gradients) | |||
| gradients = self.scale_grad(gradients) | |||
| lr = self.get_lr() | |||
| success = self.hyper_map(F.partial(momentum_opt, self.opt, lr, self.momentum), gradients, params, moments) | |||
| return success | |||
| @@ -0,0 +1,481 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """thor_layer""" | |||
| import numpy as np | |||
| import mindspore as ms | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore._checkparam import check_bool, twice, check_int_positive | |||
| from mindspore._extends import cell_attr_register | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.nn.cell import Cell | |||
| from mindspore.nn.layer.activation import get_activation | |||
| from mindspore.ops import operations as P | |||
| C0 = 16 | |||
| def caculate_device_shape(matrix_dim, channel, is_A): | |||
| ll = (0) | |||
| if is_A: | |||
| if channel // C0 == 0: | |||
| matrix_dim = (matrix_dim / channel) * C0 | |||
| ll = (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim) | |||
| else: | |||
| ll = (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim) | |||
| return ll | |||
| class _Conv(Cell): | |||
| r"""Applies a N-D convolution over an input signal composed of several input | |||
| planes. | |||
| """ | |||
| def __init__(self, | |||
| in_channels, | |||
| out_channels, | |||
| kernel_size, | |||
| stride, | |||
| pad_mode, | |||
| padding, | |||
| dilation, | |||
| group, | |||
| data_format, | |||
| has_bias, | |||
| weight_init, | |||
| bias_init, | |||
| ): | |||
| super(_Conv, self).__init__() | |||
| self.in_channels = in_channels | |||
| self.out_channels = out_channels | |||
| self.kernel_size = kernel_size | |||
| self.stride = stride | |||
| self.pad_mode = pad_mode | |||
| self.padding = padding | |||
| self.dilation = dilation | |||
| self.group = group | |||
| self.data_format = data_format | |||
| self.has_bias = has_bias | |||
| if not (isinstance(in_channels, int) and in_channels > 0): | |||
| raise ValueError('Attr \'in_channels\' of \'Conv2D\' Op passed ' | |||
| + str(in_channels) + ', should be a int and greater than 0.') | |||
| if (not isinstance(kernel_size, tuple)) or len(kernel_size) != 2 or \ | |||
| (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \ | |||
| kernel_size[0] < 1 or kernel_size[1] < 1: | |||
| raise ValueError('Attr \'kernel_size\' of \'Conv2D\' Op passed ' | |||
| + str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.') | |||
| if in_channels % group != 0: | |||
| raise ValueError('Attr \'in_channels\' of \'Conv2D\' Op must be divisible by ' | |||
| 'attr \'group\' of \'Conv2D\' Op.') | |||
| if out_channels % group != 0: | |||
| raise ValueError('Attr \'out_channels\' of \'Conv2D\' Op must be divisible by ' | |||
| 'attr \'group\' of \'Conv2D\' Op.') | |||
| self.weight = Parameter(initializer( | |||
| weight_init, [out_channels, in_channels // group, *kernel_size]), name='weight') | |||
| if check_bool(has_bias): | |||
| self.bias = Parameter(_initializer( | |||
| bias_init, [out_channels]), name='bias') | |||
| else: | |||
| if bias_init != 'zeros': | |||
| logger.warning("Value of 'has_bias' is False, value of 'bias_init' will be ignored.") | |||
| self.bias = None | |||
| def construct(self, *inputs): | |||
| raise NotImplementedError | |||
| class Conv2d_Thor(_Conv): | |||
| """Conv2d_Thor""" | |||
| def __init__(self, | |||
| in_channels, | |||
| out_channels, | |||
| kernel_size, | |||
| stride=1, | |||
| pad_mode='same', | |||
| padding=0, | |||
| dilation=1, | |||
| group=1, | |||
| data_format='NCHW', | |||
| has_bias=False, | |||
| weight_init='normal', | |||
| damping=0.03, | |||
| loss_scale=1, | |||
| frequency=278, | |||
| bias_init='zeros'): | |||
| self.thor = True | |||
| ksizes = (1, kernel_size, kernel_size, 1) | |||
| self.hw = kernel_size * kernel_size | |||
| strides = (1, stride, stride, 1) | |||
| kernel_size = twice(kernel_size) | |||
| super(Conv2d_Thor, self).__init__( | |||
| in_channels, | |||
| out_channels, | |||
| kernel_size, | |||
| stride, | |||
| pad_mode, | |||
| padding, | |||
| dilation, | |||
| group, | |||
| data_format, | |||
| has_bias, | |||
| weight_init, | |||
| bias_init, | |||
| ) | |||
| self.conv2d = P.Conv2D(out_channel=self.out_channels, | |||
| kernel_size=self.kernel_size, | |||
| mode=1, | |||
| pad_mode=self.pad_mode, | |||
| pad=self.padding, | |||
| stride=self.stride, | |||
| dilation=self.dilation, | |||
| group=self.group | |||
| ) | |||
| self.img2col = P.CusImg2Col(ksizes=ksizes, strides=strides) | |||
| self.cube_matmul = P.CusMatMulCube(transpose_a=True) | |||
| self.matrix_combine = P.CusMatrixCombine() | |||
| self.cholesky = P.CusCholeskyTrsm() | |||
| self.transpose02314 = P.CusTranspose02314() | |||
| self.matrix_A_dim = self.in_channels * self.kernel_size[0] * self.kernel_size[1] | |||
| self.matrix_G_dim = self.out_channels | |||
| self.matrix_A_device_shape, self.matrix_A_device_dim = caculate_device_shape(self.matrix_A_dim, | |||
| self.in_channels, True) | |||
| self.matrix_G_device_shape, self.matrix_G_device_dim = caculate_device_shape(self.matrix_G_dim, | |||
| self.in_channels, False) | |||
| self.matrix_A_device_temp_shape = ( | |||
| self.matrix_A_device_shape[0], self.matrix_A_device_shape[2], self.matrix_A_device_shape[1], | |||
| self.matrix_A_device_shape[3]) | |||
| self.matrix_G_device_temp_shape = ( | |||
| self.matrix_G_device_shape[0], self.matrix_G_device_shape[2], self.matrix_G_device_shape[1], | |||
| self.matrix_G_device_shape[3]) | |||
| self.matrix_A_inv = Parameter( | |||
| Tensor(np.reshape(np.identity(self.matrix_A_device_dim).astype(np.float16), self.matrix_A_device_shape)), | |||
| name='matrix_A_inv', requires_grad=False) | |||
| self.A_inv_max = Parameter(initializer(0, [1], mstype.float32), name="A_inv_max", requires_grad=False) | |||
| self.matrix_G_inv = Parameter( | |||
| Tensor(np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape)), | |||
| name="matrix_G_inv", requires_grad=False) | |||
| self.G_inv_max = Parameter(initializer(0, [1], mstype.float32), name="G_inv_max", requires_grad=False) | |||
| self.fake_G = Tensor( | |||
| np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape)) | |||
| self.shape = P.Shape() | |||
| self.reshape = P.Reshape() | |||
| self.transpose = P.Transpose() | |||
| self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False) | |||
| self.mul = P.Mul() | |||
| self.cast = P.Cast() | |||
| self.damping = Tensor(damping) | |||
| self.vector_matmul = P.CusBatchMatMul() | |||
| self.diag_block_dim = 128 | |||
| self.channels_slice_flag = False | |||
| if self.in_channels % C0 != 0: | |||
| self.channels_slice_flag = True | |||
| self.padA_flag = False | |||
| if (self.matrix_A_dim // self.diag_block_dim) * self.diag_block_dim != self.matrix_A_dim \ | |||
| and self.matrix_A_dim > self.diag_block_dim: | |||
| self.padA_flag = True | |||
| pad_dim = self.diag_block_dim - self.matrix_A_dim % self.diag_block_dim | |||
| self.padA = P.Pad(((0, pad_dim), (0, pad_dim))) | |||
| self.device_shape_pad_flag = False | |||
| if self.matrix_A_dim != self.matrix_A_device_dim: | |||
| self.device_shape_pad_flag = True | |||
| self.device_shape_pad = P.Pad(((0, 0), (0, C0 - self.in_channels), (0, 0), (0, C0 - self.in_channels))) | |||
| self.slice = P.Slice() | |||
| self.gather = P.GatherV2() | |||
| self.freq = Tensor(frequency, mstype.int32) | |||
| self.loss_scale = Tensor(1 / loss_scale, mstype.float16) | |||
| self.axis = 0 | |||
| dampingA_dim = self.matrix_A_dim | |||
| if (self.matrix_A_dim % self.diag_block_dim) != 0 and self.matrix_A_dim > self.diag_block_dim: | |||
| dampingA_dim = (self.matrix_A_dim // self.diag_block_dim + 1) * self.diag_block_dim | |||
| dampingG_dim = self.matrix_G_dim | |||
| if (self.matrix_G_dim % self.diag_block_dim) != 0 and self.matrix_G_dim > self.diag_block_dim: | |||
| dampingG_dim = (self.matrix_G_dim // self.diag_block_dim + 1) * self.diag_block_dim | |||
| self.dampingA = Tensor(np.identity(dampingA_dim), mstype.float32) | |||
| self.dampingG = Tensor(np.identity(dampingG_dim), mstype.float32) | |||
| self.fused_abs_max1 = P.CusFusedAbsMax1([self.matrix_A_dim, self.matrix_A_dim]) | |||
| self.fused_abs_max2 = P.CusFusedAbsMax1() | |||
| self.log = P.Log() | |||
| self.exp = P.Exp() | |||
| self.sqrt = P.Sqrt() | |||
| self.getG = P.InsertGradientOf(self.save_gradient) | |||
| def save_gradient(self, dout): | |||
| """save_gradient""" | |||
| out = dout | |||
| dout = self.mul(dout, self.loss_scale) | |||
| dout = self.mul(dout, 32.0) | |||
| dout = self.transpose02314(dout) | |||
| dout_shape = self.shape(dout) | |||
| normalizer = dout_shape[0] | |||
| matrix_G = self.cube_matmul(dout, dout) | |||
| normalizer = self.cast(normalizer, ms.float32) | |||
| matrix_G = self.mul(matrix_G, 1.0 / normalizer) | |||
| damping_step = self.gather(self.damping, self.cov_step, 0) | |||
| self.cov_step = self.cov_step + self.freq | |||
| damping_step = self.cast(damping_step, mstype.float32) | |||
| damping = self.mul(damping_step, 32.0 / normalizer) | |||
| damping = self.sqrt(damping) | |||
| dampingG = self.cast(self.dampingG, mstype.float32) | |||
| matrix_G = matrix_G + damping * dampingG | |||
| matrix_G_inv = self.cholesky(matrix_G) | |||
| matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv) | |||
| matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv) | |||
| matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv_max) | |||
| self.G_inv_max = matrix_G_inv_max | |||
| matrix_G_inv = self.matrix_combine(matrix_G_inv) | |||
| matrix_G_inv = self.reshape(matrix_G_inv, self.matrix_G_device_temp_shape) | |||
| matrix_G_inv = self.transpose(matrix_G_inv, (2, 0, 1, 3)) | |||
| matrix_G = self.cast(matrix_G_inv, mstype.float16) | |||
| self.matrix_G_inv = matrix_G | |||
| return out | |||
| def construct(self, x): | |||
| if self.thor: | |||
| matrix_A = self.img2col(x) | |||
| matrix_A_shape = self.shape(matrix_A) | |||
| normalizer = matrix_A_shape[0] | |||
| matrix_A = self.cube_matmul(matrix_A, matrix_A) | |||
| if self.channels_slice_flag: | |||
| matrix_A = self.reshape(matrix_A, (self.hw, C0, self.hw, C0)) | |||
| matrix_A = self.slice(matrix_A, (0, 0, 0, 0), (self.hw, self.in_channels, self.hw, self.in_channels)) | |||
| matrix_A = self.reshape(matrix_A, (self.matrix_A_dim, self.matrix_A_dim)) | |||
| normalizer = self.cast(normalizer, ms.float32) | |||
| matrix_A = self.mul(matrix_A, 1.0 / normalizer) | |||
| if self.padA_flag: | |||
| matrix_A = self.padA(matrix_A) | |||
| damping_step = self.gather(self.damping, self.cov_step, self.axis) | |||
| damping_step = self.cast(damping_step, mstype.float32) | |||
| damping = self.mul(damping_step, 32.0 / normalizer) | |||
| damping = self.sqrt(damping) | |||
| damping_A = self.cast(self.dampingA, mstype.float32) | |||
| matrix_A = matrix_A + damping * damping_A | |||
| matrix_A_inv = self.cholesky(matrix_A) | |||
| matrix_A_inv = self.vector_matmul(matrix_A_inv, matrix_A_inv) | |||
| matrix_A_inv_max = self.fused_abs_max1(matrix_A_inv) | |||
| matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv_max) | |||
| self.A_inv_max = matrix_A_inv_max | |||
| matrix_A_inv = self.matrix_combine(matrix_A_inv) | |||
| matrix_A_inv = self.cast(matrix_A_inv, mstype.float16) | |||
| if self.padA_flag: | |||
| matrix_A_inv = self.slice(matrix_A_inv, (0, 0), (self.matrix_A_dim, self.matrix_A_dim)) | |||
| if self.device_shape_pad_flag: | |||
| matrix_A_inv = self.reshape(matrix_A_inv, (self.hw, self.in_channels, self.hw, self.in_channels)) | |||
| matrix_A_inv = self.device_shape_pad(matrix_A_inv) | |||
| matrix_A_inv = self.reshape(matrix_A_inv, self.matrix_A_device_temp_shape) | |||
| matrix_A_inv = self.transpose(matrix_A_inv, (2, 0, 1, 3)) | |||
| self.matrix_A_inv = matrix_A_inv | |||
| self.matrix_G_inv = self.fake_G | |||
| out = self.conv2d(x, self.weight) | |||
| out = self.getG(out) | |||
| else: | |||
| out = self.conv2d(x, self.weight) | |||
| return out | |||
| def extra_repr(self): | |||
| """extra_repr""" | |||
| s = 'input_channels={}, output_channels={}, kernel_size={},' \ | |||
| 'stride={}, pad_mode={}, padding={}, dilation={}, ' \ | |||
| 'group={}, data_format={}, has_bias={},' \ | |||
| 'weight_init={}, bias_init={}'.format( | |||
| self.in_channels, | |||
| self.out_channels, | |||
| self.kernel_size, | |||
| self.stride, | |||
| self.pad_mode, | |||
| self.padding, | |||
| self.dilation, | |||
| self.group, | |||
| self.data_format, | |||
| self.has_bias, | |||
| self.weight, | |||
| self.bias) | |||
| if self.has_bias: | |||
| s += ', bias={}'.format(self.bias) | |||
| return s | |||
| class Dense_Thor(Cell): | |||
| """Dense_Thor""" | |||
| @cell_attr_register(attrs=['has_bias', 'activation']) | |||
| def __init__(self, | |||
| in_channels, | |||
| out_channels, | |||
| weight_init='normal', | |||
| bias_init='zeros', | |||
| damping=0.03, | |||
| loss_scale=1, | |||
| frequency=278, | |||
| has_bias=True, | |||
| activation=None): | |||
| super(Dense_Thor, self).__init__() | |||
| self.in_channels = check_int_positive(in_channels) | |||
| self.out_channels = check_int_positive(out_channels) | |||
| self.has_bias = check_bool(has_bias) | |||
| self.thor = True | |||
| if isinstance(weight_init, Tensor): | |||
| if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ | |||
| weight_init.shape[1] != in_channels: | |||
| raise ValueError("weight_init shape error") | |||
| self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight") | |||
| if self.has_bias: | |||
| if isinstance(bias_init, Tensor): | |||
| if bias_init.dim() != 1 or bias_init.shape[0] != out_channels: | |||
| raise ValueError("bias_init shape error") | |||
| self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias") | |||
| self.matmul = P.MatMul(transpose_b=True) | |||
| self.bias_add = P.BiasAdd() | |||
| self.activation = get_activation(activation) | |||
| self.activation_flag = self.activation is not None | |||
| self.matrix_A_inv = Parameter(Tensor(np.zeros([128, 128, 16, 16]).astype(np.float16)), name='matrix_A_inv', | |||
| requires_grad=False) | |||
| self.matrix_G_inv = Parameter(Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16)), name="matrix_G_inv", | |||
| requires_grad=False) | |||
| self.fake_G = Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16)) | |||
| self.matmul = P.MatMul(transpose_b=True) | |||
| self.cube_matmul = P.CusMatMulCube(transpose_a=True) | |||
| self.matrix_combine = P.CusMatrixCombine() | |||
| self.cholesky = P.CusCholeskyTrsm() | |||
| self.shape = P.Shape() | |||
| self.reshape = P.Reshape() | |||
| self.transpose = P.Transpose() | |||
| self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False) | |||
| self.mul = P.Mul() | |||
| self.cast = P.Cast() | |||
| self.damping = Tensor(damping) | |||
| self.loss_scale = Tensor(1 / loss_scale, mstype.float16) | |||
| self.vector_matmul = P.CusBatchMatMul() | |||
| self.pad = P.Pad(((0, 24), (0, 24))) | |||
| self.pad1 = P.Pad(((0, 8), (0, 8))) | |||
| self.slice = P.Slice() | |||
| self.gather = P.GatherV2() | |||
| self.assignadd = P.AssignAdd() | |||
| self.freq = Tensor(frequency, mstype.int32) | |||
| self.axis = 0 | |||
| self.A_inv_max = Parameter(initializer(0, [1], mstype.float32), name="A_inv_max", requires_grad=False) | |||
| self.G_inv_max = Parameter(initializer(0, [1], mstype.float32), name="G_inv_max", requires_grad=False) | |||
| self.fused_abs_max1 = P.CusFusedAbsMax1([1000, 1000]) | |||
| self.fused_abs_max2 = P.CusFusedAbsMax1() | |||
| self.log = P.Log() | |||
| self.exp = P.Exp() | |||
| self.dampingA = Tensor(np.identity(2048), mstype.float32) | |||
| self.dampingG = Tensor(np.identity(1024), mstype.float32) | |||
| self.add = P.TensorAdd() | |||
| self.sqrt = P.Sqrt() | |||
| self.getG = P.InsertGradientOf(self.save_gradient) | |||
| def save_gradient(self, dout): | |||
| """save_gradient""" | |||
| out = dout | |||
| dout = self.mul(dout, self.loss_scale) | |||
| dout = self.mul(dout, 32.0) | |||
| normalizer = 32 | |||
| matrix_G = self.cube_matmul(dout, dout) | |||
| normalizer = self.cast(normalizer, ms.float32) | |||
| matrix_G = self.mul(matrix_G, 1.0 / normalizer) | |||
| matrix_G = self.pad(matrix_G) | |||
| damping_step = self.gather(self.damping, self.cov_step, 0) | |||
| damping_step = self.cast(damping_step, mstype.float32) | |||
| self.cov_step = self.cov_step + self.freq | |||
| damping = self.sqrt(damping_step) | |||
| dampingG = self.cast(self.dampingG, mstype.float32) | |||
| matrix_G = matrix_G + damping * dampingG | |||
| matrix_G_inv = self.cholesky(matrix_G) | |||
| matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv) | |||
| matrix_G_inv_max = self.fused_abs_max1(matrix_G_inv) | |||
| matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv_max) | |||
| self.G_inv_max = matrix_G_inv_max | |||
| matrix_G_inv = self.matrix_combine(matrix_G_inv) | |||
| matrix_G_inv = self.slice(matrix_G_inv, (0, 0), (1000, 1000)) | |||
| matrix_G_inv = self.pad1(matrix_G_inv) | |||
| matrix_G_inv_shape = self.shape(matrix_G_inv) | |||
| matrix_G_inv = self.reshape(matrix_G_inv, (matrix_G_inv_shape[0] / 16, 16, matrix_G_inv_shape[0] / 16, 16)) | |||
| matrix_G_inv = self.transpose(matrix_G_inv, (2, 0, 1, 3)) | |||
| matrix_G_inv = self.cast(matrix_G_inv, mstype.float16) | |||
| self.matrix_G_inv = matrix_G_inv | |||
| return out | |||
| def construct(self, x): | |||
| """construct""" | |||
| if self.thor: | |||
| inputs = self.cube_matmul(x, x) | |||
| normalizer = 32 | |||
| normalizer = self.cast(normalizer, ms.float32) | |||
| matrix_A = self.mul(inputs, 1.0 / normalizer) | |||
| damping_step = self.gather(self.damping, self.cov_step, self.axis) | |||
| damping_step = self.cast(damping_step, mstype.float32) | |||
| damping = self.sqrt(damping_step) | |||
| dampingA = self.cast(self.dampingA, mstype.float32) | |||
| matrix_A = matrix_A + damping * dampingA | |||
| matrix_A_inv = self.cholesky(matrix_A) | |||
| matrix_A_inv = self.vector_matmul(matrix_A_inv, matrix_A_inv) | |||
| matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv) | |||
| matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv_max) | |||
| self.A_inv_max = matrix_A_inv_max | |||
| matrix_A_inv = self.matrix_combine(matrix_A_inv) | |||
| matrix_A_inv_shape = self.shape(matrix_A_inv) | |||
| matrix_A_inv = self.reshape(matrix_A_inv, (matrix_A_inv_shape[0] / 16, 16, matrix_A_inv_shape[0] / 16, 16)) | |||
| matrix_A_inv = self.transpose(matrix_A_inv, (2, 0, 1, 3)) | |||
| matrix_A_inv = self.cast(matrix_A_inv, mstype.float16) | |||
| self.matrix_A_inv = matrix_A_inv | |||
| self.matrix_G_inv = self.fake_G | |||
| output = self.matmul(x, self.weight) | |||
| output = self.getG(output) | |||
| else: | |||
| output = self.matmul(x, self.weight) | |||
| if self.has_bias: | |||
| output = self.bias_add(output, self.bias) | |||
| if self.activation_flag: | |||
| return self.activation(output) | |||
| return output | |||
| def extend_repr(self): | |||
| """extend_repr""" | |||
| str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \ | |||
| .format(self.in_channels, self.out_channels, self.weight, self.has_bias) | |||
| if self.has_bias: | |||
| str_info = str_info + ', bias={}'.format(self.bias) | |||
| if self.activation_flag: | |||
| str_info = str_info + ', activation={}'.format(self.activation) | |||
| return str_info | |||
| @@ -0,0 +1,385 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """train and evaluate resnet50 network on imagenet dataset""" | |||
| import os | |||
| import time | |||
| from multiprocessing import Process, Queue | |||
| import pytest | |||
| import numpy as np | |||
| from mindspore import context, Tensor | |||
| from mindspore.communication.management import init | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.train.model import Model, ParallelMode | |||
| from mindspore.train.callback import Callback | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.model_zoo.resnet import resnet50 | |||
| import mindspore.nn as nn | |||
| import mindspore.dataset as ds | |||
| from tests.st.networks.models.resnet50.src.dataset import create_dataset | |||
| from tests.st.networks.models.resnet50.src.lr_generator import get_learning_rate | |||
| from tests.st.networks.models.resnet50.src.config import config | |||
| from tests.st.networks.models.resnet50.src.metric import DistAccuracy, ClassifyCorrectCell | |||
| from tests.st.networks.models.resnet50.src_thor.config import config as thor_config | |||
| from tests.st.networks.models.resnet50.src_thor.model_thor import Model as THOR_Model | |||
| from tests.st.networks.models.resnet50.src_thor.resnet import resnet50 as resnet50_thor | |||
| from tests.st.networks.models.resnet50.src_thor.thor import THOR | |||
| MINDSPORE_HCCL_CONFIG_PATH = "/home/workspace/mindspore_config/hccl/rank_tabel_4p/rank_table_4p_1.json" | |||
| MINDSPORE_HCCL_CONFIG_PATH_2 = "/home/workspace/mindspore_config/hccl/rank_tabel_4p/rank_table_4p_2.json" | |||
| dataset_path = "/home/workspace/mindspore_dataset/imagenet/imagenet_original/train" | |||
| eval_path = "/home/workspace/mindspore_dataset/imagenet/imagenet_original/val" | |||
| np.random.seed(1) | |||
| ds.config.set_seed(1) | |||
| os.environ['GLOG_v'] = str(2) | |||
| def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch): | |||
| """get_model_lr""" | |||
| lr_each_step = [] | |||
| total_steps = steps_per_epoch * total_epochs | |||
| for i in range(total_steps): | |||
| epoch = (i + 1) / steps_per_epoch | |||
| base = (1.0 - float(epoch) / total_epochs) ** decay | |||
| lr_local = lr_init * base | |||
| if epoch >= 39: | |||
| lr_local = lr_local * 0.5 | |||
| if epoch >= 40: | |||
| lr_local = lr_local * 0.5 | |||
| lr_each_step.append(lr_local) | |||
| current_step = global_step | |||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||
| learning_rate = lr_each_step[current_step:] | |||
| return learning_rate | |||
| def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch): | |||
| """get_model_damping""" | |||
| damping_each_step = [] | |||
| total_steps = steps_per_epoch * total_epochs | |||
| for step in range(total_steps): | |||
| epoch = (step + 1) / steps_per_epoch | |||
| damping_here = damping_init * (decay_rate ** (epoch / 10)) | |||
| damping_each_step.append(damping_here) | |||
| current_step = global_step | |||
| damping_each_step = np.array(damping_each_step).astype(np.float32) | |||
| damping_now = damping_each_step[current_step:] | |||
| return damping_now | |||
| class LossGet(Callback): | |||
| def __init__(self, per_print_times, data_size): | |||
| super(LossGet, self).__init__() | |||
| if not isinstance(per_print_times, int) or per_print_times < 0: | |||
| raise ValueError("print_step must be int and >= 0.") | |||
| self._per_print_times = per_print_times | |||
| self._loss = 0.0 | |||
| self.data_size = data_size | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| loss = cb_params.net_outputs | |||
| if isinstance(loss, (tuple, list)): | |||
| if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray): | |||
| loss = loss[0] | |||
| if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray): | |||
| loss = np.mean(loss.asnumpy()) | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)): | |||
| raise ValueError("epoch: {} step: {}. Invalid loss, terminating training." | |||
| .format(cb_params.cur_epoch_num, cur_step_in_epoch)) | |||
| if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0: | |||
| self._loss = loss | |||
| def epoch_begin(self, run_context): | |||
| self.epoch_time = time.time() | |||
| def epoch_end(self, run_context): | |||
| epoch_mseconds = (time.time() - self.epoch_time) * 1000 | |||
| self._per_step_mseconds = epoch_mseconds / self.data_size | |||
| def get_loss(self): | |||
| return self._loss | |||
| def get_per_step_time(self): | |||
| return self._per_step_mseconds | |||
| def train_process(q, device_id, epoch_size, device_num, enable_hccl): | |||
| os.system("mkdir " + str(device_id)) | |||
| os.chdir(str(device_id)) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) | |||
| context.set_context(device_id=device_id) | |||
| os.environ['MINDSPORE_HCCL_CONFIG_PATH'] = MINDSPORE_HCCL_CONFIG_PATH | |||
| os.environ['RANK_ID'] = str(device_id) | |||
| os.environ['RANK_SIZE'] = str(device_num) | |||
| if enable_hccl: | |||
| context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| mirror_mean=True, parameter_broadcast=True) | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160]) | |||
| init() | |||
| # network | |||
| net = resnet50(class_num=config.class_num) | |||
| # evaluation network | |||
| dist_eval_network = ClassifyCorrectCell(net) | |||
| if not config.use_label_smooth: | |||
| config.label_smooth_factor = 0.0 | |||
| # loss | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor, | |||
| num_classes=config.class_num) | |||
| # train dataset | |||
| dataset = create_dataset(dataset_path=dataset_path, do_train=True, | |||
| repeat_num=epoch_size, batch_size=config.batch_size) | |||
| step_size = dataset.get_dataset_size() | |||
| eval_interval = config.eval_interval | |||
| dataset.__loop_size__ = step_size * eval_interval | |||
| # evalutation dataset | |||
| eval_dataset = create_dataset(dataset_path=eval_path, do_train=False, | |||
| repeat_num=epoch_size, batch_size=config.eval_batch_size) | |||
| # loss scale | |||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | |||
| # learning rate | |||
| lr = Tensor(get_learning_rate(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, | |||
| warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, | |||
| steps_per_epoch=step_size, lr_decay_mode=config.lr_decay_mode)) | |||
| # optimizer | |||
| decayed_params = list(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name, | |||
| net.trainable_params())) | |||
| no_decayed_params = [param for param in net.trainable_params() if param not in decayed_params] | |||
| group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay}, | |||
| {'params': no_decayed_params}, | |||
| {'order_params': net.trainable_params()}] | |||
| if config.use_lars: | |||
| momentum = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | |||
| use_nesterov=config.use_nesterov) | |||
| opt = nn.LARS(momentum, epsilon=config.lars_epsilon, hyperpara=config.lars_coefficient, | |||
| weight_decay=config.weight_decay, | |||
| decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name, | |||
| lars_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name, | |||
| loss_scale=config.loss_scale) | |||
| else: | |||
| opt = nn.Momentum(group_params, lr, config.momentum, | |||
| weight_decay=config.weight_decay, loss_scale=config.loss_scale, | |||
| use_nesterov=config.use_nesterov) | |||
| # model | |||
| model = Model(net, loss_fn=loss, optimizer=opt, | |||
| loss_scale_manager=loss_scale, amp_level="O2", keep_batchnorm_fp32=False, | |||
| metrics={'acc': DistAccuracy(batch_size=config.eval_batch_size, device_num=device_num)}, | |||
| eval_network=dist_eval_network) | |||
| # model init | |||
| print("init_start", device_id) | |||
| model.init(dataset, eval_dataset) | |||
| print("init_stop", device_id) | |||
| # callbacks | |||
| loss_cb = LossGet(1, step_size) | |||
| # train and eval | |||
| print("run_start", device_id) | |||
| acc = 0.0 | |||
| time_cost = 0.0 | |||
| for epoch_idx in range(0, int(epoch_size / eval_interval)): | |||
| model.train(1, dataset, callbacks=loss_cb) | |||
| eval_start = time.time() | |||
| output = model.eval(eval_dataset) | |||
| eval_cost = (time.time() - eval_start) * 1000 | |||
| acc = float(output["acc"]) | |||
| time_cost = loss_cb.get_per_step_time() | |||
| loss = loss_cb.get_loss() | |||
| print("the {} epoch's resnet result:\n " | |||
| "device{}, training loss {}, acc {}, " | |||
| "training per step cost {:.2f} ms, eval cost {:.2f} ms, total_cost {:.2f} ms".format( | |||
| epoch_idx, device_id, loss, acc, time_cost, eval_cost, time_cost * step_size + eval_cost)) | |||
| q.put({'acc': acc, 'cost': time_cost}) | |||
| def train_process_thor(q, device_id, epoch_size, device_num, enable_hccl): | |||
| os.system("mkdir " + str(device_id)) | |||
| os.chdir(str(device_id)) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) | |||
| context.set_context(device_id=device_id) | |||
| os.environ['MINDSPORE_HCCL_CONFIG_PATH'] = MINDSPORE_HCCL_CONFIG_PATH_2 | |||
| os.environ['RANK_ID'] = str(device_id - 4) | |||
| os.environ['RANK_SIZE'] = str(device_num) | |||
| if enable_hccl: | |||
| context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| mirror_mean=True, parameter_broadcast=True) | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4") | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5") | |||
| init() | |||
| # network | |||
| damping = get_model_damping(0, 0.03, 0.87, 50, 5004) | |||
| net = resnet50_thor(class_num=thor_config.class_num, damping=damping, loss_scale=thor_config.loss_scale, | |||
| frequency=thor_config.frequency) | |||
| # evaluation network | |||
| dist_eval_network = ClassifyCorrectCell(net) | |||
| if not thor_config.label_smooth: | |||
| thor_config.label_smooth_factor = 0.0 | |||
| # loss | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", | |||
| smooth_factor=thor_config.label_smooth_factor, | |||
| num_classes=thor_config.class_num) | |||
| # train dataset | |||
| dataset = create_dataset(dataset_path=dataset_path, do_train=True, | |||
| repeat_num=epoch_size, batch_size=thor_config.batch_size) | |||
| step_size = dataset.get_dataset_size() | |||
| eval_interval = thor_config.eval_interval | |||
| # evalutation dataset | |||
| eval_dataset = create_dataset(dataset_path=eval_path, do_train=False, | |||
| repeat_num=epoch_size, batch_size=thor_config.eval_batch_size) | |||
| # loss scale | |||
| loss_scale = FixedLossScaleManager(thor_config.loss_scale, drop_overflow_update=False) | |||
| # learning rate | |||
| lr = Tensor(get_model_lr(0, 0.045, 6, 70, 5004)) | |||
| # optimizer | |||
| opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr, thor_config.momentum, | |||
| filter(lambda x: 'matrix_A' in x.name, net.get_parameters()), | |||
| filter(lambda x: 'matrix_G' in x.name, net.get_parameters()), | |||
| filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()), | |||
| filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()), | |||
| thor_config.weight_decay, thor_config.loss_scale) | |||
| # model | |||
| model = THOR_Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, amp_level="O2", | |||
| keep_batchnorm_fp32=False, | |||
| metrics={'acc': DistAccuracy(batch_size=thor_config.eval_batch_size, device_num=device_num)}, | |||
| eval_network=dist_eval_network, frequency=thor_config.frequency) | |||
| # model init | |||
| print("init_start", device_id) | |||
| model.init(dataset, eval_dataset) | |||
| print("init_stop", device_id) | |||
| # callbacks | |||
| loss_cb = LossGet(1, step_size) | |||
| # train and eval | |||
| acc = 0.0 | |||
| time_cost = 0.0 | |||
| print("run_start", device_id) | |||
| for epoch_idx in range(0, int(epoch_size / eval_interval)): | |||
| model.train(eval_interval, dataset, callbacks=loss_cb) | |||
| eval_start = time.time() | |||
| output = model.eval(eval_dataset) | |||
| eval_cost = (time.time() - eval_start) * 1000 | |||
| acc = float(output["acc"]) | |||
| time_cost = loss_cb.get_per_step_time() | |||
| loss = loss_cb.get_loss() | |||
| print("the {} epoch's resnet result:\n " | |||
| "device{}, training loss {}, acc {}, " | |||
| "training per step cost {:.2f} ms, eval cost {:.2f} ms, total_cost {:.2f} ms".format( | |||
| epoch_idx, device_id, loss, acc, time_cost, eval_cost, time_cost * step_size + eval_cost)) | |||
| q.put({'acc': acc, 'cost': time_cost}) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_single | |||
| def test_resnet_and_resnet_thor_imagenet_4p(): | |||
| q = Queue() | |||
| q2 = Queue() | |||
| # resnet50 | |||
| device_num = 4 | |||
| epoch_size = 2 | |||
| epoch_size_2 = 1 | |||
| enable_hccl = True | |||
| process = [] | |||
| process2 = [] | |||
| for i in range(device_num): | |||
| device_id = i | |||
| process.append(Process(target=train_process, | |||
| args=(q, device_id, epoch_size, device_num, enable_hccl))) | |||
| process2.append(Process(target=train_process_thor, | |||
| args=(q2, device_id + 4, epoch_size_2, device_num, enable_hccl))) | |||
| for i in range(device_num): | |||
| process[i].start() | |||
| process2[i].start() | |||
| print("Waiting for all subprocesses done...") | |||
| for i in range(device_num): | |||
| process[i].join() | |||
| process2[i].join() | |||
| # resnet | |||
| acc = 0.0 | |||
| cost = 0.0 | |||
| for i in range(device_num): | |||
| output = q.get() | |||
| acc += output['acc'] | |||
| cost += output['cost'] | |||
| acc = acc / device_num | |||
| cost = cost / device_num | |||
| for i in range(device_num): | |||
| os.system("rm -rf " + str(i)) | |||
| print("End training...") | |||
| assert acc > 0.13 | |||
| assert cost < 21 | |||
| # THOR | |||
| thor_acc = 0.0 | |||
| thor_cost = 0.0 | |||
| for i in range(device_num): | |||
| output = q2.get() | |||
| thor_acc += output['acc'] | |||
| thor_cost += output['cost'] | |||
| thor_acc = thor_acc / device_num | |||
| thor_cost = thor_cost / device_num | |||
| for i in range(4, device_num + 4): | |||
| os.system("rm -rf " + str(i)) | |||
| print("End training...") | |||
| assert thor_acc > 0.22 | |||
| assert thor_cost < 22 | |||
| @@ -15,8 +15,6 @@ | |||
| import os | |||
| import random | |||
| import pytest | |||
| import numpy as np | |||
| from resnet import resnet50 | |||
| @@ -152,10 +150,7 @@ def train_process(epoch_size, num_classes, batch_size): | |||
| print("result: ", res) | |||
| return res | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_resnet_cifar_1p(): | |||
| epoch_size = 1 | |||
| num_classes = 10 | |||
| @@ -17,7 +17,7 @@ import os | |||
| import random | |||
| from multiprocessing import Process, Queue | |||
| import numpy as np | |||
| import pytest | |||
| from resnet import resnet50 | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.dataset as ds | |||
| @@ -173,10 +173,6 @@ def train_process(q, device_id, epoch_size, num_classes, device_num, batch_size, | |||
| q.put(loss_cb.get_loss()) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_single | |||
| def test_resnet_cifar_8p(): | |||
| q = Queue() | |||
| device_num = 8 | |||