|
|
|
@@ -572,6 +572,73 @@ class Range(PrimitiveWithInfer): |
|
|
|
return x_dtype |
|
|
|
|
|
|
|
|
|
|
|
class EmbeddingLookup(PrimitiveWithInfer): |
|
|
|
""" |
|
|
|
Returns a slice of input tensor based on the specified indices and axis. This Primitive has the similar |
|
|
|
functionality as GatherV2, but has three more inputs: `offset`, `reduce_scatter_flag` and `split_num`. |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **input_params** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. |
|
|
|
The Tensor slice, instead of the entire Tensor. |
|
|
|
- **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`. |
|
|
|
Specifies the indices of elements of the original Tensor. Must be in the range |
|
|
|
`[0, input_param.shape()[axis])`. |
|
|
|
- **axis** (int) - Specifies the dimension index to gather indices. |
|
|
|
- **offset** (int) - Specifies the offset value of this `input_params` slice. Thus the real indices |
|
|
|
are equal to `input_indices` minus `offset`. |
|
|
|
- **reduce_scatter_flag** (bool) - Specifies whether perform reduce_scatter on host or not. |
|
|
|
- **split_num** (int) - Specifies the number of partitions of the reduce_scatter produces. This variable |
|
|
|
is used only if `reduce_scatter_flag` is True. |
|
|
|
|
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32) |
|
|
|
>>> input_indices = Tensor(np.array([[5, 2], [8, 5]]), mindspore.int32) |
|
|
|
>>> axis = 0 |
|
|
|
>>> offset = 4 |
|
|
|
>>> reduce_scatter_flag = False |
|
|
|
>>> split_num = 1 |
|
|
|
>>> out = P.EmbeddingLookup()(input_params, input_indices, axis, offset, reduce_scatter_flag, split_num) |
|
|
|
[[[10, 11], [0 ,0]], [[0, 0], [10, 11]]] |
|
|
|
""" |
|
|
|
@prim_attr_register |
|
|
|
def __init__(self): |
|
|
|
"""init index_select""" |
|
|
|
self.__setattr_flag__ = True |
|
|
|
self.init_prim_io_names(inputs=['params', 'indices', 'axis', 'offset', 'reduce_scatter_flag', 'split_num'], |
|
|
|
outputs=['output']) |
|
|
|
self.add_prim_attr('target', 'CPU') |
|
|
|
|
|
|
|
def __infer__(self, params, indices, axis, offset, reduce_scatter_flag=False, split_num=2): |
|
|
|
validator.check_subclass("params", params['dtype'], mstype.tensor, self.name) |
|
|
|
validator.check_tensor_type_same({"indices": indices['dtype']}, mstype.int_type, self.name) |
|
|
|
validator.check_subclass("axis", axis['dtype'], mstype.int_, self.name) |
|
|
|
validator.check_subclass("offset", offset['dtype'], mstype.int_, self.name) |
|
|
|
validator.check_subclass("split_num", split_num['dtype'], mstype.int_, self.name) |
|
|
|
if split_num['value'] < 1: |
|
|
|
raise ValueError("The parameter 'split_num' must be positive, but got %d." % split_num) |
|
|
|
axis_v = axis['value'] |
|
|
|
params_shp = params['shape'] |
|
|
|
rank = len(params_shp) |
|
|
|
validator.check_int_range("axis", axis_v, -rank, rank, Rel.INC_LEFT, self.name) |
|
|
|
if axis_v < 0: |
|
|
|
axis_v += rank |
|
|
|
out_shape = params_shp[:axis_v] + indices['shape'] + params_shp[axis_v + 1:] |
|
|
|
if reduce_scatter_flag: |
|
|
|
# partition the tensor along the dimension 0. |
|
|
|
if out_shape[0] % split_num['value'] != 0: |
|
|
|
raise ValueError("The dimension 0 of the shape: %d, is not divisible by split_num: %d." % |
|
|
|
(out_shape[0], split_num['value'])) |
|
|
|
out_shape[0] = out_shape[0] // split_num['value'] |
|
|
|
out = {'shape': out_shape, |
|
|
|
'dtype': params['dtype'], |
|
|
|
'value': None} |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class Split(PrimitiveWithInfer): |
|
|
|
""" |
|
|
|
Splits input tensor into output_num of tensors along the given axis and output numbers. |
|
|
|
|