| @@ -26,7 +26,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack, | |||||
| Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue, Range, | Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue, Range, | ||||
| SameTypeShape, ScatterAdd, ScatterMax, ScatterUpdate, | SameTypeShape, ScatterAdd, ScatterMax, ScatterUpdate, | ||||
| ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select, | ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select, | ||||
| Shape, Size, Slice, Split, | |||||
| Shape, Size, Slice, Split, EmbeddingLookup, | |||||
| Squeeze, StridedSlice, Tile, | Squeeze, StridedSlice, Tile, | ||||
| Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, | Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, | ||||
| UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace, | UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace, | ||||
| @@ -131,6 +131,7 @@ __all__ = [ | |||||
| 'ReduceMean', | 'ReduceMean', | ||||
| 'Range', | 'Range', | ||||
| 'LayerNorm', | 'LayerNorm', | ||||
| 'EmbeddingLookup', | |||||
| 'Rank', | 'Rank', | ||||
| 'Less', | 'Less', | ||||
| 'LessEqual', | 'LessEqual', | ||||
| @@ -572,6 +572,73 @@ class Range(PrimitiveWithInfer): | |||||
| return x_dtype | return x_dtype | ||||
| class EmbeddingLookup(PrimitiveWithInfer): | |||||
| """ | |||||
| Returns a slice of input tensor based on the specified indices and axis. This Primitive has the similar | |||||
| functionality as GatherV2, but has three more inputs: `offset`, `reduce_scatter_flag` and `split_num`. | |||||
| Inputs: | |||||
| - **input_params** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. | |||||
| The Tensor slice, instead of the entire Tensor. | |||||
| - **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`. | |||||
| Specifies the indices of elements of the original Tensor. Must be in the range | |||||
| `[0, input_param.shape()[axis])`. | |||||
| - **axis** (int) - Specifies the dimension index to gather indices. | |||||
| - **offset** (int) - Specifies the offset value of this `input_params` slice. Thus the real indices | |||||
| are equal to `input_indices` minus `offset`. | |||||
| - **reduce_scatter_flag** (bool) - Specifies whether perform reduce_scatter on host or not. | |||||
| - **split_num** (int) - Specifies the number of partitions of the reduce_scatter produces. This variable | |||||
| is used only if `reduce_scatter_flag` is True. | |||||
| Outputs: | |||||
| Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`. | |||||
| Examples: | |||||
| >>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32) | |||||
| >>> input_indices = Tensor(np.array([[5, 2], [8, 5]]), mindspore.int32) | |||||
| >>> axis = 0 | |||||
| >>> offset = 4 | |||||
| >>> reduce_scatter_flag = False | |||||
| >>> split_num = 1 | |||||
| >>> out = P.EmbeddingLookup()(input_params, input_indices, axis, offset, reduce_scatter_flag, split_num) | |||||
| [[[10, 11], [0 ,0]], [[0, 0], [10, 11]]] | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self): | |||||
| """init index_select""" | |||||
| self.__setattr_flag__ = True | |||||
| self.init_prim_io_names(inputs=['params', 'indices', 'axis', 'offset', 'reduce_scatter_flag', 'split_num'], | |||||
| outputs=['output']) | |||||
| self.add_prim_attr('target', 'CPU') | |||||
| def __infer__(self, params, indices, axis, offset, reduce_scatter_flag=False, split_num=2): | |||||
| validator.check_subclass("params", params['dtype'], mstype.tensor, self.name) | |||||
| validator.check_tensor_type_same({"indices": indices['dtype']}, mstype.int_type, self.name) | |||||
| validator.check_subclass("axis", axis['dtype'], mstype.int_, self.name) | |||||
| validator.check_subclass("offset", offset['dtype'], mstype.int_, self.name) | |||||
| validator.check_subclass("split_num", split_num['dtype'], mstype.int_, self.name) | |||||
| if split_num['value'] < 1: | |||||
| raise ValueError("The parameter 'split_num' must be positive, but got %d." % split_num) | |||||
| axis_v = axis['value'] | |||||
| params_shp = params['shape'] | |||||
| rank = len(params_shp) | |||||
| validator.check_int_range("axis", axis_v, -rank, rank, Rel.INC_LEFT, self.name) | |||||
| if axis_v < 0: | |||||
| axis_v += rank | |||||
| out_shape = params_shp[:axis_v] + indices['shape'] + params_shp[axis_v + 1:] | |||||
| if reduce_scatter_flag: | |||||
| # partition the tensor along the dimension 0. | |||||
| if out_shape[0] % split_num['value'] != 0: | |||||
| raise ValueError("The dimension 0 of the shape: %d, is not divisible by split_num: %d." % | |||||
| (out_shape[0], split_num['value'])) | |||||
| out_shape[0] = out_shape[0] // split_num['value'] | |||||
| out = {'shape': out_shape, | |||||
| 'dtype': params['dtype'], | |||||
| 'value': None} | |||||
| return out | |||||
| class Split(PrimitiveWithInfer): | class Split(PrimitiveWithInfer): | ||||
| """ | """ | ||||
| Splits input tensor into output_num of tensors along the given axis and output numbers. | Splits input tensor into output_num of tensors along the given axis and output numbers. | ||||
| @@ -0,0 +1,79 @@ | |||||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore as ms | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore import context | |||||
| from mindspore.common.api import _executor | |||||
| from mindspore.ops import composite as C | |||||
| from mindspore.ops import operations as P | |||||
| from tests.ut.python.ops.test_math_ops import VirtualLoss | |||||
| class NetWithLoss(nn.Cell): | |||||
| def __init__(self, network): | |||||
| super(NetWithLoss, self).__init__() | |||||
| self.loss = VirtualLoss() | |||||
| self.network = network | |||||
| def construct(self, x, y): | |||||
| predict = self.network(x, y) | |||||
| return self.loss(predict) | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, shape, axis, offset, reduce_scatter_flag, split_num): | |||||
| super().__init__() | |||||
| self.index = Tensor(np.ones(shape), dtype=ms.int32) | |||||
| self.axis = axis | |||||
| self.offset = offset | |||||
| self.reduce_scatter_flag = reduce_scatter_flag | |||||
| self.split_num = split_num | |||||
| self.elu = P.EmbeddingLookup() | |||||
| self.mm = P.BatchMatMul() | |||||
| def construct(self, x, y): | |||||
| out = self.elu(x, self.index, self.axis, self.offset, self.reduce_scatter_flag, self.split_num) | |||||
| out = self.mm(out, y) | |||||
| return out | |||||
| def test_embeddinglookup_reducescatter_false(): | |||||
| shape = [8, 8] | |||||
| axis = 0 | |||||
| offset = 8 | |||||
| reduce_scatter_flag = False | |||||
| split_num = 1 | |||||
| net = NetWithLoss(Net(shape, axis, offset, reduce_scatter_flag, split_num)) | |||||
| net.set_auto_parallel() | |||||
| x = Tensor(np.ones([64, 32]), dtype=ms.float32) | |||||
| y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32) | |||||
| _executor.compile(net, x, y) | |||||
| def test_embeddinglookup_reducescatter_true(): | |||||
| shape = [8, 8] | |||||
| axis = 0 | |||||
| offset = 8 | |||||
| reduce_scatter_flag = True | |||||
| split_num = 8 | |||||
| net = NetWithLoss(Net(shape, axis, offset, reduce_scatter_flag, split_num)) | |||||
| net.set_auto_parallel() | |||||
| x = Tensor(np.ones([64, 32]), dtype=ms.float32) | |||||
| y = Tensor(np.ones([1, 32, 8]), dtype=ms.float32) | |||||
| _executor.compile(net, x, y) | |||||