From: @yangruoqi713 Reviewed-by: @zhang_xue_tong,@hangangqiang Signed-off-by: @zhang_xue_tongpull/13594/MERGE
| @@ -20,40 +20,22 @@ | |||
| #include "nnacl/fp16/arithmetic_fp16.h" | |||
| #include "nnacl/fp16/matmul_fp16.h" | |||
| void UpdateGruInputGateFp16(float16_t *gate_buffer, const float16_t *input, const float16_t *weight, | |||
| const float16_t *bias, int row, int deep, int col, int col_align, bool is_vec) { | |||
| for (int i = 0; i < 3; i++) { | |||
| const float16_t *weight_i = weight + deep * col * i; | |||
| const float16_t *bias_i = bias + col_align * i; | |||
| float16_t *gate = gate_buffer + row * col * i; | |||
| LstmMatMulFp16(gate, input, weight_i, bias_i, row, deep, col, is_vec); | |||
| } | |||
| } | |||
| void GruStepUnitFp16(float16_t *output, const float16_t *input, const float16_t *input_weight, | |||
| const float16_t *state_weight, const float16_t *bias, float16_t *hidden_state, | |||
| float16_t *gate_buffer, float16_t *matmul_buffer[2], const GruParameter *gru_param) { | |||
| void GruStepUnitFp16(float16_t *output, float16_t *update_gate, float16_t *reset_gate, float16_t *hidden_buffer, | |||
| const float16_t *state_weight, const float16_t *state_bias, float16_t *hidden_state, | |||
| float16_t *buffer[4], const GruParameter *gru_param) { | |||
| float16_t *packed_state = buffer[2]; | |||
| float16_t *state_gate = buffer[3]; | |||
| bool is_vec = gru_param->batch_ == 1; | |||
| // input * weight | |||
| if (is_vec) { | |||
| UpdateGruInputGateFp16(gate_buffer, input, input_weight, bias, gru_param->batch_, gru_param->input_size_, | |||
| gru_param->hidden_size_, gru_param->col_align_, is_vec); | |||
| } else { | |||
| // pack input for matmul | |||
| RowMajor2Col16MajorFp16(input, matmul_buffer[0], gru_param->batch_, gru_param->input_size_, false); | |||
| UpdateGruInputGateFp16(gate_buffer, matmul_buffer[0], input_weight, bias, gru_param->batch_, gru_param->input_size_, | |||
| gru_param->hidden_size_, gru_param->col_align_, is_vec); | |||
| } | |||
| const float16_t *state_update_weight = state_weight; | |||
| const float16_t *state_reset_weight = state_weight + gru_param->hidden_size_ * gru_param->hidden_size_; | |||
| const float16_t *state_hidden_weight = state_weight + gru_param->hidden_size_ * gru_param->hidden_size_ * 2; | |||
| float16_t *state_update_gate = gate_buffer + gru_param->batch_ * gru_param->hidden_size_ * 3; | |||
| float16_t *state_reset_gate = gate_buffer + gru_param->batch_ * gru_param->hidden_size_ * 4; | |||
| float16_t *state_hidden_buffer = gate_buffer + gru_param->batch_ * gru_param->hidden_size_ * 5; | |||
| const float16_t *state_update_bias = bias + gru_param->hidden_size_ * 3; | |||
| const float16_t *state_reset_bias = bias + gru_param->hidden_size_ * 4; | |||
| const float16_t *state_hidden_bias = bias + gru_param->hidden_size_ * 5; | |||
| float16_t *state_update_gate = state_gate; | |||
| float16_t *state_reset_gate = state_gate + gru_param->batch_ * gru_param->hidden_size_; | |||
| float16_t *state_hidden_buffer = state_gate + gru_param->batch_ * gru_param->hidden_size_ * 2; | |||
| const float16_t *state_update_bias = state_bias; | |||
| const float16_t *state_reset_bias = state_bias + gru_param->hidden_size_; | |||
| const float16_t *state_hidden_bias = state_bias + gru_param->hidden_size_ * 2; | |||
| // state * weight | |||
| if (is_vec) { | |||
| @@ -62,17 +44,15 @@ void GruStepUnitFp16(float16_t *output, const float16_t *input, const float16_t | |||
| LstmMatMulFp16(state_update_gate, hidden_state, state_update_weight, state_update_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| } else { | |||
| RowMajor2Col16MajorFp16(hidden_state, matmul_buffer[1], gru_param->batch_, gru_param->hidden_size_, false); | |||
| LstmMatMulFp16(state_reset_gate, matmul_buffer[1], state_reset_weight, state_reset_bias, gru_param->batch_, | |||
| RowMajor2Col16MajorFp16(hidden_state, packed_state, gru_param->batch_, gru_param->hidden_size_, false); | |||
| LstmMatMulFp16(state_reset_gate, packed_state, state_reset_weight, state_reset_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| LstmMatMulFp16(state_update_gate, matmul_buffer[1], state_update_weight, state_update_bias, gru_param->batch_, | |||
| LstmMatMulFp16(state_update_gate, packed_state, state_update_weight, state_update_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| } | |||
| ElementAddFp16(gate_buffer, state_update_gate, gate_buffer, gru_param->batch_ * gru_param->hidden_size_ * 2); | |||
| float16_t *update_gate = gate_buffer; | |||
| float16_t *reset_gate = gate_buffer + gru_param->batch_ * gru_param->hidden_size_; | |||
| float16_t *hidden_buffer = gate_buffer + gru_param->batch_ * gru_param->hidden_size_ * 2; | |||
| ElementAddFp16(update_gate, state_update_gate, update_gate, gru_param->batch_ * gru_param->hidden_size_); | |||
| ElementAddFp16(reset_gate, state_update_gate + gru_param->batch_ * gru_param->hidden_size_, reset_gate, | |||
| gru_param->batch_ * gru_param->hidden_size_); | |||
| // update reset_gate | |||
| SigmoidFp16(reset_gate, reset_gate, gru_param->batch_ * gru_param->hidden_size_); | |||
| @@ -85,8 +65,8 @@ void GruStepUnitFp16(float16_t *output, const float16_t *input, const float16_t | |||
| LstmMatMulFp16(state_hidden_buffer, reset_gate, state_hidden_weight, state_hidden_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| } else { | |||
| RowMajor2Col16MajorFp16(reset_gate, matmul_buffer[1], gru_param->batch_, gru_param->hidden_size_, false); | |||
| LstmMatMulFp16(state_hidden_buffer, matmul_buffer[1], state_hidden_weight, state_hidden_bias, gru_param->batch_, | |||
| RowMajor2Col16MajorFp16(reset_gate, packed_state, gru_param->batch_, gru_param->hidden_size_, false); | |||
| LstmMatMulFp16(state_hidden_buffer, packed_state, state_hidden_weight, state_hidden_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| } | |||
| ElementAddFp16(hidden_buffer, state_hidden_buffer, hidden_buffer, gru_param->batch_ * gru_param->hidden_size_); | |||
| @@ -106,16 +86,41 @@ void GruStepUnitFp16(float16_t *output, const float16_t *input, const float16_t | |||
| memcpy(output, hidden_state, gru_param->batch_ * gru_param->hidden_size_ * sizeof(float16_t)); | |||
| } | |||
| void GruUnidirectionalFp16(float16_t *output, const float16_t *packed_input, const float16_t *weight_g, | |||
| const float16_t *weight_r, const float16_t *input_bias, const float16_t *state_bias, | |||
| float16_t *hidden_state, float16_t *buffer[4], const GruParameter *gru_param, | |||
| bool is_backward) { | |||
| float16_t *gate = buffer[1]; | |||
| for (int i = 0; i < 3; i++) { | |||
| const float16_t *weight_loop = weight_g + gru_param->input_size_ * gru_param->input_col_align_ * i; | |||
| const float16_t *bias_loop = input_bias + gru_param->input_col_align_ * i; | |||
| float16_t *gate_loop = gate + gru_param->seq_len_ * gru_param->batch_ * gru_param->hidden_size_ * i; | |||
| MatMulFp16(packed_input, weight_loop, gate_loop, bias_loop, ActType_No, gru_param->input_size_, | |||
| gru_param->seq_len_ * gru_param->batch_, gru_param->hidden_size_, gru_param->hidden_size_, OutType_Nhwc); | |||
| } | |||
| float16_t *update_gate = gate; | |||
| float16_t *reset_gate = gate + gru_param->seq_len_ * gru_param->batch_ * gru_param->hidden_size_; | |||
| float16_t *hidden_buffer = gate + gru_param->seq_len_ * gru_param->batch_ * gru_param->hidden_size_ * 2; | |||
| for (int t = 0; t < gru_param->seq_len_; t++) { | |||
| int real_t = is_backward ? gru_param->seq_len_ - t - 1 : t; | |||
| float16_t *update_gate_t = update_gate + gru_param->batch_ * gru_param->hidden_size_ * real_t; | |||
| float16_t *reset_gate_t = reset_gate + gru_param->batch_ * gru_param->hidden_size_ * real_t; | |||
| float16_t *hidden_buffer_t = hidden_buffer + gru_param->batch_ * gru_param->hidden_size_ * real_t; | |||
| float16_t *output_ptr = output + real_t * gru_param->output_step_; | |||
| GruStepUnitFp16(output_ptr, update_gate_t, reset_gate_t, hidden_buffer_t, weight_r, state_bias, hidden_state, | |||
| buffer, gru_param); | |||
| } | |||
| } | |||
| void GruFp16(float16_t *output, const float16_t *input, const float16_t *weight_g, const float16_t *weight_r, | |||
| const float16_t *bias, float16_t *hidden_state, float16_t *gate_buffer, float16_t *matmul_buffer[2], | |||
| const float16_t *input_bias, const float16_t *state_bias, float16_t *hidden_state, float16_t *buffer[4], | |||
| int check_seq_len, const GruParameter *gru_param) { | |||
| // forward | |||
| for (int t = 0; t < check_seq_len; t++) { | |||
| const float16_t *input_ptr = input + t * gru_param->input_step_; | |||
| float16_t *output_ptr = output + t * gru_param->output_step_; | |||
| GruStepUnitFp16(output_ptr, input_ptr, weight_g, weight_r, bias, hidden_state, gate_buffer, matmul_buffer, | |||
| gru_param); | |||
| } | |||
| float16_t *packed_input = buffer[0]; | |||
| RowMajor2Col16MajorFp16(input, packed_input, gru_param->seq_len_ * gru_param->batch_, gru_param->input_size_, false); | |||
| GruUnidirectionalFp16(output, packed_input, weight_g, weight_r, input_bias, state_bias, hidden_state, buffer, | |||
| gru_param, false); | |||
| // zero out extra fw outputs | |||
| for (int t = check_seq_len; t < gru_param->seq_len_; t++) { | |||
| float16_t *output_ptr = output + t * gru_param->output_step_; | |||
| @@ -126,17 +131,15 @@ void GruFp16(float16_t *output, const float16_t *input, const float16_t *weight_ | |||
| // backward | |||
| if (gru_param->bidirectional_) { | |||
| const float16_t *backward_weight_g = weight_g + 3 * gru_param->col_align_ * gru_param->input_size_; | |||
| const float16_t *backward_weight_r = weight_r + 3 * gru_param->col_align_ * gru_param->hidden_size_; | |||
| const float16_t *backward_bias = bias + 6 * gru_param->hidden_size_; | |||
| const float16_t *backward_weight_g = weight_g + 3 * gru_param->input_col_align_ * gru_param->input_size_; | |||
| const float16_t *backward_weight_r = weight_r + 3 * gru_param->state_col_align_ * gru_param->hidden_size_; | |||
| const float16_t *backward_input_bias = input_bias + 3 * gru_param->input_col_align_; | |||
| const float16_t *backward_state_bias = state_bias + 3 * gru_param->state_col_align_; | |||
| float16_t *backward_output = output + gru_param->batch_ * gru_param->hidden_size_; | |||
| float16_t *backward_hidden_state = hidden_state + gru_param->batch_ * gru_param->hidden_size_; | |||
| for (int t = check_seq_len - 1; t >= 0; t--) { | |||
| const float16_t *input_ptr = input + t * gru_param->input_step_; | |||
| float16_t *output_ptr = backward_output + t * gru_param->output_step_; | |||
| GruStepUnitFp16(output_ptr, input_ptr, backward_weight_g, backward_weight_r, backward_bias, backward_hidden_state, | |||
| gate_buffer, matmul_buffer, gru_param); | |||
| } | |||
| GruUnidirectionalFp16(backward_output, packed_input, backward_weight_g, backward_weight_r, backward_input_bias, | |||
| backward_state_bias, backward_hidden_state, buffer, gru_param, true); | |||
| // zero out extra bw outputs | |||
| for (int t = gru_param->seq_len_ - 1; t >= check_seq_len; t--) { | |||
| float16_t *output_ptr = backward_output + t * gru_param->output_step_; | |||
| @@ -21,7 +21,7 @@ | |||
| extern "C" { | |||
| #endif | |||
| void GruFp16(float16_t *output, const float16_t *input, const float16_t *weight_g, const float16_t *weight_r, | |||
| const float16_t *bias, float16_t *hidden_state, float16_t *gate_buffer, float16_t *matmul_buffer[2], | |||
| const float16_t *input_bias, const float16_t *state_bias, float16_t *hidden_state, float16_t *buffer[4], | |||
| int check_seq_len, const GruParameter *gru_param); | |||
| #ifdef __cplusplus | |||
| } | |||
| @@ -20,6 +20,7 @@ | |||
| #include "nnacl/fp16/activation_fp16.h" | |||
| #include "nnacl/fp16/arithmetic_fp16.h" | |||
| #include "nnacl/fp16/matmul_fp16.h" | |||
| #include "nnacl/fp16/cast_fp16.h" | |||
| void PackLstmWeightFp32ToFp16(float16_t *dst, const float *src, int batch, int deep, int col, int col_align) { | |||
| for (int i = 0; i < batch; i++) { | |||
| @@ -37,6 +38,43 @@ void PackLstmWeightFp16(float16_t *dst, const float16_t *src, int batch, int dee | |||
| } | |||
| } | |||
| void PackLstmBiasFp32ToFp16(float16_t *dst, const float *src, int batch, int col, int col_align, | |||
| bool is_bidirectional) { | |||
| int unidirectional_batch = is_bidirectional ? batch / 2 : batch; | |||
| for (int i = 0; i < unidirectional_batch; i++) { | |||
| const float *src_batch = src + i * col; | |||
| float16_t *dst_batch = dst + i * col_align; | |||
| Float32ToFloat16(src_batch, dst_batch, col); | |||
| } | |||
| if (is_bidirectional) { | |||
| const float *backward_src = src + batch * col; | |||
| float16_t *backward_dst = dst + unidirectional_batch * col_align; | |||
| for (int i = 0; i < unidirectional_batch; i++) { | |||
| const float *backward_src_batch = backward_src + i * col; | |||
| float16_t *backward_dst_batch = backward_dst + i * col_align; | |||
| Float32ToFloat16(backward_src_batch, backward_dst_batch, col); | |||
| } | |||
| } | |||
| } | |||
| void PackLstmBiasFp16(float16_t *dst, const float16_t *src, int batch, int col, int col_align, bool is_bidirectional) { | |||
| int unidirectional_batch = is_bidirectional ? batch / 2 : batch; | |||
| for (int i = 0; i < unidirectional_batch; i++) { | |||
| const float16_t *src_batch = src + i * col; | |||
| float16_t *dst_batch = dst + i * col_align; | |||
| memcpy(dst_batch, src_batch, col * sizeof(float16_t)); | |||
| } | |||
| if (is_bidirectional) { | |||
| const float16_t *backward_src = src + batch * col; | |||
| float16_t *backward_dst = dst + unidirectional_batch * col_align; | |||
| for (int i = 0; i < unidirectional_batch; i++) { | |||
| const float16_t *backward_src_batch = backward_src + i * col; | |||
| float16_t *backward_dst_batch = backward_dst + i * col_align; | |||
| memcpy(backward_dst_batch, backward_src_batch, col * sizeof(float16_t)); | |||
| } | |||
| } | |||
| } | |||
| // input: [row, inner_size]; weight: [col, inner_size]; output: [row, col] | |||
| void MatMulAccFp16(float16_t *output, const float16_t *input, const float16_t *weight, int rows, int cols, | |||
| int inner_size) { | |||
| @@ -149,40 +187,32 @@ void UpdateLstmGateFp16(float16_t *gate_buffer, const float16_t *input, const fl | |||
| } | |||
| } | |||
| void LstmStepUnitFp16(float16_t *output, const float16_t *input, const float16_t *input_weight, | |||
| const float16_t *state_weight, const float16_t *bias, float16_t *hidden_state, | |||
| float16_t *cell_state, float16_t *gate_buffer, float16_t *state_buffer[2], | |||
| float16_t *matmul_buffer[2], const LstmParameter *lstm_param) { | |||
| void LstmStepUnitFp16(float16_t *output, float16_t *input_gate, float16_t *forget_gate, float16_t *cell_gate, | |||
| float16_t *output_gate, const float16_t *state_weight, const float16_t *state_bias, | |||
| float16_t *hidden_state, float16_t *cell_state, float16_t *buffer[6], | |||
| const LstmParameter *lstm_param) { | |||
| float16_t *packed_state = buffer[2]; | |||
| float16_t *state_gate = buffer[3]; | |||
| float16_t *cell_buffer = buffer[4]; | |||
| float16_t *hidden_buffer = buffer[5]; | |||
| bool is_vec = lstm_param->batch_ == 1; | |||
| // input * weight | |||
| if (is_vec) { | |||
| UpdateLstmGateFp16(gate_buffer, input, input_weight, bias, lstm_param->batch_, lstm_param->input_size_, | |||
| lstm_param->hidden_size_, lstm_param->col_align_, is_vec); | |||
| } else { | |||
| // pack input for matmul | |||
| RowMajor2Col16MajorFp16(input, matmul_buffer[0], lstm_param->batch_, lstm_param->input_size_, false); | |||
| UpdateLstmGateFp16(gate_buffer, matmul_buffer[0], input_weight, bias, lstm_param->batch_, lstm_param->input_size_, | |||
| lstm_param->hidden_size_, lstm_param->col_align_, is_vec); | |||
| } | |||
| // state * weight | |||
| float16_t *state_gate = gate_buffer + lstm_param->batch_ * lstm_param->hidden_size_ * 4; | |||
| const float16_t *state_bias = bias + lstm_param->col_align_ * 4; | |||
| if (is_vec) { | |||
| UpdateLstmGateFp16(state_gate, hidden_state, state_weight, state_bias, lstm_param->batch_, lstm_param->hidden_size_, | |||
| lstm_param->hidden_size_, lstm_param->col_align_, is_vec); | |||
| lstm_param->hidden_size_, lstm_param->state_col_align_, is_vec); | |||
| } else { | |||
| // pack state for matmul | |||
| RowMajor2Col16MajorFp16(hidden_state, matmul_buffer[1], lstm_param->batch_, lstm_param->hidden_size_, false); | |||
| UpdateLstmGateFp16(state_gate, matmul_buffer[1], state_weight, state_bias, lstm_param->batch_, | |||
| lstm_param->hidden_size_, lstm_param->hidden_size_, lstm_param->col_align_, is_vec); | |||
| RowMajor2Col16MajorFp16(hidden_state, packed_state, lstm_param->batch_, lstm_param->hidden_size_, false); | |||
| UpdateLstmGateFp16(state_gate, packed_state, state_weight, state_bias, lstm_param->batch_, lstm_param->hidden_size_, | |||
| lstm_param->hidden_size_, lstm_param->state_col_align_, is_vec); | |||
| } | |||
| ElementAddFp16(gate_buffer, state_gate, gate_buffer, 4 * lstm_param->batch_ * lstm_param->hidden_size_); | |||
| ElementAddFp16(input_gate, state_gate, input_gate, lstm_param->batch_ * lstm_param->hidden_size_); | |||
| ElementAddFp16(forget_gate, state_gate + lstm_param->batch_ * lstm_param->hidden_size_ * 2, forget_gate, | |||
| lstm_param->batch_ * lstm_param->hidden_size_); | |||
| ElementAddFp16(cell_gate, state_gate + lstm_param->batch_ * lstm_param->hidden_size_ * 3, cell_gate, | |||
| lstm_param->batch_ * lstm_param->hidden_size_); | |||
| ElementAddFp16(output_gate, state_gate + lstm_param->batch_ * lstm_param->hidden_size_, output_gate, | |||
| lstm_param->batch_ * lstm_param->hidden_size_); | |||
| float16_t *input_gate = gate_buffer; | |||
| float16_t *forget_gate = gate_buffer + lstm_param->batch_ * lstm_param->hidden_size_ * 2; | |||
| float16_t *cell_gate = gate_buffer + lstm_param->batch_ * lstm_param->hidden_size_ * 3; | |||
| float16_t *output_gate = gate_buffer + lstm_param->batch_ * lstm_param->hidden_size_; | |||
| // update input_gate | |||
| SigmoidFp16(input_gate, input_gate, lstm_param->batch_ * lstm_param->hidden_size_); | |||
| @@ -192,50 +222,76 @@ void LstmStepUnitFp16(float16_t *output, const float16_t *input, const float16_t | |||
| // update cell_gate | |||
| TanhFp16(cell_gate, cell_gate, lstm_param->batch_ * lstm_param->hidden_size_); | |||
| // update cell state | |||
| UpdataStateFp16(cell_state, forget_gate, input_gate, cell_gate, state_buffer[0], lstm_param->batch_, | |||
| UpdataStateFp16(cell_state, forget_gate, input_gate, cell_gate, cell_buffer, lstm_param->batch_, | |||
| lstm_param->hidden_size_, lstm_param->zoneout_cell_); | |||
| // update output_gate | |||
| SigmoidFp16(output_gate, output_gate, lstm_param->batch_ * lstm_param->hidden_size_); | |||
| // update output | |||
| UpdataOutputFp16(cell_state, output_gate, hidden_state, state_buffer[1], lstm_param->batch_, lstm_param->hidden_size_, | |||
| UpdataOutputFp16(cell_state, output_gate, hidden_state, hidden_buffer, lstm_param->batch_, lstm_param->hidden_size_, | |||
| lstm_param->zoneout_hidden_); | |||
| memcpy(output, hidden_state, lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float16_t)); | |||
| if (!(lstm_param->zoneout_cell_ >= -FLT_EPSILON && lstm_param->zoneout_cell_ <= FLT_EPSILON)) { | |||
| memcpy(cell_state, state_buffer[0], lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float16_t)); | |||
| memcpy(cell_state, cell_buffer, lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float16_t)); | |||
| } | |||
| if (!(lstm_param->zoneout_hidden_ >= -FLT_EPSILON && lstm_param->zoneout_hidden_ <= FLT_EPSILON)) { | |||
| memcpy(hidden_state, state_buffer[1], lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float16_t)); | |||
| memcpy(hidden_state, hidden_buffer, lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float16_t)); | |||
| } | |||
| } | |||
| void LstmFp16(float16_t *output, const float16_t *input, const float16_t *weight_i, const float16_t *weight_h, | |||
| const float16_t *bias, float16_t *hidden_state, float16_t *cell_state, float16_t *gate_buffer, | |||
| float16_t *state_buffer[2], float16_t *matmul_buffer[2], const LstmParameter *lstm_param) { | |||
| // forward | |||
| void LstmUnidirectionalFp16(float16_t *output, const float16_t *packed_input, const float16_t *weight_i, | |||
| const float16_t *weight_h, const float16_t *input_bias, const float16_t *state_bias, | |||
| float16_t *hidden_state, float16_t *cell_state, float16_t *buffer[6], | |||
| const LstmParameter *lstm_param, bool is_backward) { | |||
| float16_t *gate = buffer[1]; | |||
| for (int i = 0; i < 4; i++) { | |||
| const float16_t *weight_loop = weight_i + lstm_param->input_size_ * lstm_param->input_col_align_ * i; | |||
| const float16_t *bias_loop = input_bias + lstm_param->input_col_align_ * i; | |||
| float16_t *gate_loop = gate + lstm_param->seq_len_ * lstm_param->batch_ * lstm_param->hidden_size_ * i; | |||
| MatMulFp16(packed_input, weight_loop, gate_loop, bias_loop, ActType_No, lstm_param->input_size_, | |||
| lstm_param->seq_len_ * lstm_param->batch_, lstm_param->hidden_size_, lstm_param->hidden_size_, | |||
| OutType_Nhwc); | |||
| } | |||
| float16_t *input_gate = gate; | |||
| float16_t *forget_gate = gate + lstm_param->seq_len_ * lstm_param->batch_ * lstm_param->hidden_size_ * 2; | |||
| float16_t *cell_gate = gate + lstm_param->seq_len_ * lstm_param->batch_ * lstm_param->hidden_size_ * 3; | |||
| float16_t *output_gate = gate + lstm_param->seq_len_ * lstm_param->batch_ * lstm_param->hidden_size_; | |||
| for (int t = 0; t < lstm_param->seq_len_; t++) { | |||
| const float16_t *input_ptr = input + t * lstm_param->input_step_; | |||
| float16_t *output_ptr = output + t * lstm_param->output_step_; | |||
| LstmStepUnitFp16(output_ptr, input_ptr, weight_i, weight_h, bias, hidden_state, cell_state, gate_buffer, | |||
| state_buffer, matmul_buffer, lstm_param); | |||
| int real_t = is_backward ? lstm_param->seq_len_ - t - 1 : t; | |||
| float16_t *input_gate_t = input_gate + lstm_param->batch_ * lstm_param->hidden_size_ * real_t; | |||
| float16_t *forget_gate_t = forget_gate + lstm_param->batch_ * lstm_param->hidden_size_ * real_t; | |||
| float16_t *cell_gate_t = cell_gate + lstm_param->batch_ * lstm_param->hidden_size_ * real_t; | |||
| float16_t *output_gate_t = output_gate + lstm_param->batch_ * lstm_param->hidden_size_ * real_t; | |||
| float16_t *output_ptr = output + real_t * lstm_param->output_step_; | |||
| LstmStepUnitFp16(output_ptr, input_gate_t, forget_gate_t, cell_gate_t, output_gate_t, weight_h, state_bias, | |||
| hidden_state, cell_state, buffer, lstm_param); | |||
| } | |||
| } | |||
| void LstmFp16(float16_t *output, const float16_t *input, const float16_t *weight_i, const float16_t *weight_h, | |||
| const float16_t *input_bias, const float16_t *state_bias, float16_t *hidden_state, float16_t *cell_state, | |||
| float16_t *buffer[6], const LstmParameter *lstm_param) { | |||
| // forward | |||
| float16_t *packed_input = buffer[0]; | |||
| RowMajor2Col16MajorFp16(input, packed_input, lstm_param->seq_len_ * lstm_param->batch_, lstm_param->input_size_, | |||
| false); | |||
| LstmUnidirectionalFp16(output, packed_input, weight_i, weight_h, input_bias, state_bias, hidden_state, cell_state, | |||
| buffer, lstm_param, false); | |||
| // backward | |||
| if (lstm_param->bidirectional_) { | |||
| const float16_t *backward_weight_i = weight_i + 4 * lstm_param->col_align_ * lstm_param->input_size_; | |||
| const float16_t *backward_weight_h = weight_h + 4 * lstm_param->col_align_ * lstm_param->hidden_size_; | |||
| const float16_t *backward_bias = bias + 8 * lstm_param->col_align_; | |||
| const float16_t *backward_weight_i = weight_i + 4 * lstm_param->input_col_align_ * lstm_param->input_size_; | |||
| const float16_t *backward_weight_h = weight_h + 4 * lstm_param->state_col_align_ * lstm_param->hidden_size_; | |||
| const float16_t *backward_input_bias = input_bias + 4 * lstm_param->input_col_align_; | |||
| const float16_t *backward_state_bias = state_bias + 4 * lstm_param->state_col_align_; | |||
| float16_t *backward_output = output + lstm_param->batch_ * lstm_param->hidden_size_; | |||
| float16_t *backward_cell_state = cell_state + lstm_param->batch_ * lstm_param->hidden_size_; | |||
| float16_t *backward_hidden_state = hidden_state + lstm_param->batch_ * lstm_param->hidden_size_; | |||
| for (int t = lstm_param->seq_len_ - 1; t >= 0; t--) { | |||
| const float16_t *input_ptr = input + t * lstm_param->input_step_; | |||
| float16_t *output_ptr = backward_output + t * lstm_param->output_step_; | |||
| LstmStepUnitFp16(output_ptr, input_ptr, backward_weight_i, backward_weight_h, backward_bias, | |||
| backward_hidden_state, backward_cell_state, gate_buffer, state_buffer, matmul_buffer, | |||
| lstm_param); | |||
| } | |||
| LstmUnidirectionalFp16(backward_output, packed_input, backward_weight_i, backward_weight_h, backward_input_bias, | |||
| backward_state_bias, backward_hidden_state, backward_cell_state, buffer, lstm_param, true); | |||
| } | |||
| } | |||
| @@ -25,6 +25,10 @@ void PackLstmWeightFp32ToFp16(float16_t *dst, const float *src, int batch, int d | |||
| void PackLstmWeightFp16(float16_t *dst, const float16_t *src, int batch, int deep, int col, int col_align); | |||
| void PackLstmBiasFp32ToFp16(float16_t *dst, const float *src, int batch, int col, int col_align, bool is_bidirectional); | |||
| void PackLstmBiasFp16(float16_t *dst, const float16_t *src, int batch, int col, int col_align, bool is_bidirectional); | |||
| void LstmMatMulFp16(float16_t *c, const float16_t *a, const float16_t *b, const float16_t *bias, int row, int deep, | |||
| int col, bool is_vec); | |||
| @@ -36,8 +40,8 @@ void ElementMulAccFp16(const float16_t *input0, const float16_t *input1, float16 | |||
| int ElementOptMulAccFp16(const float16_t *input0, const float16_t input1, float16_t *output, const int element_size); | |||
| void LstmFp16(float16_t *output, const float16_t *input, const float16_t *weight_i, const float16_t *weight_h, | |||
| const float16_t *bias, float16_t *hidden_state, float16_t *cell_state, float16_t *gate_buffer, | |||
| float16_t *state_buffer[2], float16_t *matmul_buffer[2], const LstmParameter *lstm_param); | |||
| const float16_t *input_bias, const float16_t *state_bias, float16_t *hidden_state, float16_t *cell_state, | |||
| float16_t *buffer[6], const LstmParameter *lstm_param); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| @@ -20,40 +20,21 @@ | |||
| #include "nnacl/fp32/arithmetic_fp32.h" | |||
| #include "nnacl/fp32/matmul_fp32.h" | |||
| void UpdateGruInputGate(float *gate_buffer, const float *input, const float *weight, const float *bias, int row, | |||
| int deep, int col, int col_align, bool is_vec) { | |||
| for (int i = 0; i < 3; i++) { | |||
| const float *weight_i = weight + deep * col * i; | |||
| const float *bias_i = bias + col_align * i; | |||
| float *gate = gate_buffer + row * col * i; | |||
| LstmMatMul(gate, input, weight_i, bias_i, row, deep, col, is_vec); | |||
| } | |||
| } | |||
| void GruStepUnit(float *output, const float *input, const float *input_weight, const float *state_weight, | |||
| const float *bias, float *hidden_state, float *gate_buffer, float *matmul_buffer[2], | |||
| const GruParameter *gru_param) { | |||
| void GruStepUnit(float *output, float *update_gate, float *reset_gate, float *hidden_buffer, const float *state_weight, | |||
| const float *state_bias, float *hidden_state, float *buffer[4], const GruParameter *gru_param) { | |||
| float *packed_state = buffer[2]; | |||
| float *state_gate = buffer[3]; | |||
| bool is_vec = gru_param->batch_ == 1; | |||
| // input * weight | |||
| if (is_vec) { | |||
| UpdateGruInputGate(gate_buffer, input, input_weight, bias, gru_param->batch_, gru_param->input_size_, | |||
| gru_param->hidden_size_, gru_param->col_align_, is_vec); | |||
| } else { | |||
| // pack input for matmul | |||
| PackLstmInput(input, matmul_buffer[0], gru_param->batch_, gru_param->input_size_); | |||
| UpdateGruInputGate(gate_buffer, matmul_buffer[0], input_weight, bias, gru_param->batch_, gru_param->input_size_, | |||
| gru_param->hidden_size_, gru_param->col_align_, is_vec); | |||
| } | |||
| const float *state_update_weight = state_weight; | |||
| const float *state_reset_weight = state_weight + gru_param->hidden_size_ * gru_param->hidden_size_; | |||
| const float *state_hidden_weight = state_weight + gru_param->hidden_size_ * gru_param->hidden_size_ * 2; | |||
| float *state_update_gate = gate_buffer + gru_param->batch_ * gru_param->hidden_size_ * 3; | |||
| float *state_reset_gate = gate_buffer + gru_param->batch_ * gru_param->hidden_size_ * 4; | |||
| float *state_hidden_buffer = gate_buffer + gru_param->batch_ * gru_param->hidden_size_ * 5; | |||
| const float *state_update_bias = bias + gru_param->hidden_size_ * 3; | |||
| const float *state_reset_bias = bias + gru_param->hidden_size_ * 4; | |||
| const float *state_hidden_bias = bias + gru_param->hidden_size_ * 5; | |||
| float *state_update_gate = state_gate; | |||
| float *state_reset_gate = state_gate + gru_param->batch_ * gru_param->hidden_size_; | |||
| float *state_hidden_buffer = state_gate + gru_param->batch_ * gru_param->hidden_size_ * 2; | |||
| const float *state_update_bias = state_bias; | |||
| const float *state_reset_bias = state_bias + gru_param->hidden_size_; | |||
| const float *state_hidden_bias = state_bias + gru_param->hidden_size_ * 2; | |||
| // state * weight | |||
| if (is_vec) { | |||
| @@ -62,16 +43,15 @@ void GruStepUnit(float *output, const float *input, const float *input_weight, c | |||
| LstmMatMul(state_update_gate, hidden_state, state_update_weight, state_update_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| } else { | |||
| PackLstmInput(hidden_state, matmul_buffer[1], gru_param->batch_, gru_param->hidden_size_); | |||
| LstmMatMul(state_reset_gate, matmul_buffer[1], state_reset_weight, state_reset_bias, gru_param->batch_, | |||
| PackLstmInput(hidden_state, packed_state, gru_param->batch_, gru_param->hidden_size_); | |||
| LstmMatMul(state_reset_gate, packed_state, state_reset_weight, state_reset_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| LstmMatMul(state_update_gate, matmul_buffer[1], state_update_weight, state_update_bias, gru_param->batch_, | |||
| LstmMatMul(state_update_gate, packed_state, state_update_weight, state_update_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| } | |||
| ElementAdd(gate_buffer, state_update_gate, gate_buffer, gru_param->batch_ * gru_param->hidden_size_ * 2); | |||
| float *update_gate = gate_buffer; | |||
| float *reset_gate = gate_buffer + gru_param->batch_ * gru_param->hidden_size_; | |||
| float *hidden_buffer = gate_buffer + gru_param->batch_ * gru_param->hidden_size_ * 2; | |||
| ElementAdd(update_gate, state_update_gate, update_gate, gru_param->batch_ * gru_param->hidden_size_); | |||
| ElementAdd(reset_gate, state_update_gate + gru_param->batch_ * gru_param->hidden_size_, reset_gate, | |||
| gru_param->batch_ * gru_param->hidden_size_); | |||
| // update reset_gate | |||
| Sigmoid(reset_gate, gru_param->batch_ * gru_param->hidden_size_, reset_gate); | |||
| @@ -83,8 +63,8 @@ void GruStepUnit(float *output, const float *input, const float *input_weight, c | |||
| LstmMatMul(state_hidden_buffer, reset_gate, state_hidden_weight, state_hidden_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| } else { | |||
| PackLstmInput(reset_gate, matmul_buffer[1], gru_param->batch_, gru_param->hidden_size_); | |||
| LstmMatMul(state_hidden_buffer, matmul_buffer[1], state_hidden_weight, state_hidden_bias, gru_param->batch_, | |||
| PackLstmInput(reset_gate, packed_state, gru_param->batch_, gru_param->hidden_size_); | |||
| LstmMatMul(state_hidden_buffer, packed_state, state_hidden_weight, state_hidden_bias, gru_param->batch_, | |||
| gru_param->hidden_size_, gru_param->hidden_size_, is_vec); | |||
| } | |||
| ElementAdd(hidden_buffer, state_hidden_buffer, hidden_buffer, gru_param->batch_ * gru_param->hidden_size_); | |||
| @@ -104,15 +84,41 @@ void GruStepUnit(float *output, const float *input, const float *input_weight, c | |||
| memcpy(output, hidden_state, gru_param->batch_ * gru_param->hidden_size_ * sizeof(float)); | |||
| } | |||
| void Gru(float *output, const float *input, const float *weight_g, const float *weight_r, const float *bias, | |||
| float *hidden_state, float *gate_buffer, float *matmul_buffer[2], int check_seq_len, | |||
| void GruUnidirectional(float *output, const float *packed_input, const float *weight_g, const float *weight_r, | |||
| const float *input_bias, const float *state_bias, float *hidden_state, float *buffer[4], | |||
| const GruParameter *gru_param, bool is_backward) { | |||
| float *gate = buffer[1]; | |||
| for (int i = 0; i < 3; i++) { | |||
| const float *weight_loop = weight_g + gru_param->input_size_ * gru_param->input_col_align_ * i; | |||
| const float *bias_loop = input_bias + gru_param->input_col_align_ * i; | |||
| float *gate_loop = gate + gru_param->seq_len_ * gru_param->batch_ * gru_param->hidden_size_ * i; | |||
| MatMulOpt(packed_input, weight_loop, gate_loop, bias_loop, ActType_No, gru_param->input_size_, | |||
| gru_param->seq_len_ * gru_param->batch_, gru_param->hidden_size_, gru_param->hidden_size_, OutType_Nhwc); | |||
| } | |||
| float *update_gate = gate; | |||
| float *reset_gate = gate + gru_param->seq_len_ * gru_param->batch_ * gru_param->hidden_size_; | |||
| float *hidden_buffer = gate + gru_param->seq_len_ * gru_param->batch_ * gru_param->hidden_size_ * 2; | |||
| for (int t = 0; t < gru_param->seq_len_; t++) { | |||
| int real_t = is_backward ? gru_param->seq_len_ - t - 1 : t; | |||
| float *update_gate_t = update_gate + gru_param->batch_ * gru_param->hidden_size_ * real_t; | |||
| float *reset_gate_t = reset_gate + gru_param->batch_ * gru_param->hidden_size_ * real_t; | |||
| float *hidden_buffer_t = hidden_buffer + gru_param->batch_ * gru_param->hidden_size_ * real_t; | |||
| float *output_ptr = output + real_t * gru_param->output_step_; | |||
| GruStepUnit(output_ptr, update_gate_t, reset_gate_t, hidden_buffer_t, weight_r, state_bias, hidden_state, buffer, | |||
| gru_param); | |||
| } | |||
| } | |||
| void Gru(float *output, const float *input, const float *weight_g, const float *weight_r, const float *input_bias, | |||
| const float *state_bias, float *hidden_state, float *buffer[4], int check_seq_len, | |||
| const GruParameter *gru_param) { | |||
| // forward | |||
| for (int t = 0; t < check_seq_len; t++) { | |||
| const float *input_ptr = input + t * gru_param->input_step_; | |||
| float *output_ptr = output + t * gru_param->output_step_; | |||
| GruStepUnit(output_ptr, input_ptr, weight_g, weight_r, bias, hidden_state, gate_buffer, matmul_buffer, gru_param); | |||
| } | |||
| float *packed_input = buffer[0]; | |||
| PackLstmInput(input, packed_input, gru_param->seq_len_ * gru_param->batch_, gru_param->input_size_); | |||
| GruUnidirectional(output, packed_input, weight_g, weight_r, input_bias, state_bias, hidden_state, buffer, gru_param, | |||
| false); | |||
| // zero out extra fw outputs | |||
| for (int t = check_seq_len; t < gru_param->seq_len_; t++) { | |||
| float *output_ptr = output + t * gru_param->output_step_; | |||
| @@ -123,17 +129,16 @@ void Gru(float *output, const float *input, const float *weight_g, const float * | |||
| // backward | |||
| if (gru_param->bidirectional_) { | |||
| const float *backward_weight_g = weight_g + 3 * gru_param->col_align_ * gru_param->input_size_; | |||
| const float *backward_weight_r = weight_r + 3 * gru_param->col_align_ * gru_param->hidden_size_; | |||
| const float *backward_bias = bias + 6 * gru_param->hidden_size_; | |||
| const float *backward_weight_g = weight_g + 3 * gru_param->input_col_align_ * gru_param->input_size_; | |||
| const float *backward_weight_r = weight_r + 3 * gru_param->state_col_align_ * gru_param->hidden_size_; | |||
| const float *backward_input_bias = input_bias + 3 * gru_param->input_col_align_; | |||
| const float *backward_state_bias = state_bias + 3 * gru_param->state_col_align_; | |||
| float *backward_output = output + gru_param->batch_ * gru_param->hidden_size_; | |||
| float *backward_hidden_state = hidden_state + gru_param->batch_ * gru_param->hidden_size_; | |||
| for (int t = check_seq_len - 1; t >= 0; t--) { | |||
| const float *input_ptr = input + t * gru_param->input_step_; | |||
| float *output_ptr = backward_output + t * gru_param->output_step_; | |||
| GruStepUnit(output_ptr, input_ptr, backward_weight_g, backward_weight_r, backward_bias, backward_hidden_state, | |||
| gate_buffer, matmul_buffer, gru_param); | |||
| } | |||
| GruUnidirectional(backward_output, packed_input, backward_weight_g, backward_weight_r, backward_input_bias, | |||
| backward_state_bias, backward_hidden_state, buffer, gru_param, true); | |||
| // zero out extra bw outputs | |||
| for (int t = gru_param->seq_len_ - 1; t >= check_seq_len; t--) { | |||
| float *output_ptr = backward_output + t * gru_param->output_step_; | |||
| @@ -20,8 +20,8 @@ | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| void Gru(float *output, const float *input, const float *weight_g, const float *weight_r, const float *bias, | |||
| float *hidden_state, float *gate_buffer, float *matmul_buffer[2], int check_seq_len, | |||
| void Gru(float *output, const float *input, const float *weight_g, const float *weight_r, const float *input_bias, | |||
| const float *state_bias, float *hidden_state, float *buffer[4], int check_seq_len, | |||
| const GruParameter *gru_parm); | |||
| #ifdef __cplusplus | |||
| } | |||
| @@ -63,37 +63,6 @@ void PackLstmInput(const float *src, float *dst, int row, int deep) { | |||
| #endif | |||
| } | |||
| // input: [row, inner_size]; weight: [col, inner_size]; output: [row, col] | |||
| void MatMulAcc(float *output, const float *input, const float *weight, int rows, int cols, int inner_size) { | |||
| for (int r = 0; r < rows; r++) { | |||
| for (int c = 0; c < cols; c++) { | |||
| float res = 0; | |||
| const float *input_col = input + r * inner_size; | |||
| const float *weight_col = weight + c * inner_size; | |||
| int index = 0; | |||
| #ifdef ENABLE_ARM | |||
| float32x4_t out = vdupq_n_f32(0.0f); | |||
| for (; index <= inner_size - 4; index += 4) { | |||
| float32x4_t in_0 = vld1q_f32(input_col + index); | |||
| float32x4_t in_1 = vld1q_f32(weight_col + index); | |||
| out = vmlaq_f32(out, in_1, in_0); | |||
| } | |||
| #ifdef ENABLE_ARM64 | |||
| res += vaddvq_f32(out); | |||
| #else | |||
| float32x2_t add2 = vadd_f32(vget_low_f32(out), vget_high_f32(out)); | |||
| float32x2_t add4 = vpadd_f32(add2, add2); | |||
| res += vget_lane_f32(add4, 0); | |||
| #endif | |||
| #endif | |||
| for (; index < inner_size; index++) { | |||
| res += input_col[index] * weight_col[index]; | |||
| } | |||
| output[r * cols + c] += res; | |||
| } | |||
| } | |||
| } | |||
| void LstmMatMul(float *c, const float *a, const float *b, const float *bias, int row, int deep, int col, bool is_vec) { | |||
| if (is_vec) { | |||
| MatVecMulFp32(a, b, c, bias, ActType_No, deep, col); | |||
| @@ -182,7 +151,11 @@ void UpdateLstmGate(float *gate_buffer, const float *input, const float *weight, | |||
| void LstmStepUnit(float *output, float *input_gate, float *forget_gate, float *cell_gate, float *output_gate, | |||
| const float *state_weight, const float *state_bias, float *hidden_state, float *cell_state, | |||
| float *state_gate, float *state_buffer[2], float *packed_state, const LstmParameter *lstm_param) { | |||
| float *buffer[6], const LstmParameter *lstm_param) { | |||
| float *packed_state = buffer[2]; | |||
| float *state_gate = buffer[3]; | |||
| float *cell_buffer = buffer[4]; | |||
| float *hidden_buffer = buffer[5]; | |||
| bool is_vec = lstm_param->batch_ == 1; | |||
| // state * weight | |||
| if (is_vec) { | |||
| @@ -211,31 +184,29 @@ void LstmStepUnit(float *output, float *input_gate, float *forget_gate, float *c | |||
| // update cell_gate | |||
| Tanh(cell_gate, lstm_param->batch_ * lstm_param->hidden_size_, cell_gate); | |||
| // update cell state | |||
| UpdataState(cell_state, forget_gate, input_gate, cell_gate, state_buffer[0], lstm_param->batch_, | |||
| lstm_param->hidden_size_, lstm_param->zoneout_cell_); | |||
| UpdataState(cell_state, forget_gate, input_gate, cell_gate, cell_buffer, lstm_param->batch_, lstm_param->hidden_size_, | |||
| lstm_param->zoneout_cell_); | |||
| // update output_gate | |||
| Sigmoid(output_gate, lstm_param->batch_ * lstm_param->hidden_size_, output_gate); | |||
| // update output | |||
| UpdataOutput(cell_state, output_gate, hidden_state, state_buffer[1], lstm_param->batch_, lstm_param->hidden_size_, | |||
| UpdataOutput(cell_state, output_gate, hidden_state, hidden_buffer, lstm_param->batch_, lstm_param->hidden_size_, | |||
| lstm_param->zoneout_hidden_); | |||
| memcpy(output, hidden_state, lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float)); | |||
| if (!(lstm_param->zoneout_cell_ >= -FLT_EPSILON && lstm_param->zoneout_cell_ <= FLT_EPSILON)) { | |||
| memcpy(cell_state, state_buffer[0], lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float)); | |||
| memcpy(cell_state, cell_buffer, lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float)); | |||
| } | |||
| if (!(lstm_param->zoneout_hidden_ >= -FLT_EPSILON && lstm_param->zoneout_hidden_ <= FLT_EPSILON)) { | |||
| memcpy(hidden_state, state_buffer[1], lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float)); | |||
| memcpy(hidden_state, hidden_buffer, lstm_param->batch_ * lstm_param->hidden_size_ * sizeof(float)); | |||
| } | |||
| } | |||
| void LstmUnidirectional(float *output, const float *packed_input, const float *weight_i, const float *weight_h, | |||
| const float *input_bias, const float *state_bias, float *hidden_state, float *cell_state, | |||
| float *state_buffer[2], float *buffer[4], const LstmParameter *lstm_param, bool is_backward) { | |||
| float *buffer[6], const LstmParameter *lstm_param, bool is_backward) { | |||
| float *gate = buffer[1]; | |||
| float *packed_state = buffer[2]; | |||
| float *state_gate = buffer[3]; | |||
| for (int i = 0; i < 4; i++) { | |||
| const float *weight_loop = weight_i + lstm_param->input_size_ * lstm_param->input_col_align_ * i; | |||
| const float *bias_loop = input_bias + lstm_param->input_col_align_ * i; | |||
| @@ -257,18 +228,18 @@ void LstmUnidirectional(float *output, const float *packed_input, const float *w | |||
| float *output_gate_t = output_gate + lstm_param->batch_ * lstm_param->hidden_size_ * real_t; | |||
| float *output_ptr = output + real_t * lstm_param->output_step_; | |||
| LstmStepUnit(output_ptr, input_gate_t, forget_gate_t, cell_gate_t, output_gate_t, weight_h, state_bias, | |||
| hidden_state, cell_state, state_gate, state_buffer, packed_state, lstm_param); | |||
| hidden_state, cell_state, buffer, lstm_param); | |||
| } | |||
| } | |||
| void Lstm(float *output, const float *input, const float *weight_i, const float *weight_h, const float *input_bias, | |||
| const float *state_bias, float *hidden_state, float *cell_state, float *state_buffer[2], float *buffer[4], | |||
| const float *state_bias, float *hidden_state, float *cell_state, float *buffer[6], | |||
| const LstmParameter *lstm_param) { | |||
| // forward | |||
| float *packed_input = buffer[0]; | |||
| PackLstmInput(input, packed_input, lstm_param->seq_len_ * lstm_param->batch_, lstm_param->input_size_); | |||
| LstmUnidirectional(output, packed_input, weight_i, weight_h, input_bias, state_bias, hidden_state, cell_state, | |||
| state_buffer, buffer, lstm_param, false); | |||
| LstmUnidirectional(output, packed_input, weight_i, weight_h, input_bias, state_bias, hidden_state, cell_state, buffer, | |||
| lstm_param, false); | |||
| // backward | |||
| if (lstm_param->bidirectional_) { | |||
| @@ -281,7 +252,6 @@ void Lstm(float *output, const float *input, const float *weight_i, const float | |||
| float *backward_hidden_state = hidden_state + lstm_param->batch_ * lstm_param->hidden_size_; | |||
| LstmUnidirectional(backward_output, packed_input, backward_weight_i, backward_weight_h, backward_input_bias, | |||
| backward_state_bias, backward_hidden_state, backward_cell_state, state_buffer, buffer, | |||
| lstm_param, true); | |||
| backward_state_bias, backward_hidden_state, backward_cell_state, buffer, lstm_param, true); | |||
| } | |||
| } | |||
| @@ -34,7 +34,7 @@ void ElementMulAcc(const float *input0, const float *input1, float *output, int | |||
| int ElementOptMulAcc(const float *input0, const float input1, float *output, const int element_size); | |||
| void Lstm(float *output, const float *input, const float *weight_i, const float *weight_h, const float *input_bias, | |||
| const float *state_bias, float *hidden_state, float *cell_state, float *state_buffer[2], float *buffer[4], | |||
| const float *state_bias, float *hidden_state, float *cell_state, float *buffer[6], | |||
| const LstmParameter *lstm_param); | |||
| #ifdef __cplusplus | |||
| } | |||
| @@ -27,11 +27,12 @@ typedef struct GruParameter { | |||
| int seq_len_; | |||
| int batch_; | |||
| // other parameter | |||
| int input_step_; | |||
| int output_step_; | |||
| bool bidirectional_; | |||
| int col_align_; | |||
| int row_align_; | |||
| int input_row_align_; | |||
| int input_col_align_; | |||
| int state_row_align_; | |||
| int state_col_align_; | |||
| } GruParameter; | |||
| #endif // MINDSPORE_LITE_NNACL_GRU_PARAMETER_H_ | |||
| @@ -27,7 +27,6 @@ typedef struct LstmParameter { | |||
| int seq_len_; | |||
| int batch_; | |||
| // other parameter | |||
| int input_step_; | |||
| int output_step_; | |||
| bool bidirectional_; | |||
| float zoneout_cell_; | |||
| @@ -36,8 +35,6 @@ typedef struct LstmParameter { | |||
| int input_col_align_; | |||
| int state_row_align_; | |||
| int state_col_align_; | |||
| int col_align_; | |||
| int row_align_; | |||
| } LstmParameter; | |||
| #endif // MINDSPORE_LITE_NNACL_LSTM_PARAMETER_H_ | |||
| @@ -30,33 +30,31 @@ using mindspore::schema::PrimitiveType_GRU; | |||
| namespace mindspore::kernel { | |||
| void GruFp16CPUKernel::FreeTmpBuffer() { | |||
| if (!is_vec_ || in_tensors_[1]->data_type() == kNumberTypeFloat32) { | |||
| if (weight_g_ptr_ != nullptr) { | |||
| free(weight_g_ptr_); | |||
| weight_g_ptr_ = nullptr; | |||
| } | |||
| if (weight_g_ptr_ != nullptr) { | |||
| free(weight_g_ptr_); | |||
| weight_g_ptr_ = nullptr; | |||
| } | |||
| if (!is_vec_ || in_tensors_[2]->data_type() == kNumberTypeFloat32) { | |||
| if (weight_r_ptr_ != nullptr) { | |||
| free(weight_r_ptr_); | |||
| weight_r_ptr_ = nullptr; | |||
| } | |||
| if (input_bias_ != nullptr) { | |||
| free(input_bias_); | |||
| input_bias_ = nullptr; | |||
| } | |||
| if (!is_vec_ || in_tensors_[3]->data_type() == kNumberTypeFloat32) { | |||
| if (bias_ptr_ != nullptr) { | |||
| free(bias_ptr_); | |||
| bias_ptr_ = nullptr; | |||
| } | |||
| if (weight_r_ptr_ != nullptr) { | |||
| free(weight_r_ptr_); | |||
| weight_r_ptr_ = nullptr; | |||
| } | |||
| if (state_bias_ != nullptr) { | |||
| free(state_bias_); | |||
| state_bias_ = nullptr; | |||
| } | |||
| } | |||
| void GruFp16CPUKernel::FreeRunBuffer() { | |||
| context_->allocator->Free(gate_buffer_); | |||
| context_->allocator->Free(buffer_[0]); | |||
| context_->allocator->Free(buffer_[1]); | |||
| if (!is_vec_) { | |||
| for (int i = 0; i < 2; i++) { | |||
| context_->allocator->Free(matmul_buffer_[i]); | |||
| } | |||
| context_->allocator->Free(buffer_[2]); | |||
| } | |||
| context_->allocator->Free(buffer_[3]); | |||
| } | |||
| int GruFp16CPUKernel::InitParam() { | |||
| @@ -71,105 +69,120 @@ int GruFp16CPUKernel::InitParam() { | |||
| MS_ASSERT(weight_g != nullptr); | |||
| std::vector<int> w_shape = weight_g->shape(); | |||
| gru_param_->hidden_size_ = w_shape.at(1) / 3; | |||
| gru_param_->input_step_ = gru_param_->batch_ * gru_param_->input_size_; | |||
| weight_batch_ = gru_param_->bidirectional_ ? 6 : 3; | |||
| gru_param_->output_step_ = gru_param_->bidirectional_ ? 2 * gru_param_->batch_ * gru_param_->hidden_size_ | |||
| : gru_param_->batch_ * gru_param_->hidden_size_; | |||
| gru_param_->input_row_align_ = UP_ROUND(gru_param_->seq_len_ * gru_param_->batch_, C16NUM); | |||
| gru_param_->input_col_align_ = UP_ROUND(gru_param_->hidden_size_, C8NUM); | |||
| is_vec_ = gru_param_->batch_ == 1; | |||
| gru_param_->row_align_ = is_vec_ ? gru_param_->batch_ : UP_ROUND(gru_param_->batch_, C16NUM); | |||
| gru_param_->col_align_ = is_vec_ ? gru_param_->hidden_size_ : UP_ROUND(gru_param_->hidden_size_, C8NUM); | |||
| gru_param_->state_row_align_ = is_vec_ ? gru_param_->batch_ : UP_ROUND(gru_param_->batch_, C16NUM); | |||
| gru_param_->state_col_align_ = is_vec_ ? gru_param_->hidden_size_ : UP_ROUND(gru_param_->hidden_size_, C8NUM); | |||
| return RET_OK; | |||
| } | |||
| int GruFp16CPUKernel::InitWeight(const lite::Tensor *tensor, float16_t *ptr, int deep) { | |||
| auto weight_batch = gru_param_->bidirectional_ ? 6 : 3; | |||
| if (tensor->data_type() == kNumberTypeFloat32) { | |||
| auto weight_data = reinterpret_cast<float *>(tensor->data_c()); | |||
| is_vec_ ? Float32ToFloat16(weight_data, ptr, tensor->ElementsNum()) | |||
| : PackLstmWeightFp32ToFp16(ptr, weight_data, weight_batch, deep, gru_param_->hidden_size_, | |||
| gru_param_->col_align_); | |||
| } else if (tensor->data_type() == kNumberTypeFloat16) { | |||
| auto weight_data = reinterpret_cast<float16_t *>(tensor->data_c()); | |||
| if (is_vec_) { | |||
| ptr = weight_data; | |||
| } else { | |||
| PackLstmWeightFp16(ptr, weight_data, weight_batch, deep, gru_param_->hidden_size_, gru_param_->col_align_); | |||
| } | |||
| int GruFp16CPUKernel::InitInputWeightBias() { | |||
| // malloc and init input * weight right matrix buffer | |||
| // input -- row: seq_len * batch; col: input_size | |||
| // weight -- row: hidden_size; col: input_size, need transpose | |||
| // result -- row: seq_len * batch; col: hidden_size | |||
| auto weight_g = in_tensors_.at(1); | |||
| MS_ASSERT(weight_g != nullptr); | |||
| weight_g_ptr_ = reinterpret_cast<float16_t *>( | |||
| malloc(weight_batch_ * gru_param_->input_col_align_ * gru_param_->input_size_ * sizeof(float16_t))); | |||
| if (weight_g_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc weight_g_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| if (weight_g->data_type() == kNumberTypeFloat32) { | |||
| PackLstmWeightFp32ToFp16(weight_g_ptr_, reinterpret_cast<float *>(weight_g->data_c()), weight_batch_, | |||
| gru_param_->input_size_, gru_param_->hidden_size_, gru_param_->input_col_align_); | |||
| } else if (weight_g->data_type() == kNumberTypeFloat16) { | |||
| PackLstmWeightFp16(weight_g_ptr_, reinterpret_cast<float16_t *>(weight_g->data_c()), weight_batch_, | |||
| gru_param_->input_size_, gru_param_->hidden_size_, gru_param_->input_col_align_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of weight tensor for lstm."; | |||
| MS_LOG(ERROR) << "Unsupported data type of weight_g tensor for gru."; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int GruFp16CPUKernel::InitWeightBias() { | |||
| auto weight_batch = gru_param_->bidirectional_ ? 6 : 3; | |||
| // malloc and init input * weight right matrix buffer | |||
| auto weight_g = in_tensors_.at(1); | |||
| MS_ASSERT(weight_g != nullptr); | |||
| if (!is_vec_ || weight_g->data_type() == kNumberTypeFloat32) { | |||
| weight_g_ptr_ = reinterpret_cast<float16_t *>( | |||
| malloc(weight_batch * gru_param_->col_align_ * gru_param_->input_size_ * sizeof(float16_t))); | |||
| if (weight_g_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc weight_g_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| // input bias | |||
| auto bias = in_tensors_.at(3); | |||
| MS_ASSERT(bias != nullptr); | |||
| input_bias_ = reinterpret_cast<float16_t *>(malloc(weight_batch_ * gru_param_->input_col_align_ * sizeof(float16_t))); | |||
| if (input_bias_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc input_bias_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| auto ret = InitWeight(weight_g, weight_g_ptr_, gru_param_->input_size_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel init weight_g failed."; | |||
| memset(input_bias_, 0, weight_batch_ * gru_param_->input_col_align_ * sizeof(float16_t)); | |||
| if (bias->data_type() == kNumberTypeFloat32) { | |||
| PackLstmBiasFp32ToFp16(input_bias_, reinterpret_cast<float *>(bias->data_c()), weight_batch_, | |||
| gru_param_->hidden_size_, gru_param_->input_col_align_, gru_param_->bidirectional_); | |||
| } else if (bias->data_type() == kNumberTypeFloat16) { | |||
| PackLstmBiasFp16(input_bias_, reinterpret_cast<float16_t *>(bias->data_c()), weight_batch_, | |||
| gru_param_->hidden_size_, gru_param_->input_col_align_, gru_param_->bidirectional_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of bias tensor for gru."; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| // malloc and init state * weight right matrix buffer | |||
| int GruFp16CPUKernel::InitStateWeightBias() { | |||
| // malloc and init state * weight right matrix buffer, state * weight will be executed seq_len_ times. | |||
| // state -- row: batch; col: hidden_size | |||
| // weight -- row: hidden_size; col: hidden_size, need transpose | |||
| // result -- row: batch; col: hidden_size | |||
| auto weight_r = in_tensors_.at(2); | |||
| MS_ASSERT(weight_r != nullptr); | |||
| if (!is_vec_ || weight_r->data_type() == kNumberTypeFloat32) { | |||
| weight_r_ptr_ = reinterpret_cast<float16_t *>( | |||
| malloc(weight_batch * gru_param_->col_align_ * gru_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (weight_r_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc weight_r_ptr_ error."; | |||
| weight_r_ptr_ = reinterpret_cast<float16_t *>( | |||
| malloc(weight_batch_ * gru_param_->state_col_align_ * gru_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (weight_r_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc weight_r_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| if (!is_vec_) { | |||
| if (weight_r->data_type() == kNumberTypeFloat32) { | |||
| PackLstmWeightFp32ToFp16(weight_r_ptr_, reinterpret_cast<float *>(weight_r->data_c()), weight_batch_, | |||
| gru_param_->hidden_size_, gru_param_->hidden_size_, gru_param_->state_col_align_); | |||
| } else if (weight_r->data_type() == kNumberTypeFloat16) { | |||
| PackLstmWeightFp16(weight_r_ptr_, reinterpret_cast<float16_t *>(weight_r->data_c()), weight_batch_, | |||
| gru_param_->hidden_size_, gru_param_->hidden_size_, gru_param_->state_col_align_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of weight_r tensor for gru."; | |||
| return RET_ERROR; | |||
| } | |||
| } else { | |||
| if (weight_r->data_type() == kNumberTypeFloat32) { | |||
| Float32ToFloat16(reinterpret_cast<float *>(weight_r->data_c()), weight_r_ptr_, weight_r->ElementsNum()); | |||
| } else if (weight_r->data_type() == kNumberTypeFloat16) { | |||
| memcpy(weight_r_ptr_, reinterpret_cast<float16_t *>(weight_r->data_c()), weight_r->ElementsNum()); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of weight_r tensor for gru."; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| ret = InitWeight(weight_r, weight_r_ptr_, gru_param_->hidden_size_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel init weight_r failed."; | |||
| return RET_ERROR; | |||
| } | |||
| int bias_batch = gru_param_->bidirectional_ ? 12 : 6; | |||
| // state bias | |||
| auto bias = in_tensors_.at(3); | |||
| MS_ASSERT(bias != nullptr); | |||
| if (!is_vec_ || bias->data_type() == kNumberTypeFloat32) { | |||
| bias_ptr_ = reinterpret_cast<float16_t *>(malloc(bias_batch * gru_param_->col_align_ * sizeof(float16_t))); | |||
| if (bias_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc bias_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(bias_ptr_, 0, bias_batch * gru_param_->col_align_ * sizeof(float16_t)); | |||
| state_bias_ = reinterpret_cast<float16_t *>(malloc(weight_batch_ * gru_param_->state_col_align_ * sizeof(float16_t))); | |||
| if (state_bias_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc state_bias_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(state_bias_, 0, weight_batch_ * gru_param_->state_col_align_ * sizeof(float16_t)); | |||
| if (bias->data_type() == kNumberTypeFloat32) { | |||
| auto bias_data = reinterpret_cast<float *>(bias->data_c()); | |||
| for (int i = 0; i < bias_batch; i++) { | |||
| auto src_batch = bias_data + i * gru_param_->hidden_size_; | |||
| auto dst_batch = bias_ptr_ + i * gru_param_->col_align_; | |||
| Float32ToFloat16(src_batch, dst_batch, gru_param_->hidden_size_); | |||
| } | |||
| auto state_bias_data = reinterpret_cast<float *>(bias->data_c()) + 3 * gru_param_->hidden_size_; | |||
| PackLstmBiasFp32ToFp16(state_bias_, state_bias_data, weight_batch_, gru_param_->hidden_size_, | |||
| gru_param_->state_col_align_, gru_param_->bidirectional_); | |||
| } else if (bias->data_type() == kNumberTypeFloat16) { | |||
| auto bias_data = reinterpret_cast<float16_t *>(bias->data_c()); | |||
| if (is_vec_) { | |||
| bias_ptr_ = bias_data; | |||
| } else { | |||
| for (int i = 0; i < bias_batch; i++) { | |||
| auto src_batch = bias_data + i * gru_param_->hidden_size_; | |||
| auto dst_batch = bias_ptr_ + i * gru_param_->col_align_; | |||
| memcpy(dst_batch, src_batch, gru_param_->hidden_size_ * sizeof(float16_t)); | |||
| } | |||
| } | |||
| auto state_bias_data = reinterpret_cast<float16_t *>(bias->data_c()) + 3 * gru_param_->hidden_size_; | |||
| PackLstmBiasFp16(state_bias_, state_bias_data, weight_batch_, gru_param_->hidden_size_, | |||
| gru_param_->state_col_align_, gru_param_->bidirectional_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of bias tensor for lstm."; | |||
| MS_LOG(ERROR) << "Unsupported data type of bias tensor for gru."; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| @@ -190,9 +203,16 @@ int GruFp16CPUKernel::ReSize() { | |||
| } | |||
| FreeTmpBuffer(); | |||
| ret = InitWeightBias(); | |||
| ret = InitInputWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel InitWeightBias error."; | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel InitInputWeightBias error."; | |||
| FreeTmpBuffer(); | |||
| return RET_ERROR; | |||
| } | |||
| ret = InitStateWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel InitStateWeightBias error."; | |||
| FreeTmpBuffer(); | |||
| return RET_ERROR; | |||
| } | |||
| @@ -200,26 +220,36 @@ int GruFp16CPUKernel::ReSize() { | |||
| } | |||
| int GruFp16CPUKernel::MallocRunBuffer() { | |||
| if (!is_vec_) { | |||
| matmul_buffer_[0] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(3 * gru_param_->row_align_ * gru_param_->input_size_ * sizeof(float16_t))); | |||
| if (matmul_buffer_[0] == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc input * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| for (int i = 0; i < 4; i++) { | |||
| buffer_[i] = nullptr; | |||
| } | |||
| buffer_[0] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(gru_param_->input_row_align_ * gru_param_->input_size_ * sizeof(float16_t))); | |||
| if (buffer_[0] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc input * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| matmul_buffer_[1] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(3 * gru_param_->row_align_ * gru_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (matmul_buffer_[1] == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc state * weight left matirx error."; | |||
| buffer_[1] = reinterpret_cast<float16_t *>(context_->allocator->Malloc(3 * gru_param_->seq_len_ * gru_param_->batch_ * | |||
| gru_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (buffer_[1] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc input * weight result matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| if (!is_vec_) { | |||
| buffer_[2] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(gru_param_->state_row_align_ * gru_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (buffer_[2] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc state * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| gate_buffer_ = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(4 * gru_param_->batch_ * gru_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (gate_buffer_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruFp16CPUKernel malloc gate_buffer error."; | |||
| buffer_[3] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(3 * gru_param_->batch_ * gru_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (buffer_[3] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc state gate buffer error."; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| @@ -255,11 +285,10 @@ int GruFp16CPUKernel::Run() { | |||
| } | |||
| MS_ASSERT(weight_g_ptr_ != nullptr); | |||
| MS_ASSERT(weight_r_ptr_ != nullptr); | |||
| MS_ASSERT(bias_ptr_ != nullptr); | |||
| MS_ASSERT(gate_buffer_ != nullptr); | |||
| GruFp16(output_ptr, input_ptr, weight_g_ptr_, weight_r_ptr_, bias_ptr_, | |||
| reinterpret_cast<float16_t *>(output_hidden_state->data_c()), gate_buffer_, matmul_buffer_, check_seq_len, | |||
| gru_param_); | |||
| MS_ASSERT(input_bias_ != nullptr); | |||
| MS_ASSERT(state_bias_ != nullptr); | |||
| GruFp16(output_ptr, input_ptr, weight_g_ptr_, weight_r_ptr_, input_bias_, state_bias_, | |||
| reinterpret_cast<float16_t *>(output_hidden_state->data_c()), buffer_, check_seq_len, gru_param_); | |||
| FreeRunBuffer(); | |||
| return RET_OK; | |||
| } | |||
| @@ -38,15 +38,16 @@ class GruFp16CPUKernel : public LiteKernel { | |||
| void FreeTmpBuffer(); | |||
| void FreeRunBuffer(); | |||
| int InitParam(); | |||
| int InitWeight(const lite::Tensor *tensor, float16_t *ptr, int deep); | |||
| int InitWeightBias(); | |||
| int InitInputWeightBias(); | |||
| int InitStateWeightBias(); | |||
| int MallocRunBuffer(); | |||
| float16_t *gate_buffer_ = nullptr; | |||
| float16_t *weight_g_ptr_ = nullptr; | |||
| float16_t *weight_r_ptr_ = nullptr; | |||
| float16_t *bias_ptr_ = nullptr; | |||
| float16_t *matmul_buffer_[2]; | |||
| float16_t *input_bias_ = nullptr; | |||
| float16_t *state_bias_ = nullptr; | |||
| float16_t *buffer_[4]; | |||
| int weight_batch_ = 0; | |||
| bool is_vec_ = false; | |||
| GruParameter *gru_param_ = nullptr; | |||
| }; | |||
| @@ -31,35 +31,36 @@ using mindspore::schema::PrimitiveType_LSTM; | |||
| namespace mindspore::kernel { | |||
| void LstmFp16CPUKernel::FreeTmpBuffer() { | |||
| if (!is_vec_ || in_tensors_[1]->data_type() == kNumberTypeFloat32) { | |||
| if (weight_i_ptr_ != nullptr) { | |||
| free(weight_i_ptr_); | |||
| weight_i_ptr_ = nullptr; | |||
| } | |||
| if (weight_i_ptr_ != nullptr) { | |||
| free(weight_i_ptr_); | |||
| weight_i_ptr_ = nullptr; | |||
| } | |||
| if (!is_vec_ || in_tensors_[2]->data_type() == kNumberTypeFloat32) { | |||
| if (weight_h_ptr_ != nullptr) { | |||
| free(weight_h_ptr_); | |||
| weight_h_ptr_ = nullptr; | |||
| } | |||
| if (input_bias_ != nullptr) { | |||
| free(input_bias_); | |||
| input_bias_ = nullptr; | |||
| } | |||
| if (!is_vec_ || in_tensors_[3]->data_type() == kNumberTypeFloat32) { | |||
| if (bias_ptr_ != nullptr) { | |||
| free(bias_ptr_); | |||
| bias_ptr_ = nullptr; | |||
| } | |||
| if (weight_h_ptr_ != nullptr) { | |||
| free(weight_h_ptr_); | |||
| weight_h_ptr_ = nullptr; | |||
| } | |||
| if (state_bias_ != nullptr) { | |||
| free(state_bias_); | |||
| state_bias_ = nullptr; | |||
| } | |||
| } | |||
| void LstmFp16CPUKernel::FreeRunBuffer() { | |||
| context_->allocator->Free(gate_buffer_); | |||
| for (int i = 0; i < 2; i++) { | |||
| context_->allocator->Free(state_buffer_[i]); | |||
| } | |||
| context_->allocator->Free(buffer_[0]); | |||
| context_->allocator->Free(buffer_[1]); | |||
| if (!is_vec_) { | |||
| for (int i = 0; i < 2; i++) { | |||
| context_->allocator->Free(matmul_buffer_[i]); | |||
| } | |||
| context_->allocator->Free(buffer_[2]); | |||
| } | |||
| context_->allocator->Free(buffer_[3]); | |||
| if (!(lstm_param_->zoneout_cell_ >= -FLT_EPSILON && lstm_param_->zoneout_cell_ <= FLT_EPSILON)) { | |||
| context_->allocator->Free(buffer_[4]); | |||
| } | |||
| if (!(lstm_param_->zoneout_hidden_ >= -FLT_EPSILON && lstm_param_->zoneout_hidden_ <= FLT_EPSILON)) { | |||
| context_->allocator->Free(buffer_[5]); | |||
| } | |||
| } | |||
| @@ -76,102 +77,119 @@ int LstmFp16CPUKernel::InitParam() { | |||
| std::vector<int> w_shape = weight_i->shape(); | |||
| lstm_param_->hidden_size_ = w_shape.at(1) / 4; | |||
| lstm_param_->input_step_ = lstm_param_->batch_ * lstm_param_->input_size_; | |||
| lstm_param_->output_step_ = lstm_param_->bidirectional_ ? 2 * lstm_param_->batch_ * lstm_param_->hidden_size_ | |||
| : lstm_param_->batch_ * lstm_param_->hidden_size_; | |||
| weight_batch_ = lstm_param_->bidirectional_ ? 8 : 4; | |||
| lstm_param_->input_row_align_ = UP_ROUND(lstm_param_->seq_len_ * lstm_param_->batch_, C16NUM); | |||
| lstm_param_->input_col_align_ = UP_ROUND(lstm_param_->hidden_size_, C8NUM); | |||
| is_vec_ = lstm_param_->batch_ == 1; | |||
| lstm_param_->row_align_ = is_vec_ ? lstm_param_->batch_ : UP_ROUND(lstm_param_->batch_, C16NUM); | |||
| lstm_param_->col_align_ = is_vec_ ? lstm_param_->hidden_size_ : UP_ROUND(lstm_param_->hidden_size_, C8NUM); | |||
| lstm_param_->state_row_align_ = is_vec_ ? lstm_param_->batch_ : UP_ROUND(lstm_param_->batch_, C16NUM); | |||
| lstm_param_->state_col_align_ = is_vec_ ? lstm_param_->hidden_size_ : UP_ROUND(lstm_param_->hidden_size_, C8NUM); | |||
| return RET_OK; | |||
| } | |||
| int LstmFp16CPUKernel::InitWeight(const lite::Tensor *tensor, float16_t *ptr, int deep) { | |||
| auto weight_batch = lstm_param_->bidirectional_ ? 8 : 4; | |||
| if (tensor->data_type() == kNumberTypeFloat32) { | |||
| auto weight_data = reinterpret_cast<float *>(tensor->data_c()); | |||
| is_vec_ ? Float32ToFloat16(weight_data, ptr, tensor->ElementsNum()) | |||
| : PackLstmWeightFp32ToFp16(ptr, weight_data, weight_batch, deep, lstm_param_->hidden_size_, | |||
| lstm_param_->col_align_); | |||
| } else if (tensor->data_type() == kNumberTypeFloat16) { | |||
| auto weight_data = reinterpret_cast<float16_t *>(tensor->data_c()); | |||
| if (is_vec_) { | |||
| ptr = weight_data; | |||
| } else { | |||
| PackLstmWeightFp16(ptr, weight_data, weight_batch, deep, lstm_param_->hidden_size_, lstm_param_->col_align_); | |||
| } | |||
| int LstmFp16CPUKernel::InitInputWeightBias() { | |||
| // malloc and init input * weight right matrix buffer | |||
| // input -- row: seq_len * batch; col: input_size | |||
| // weight -- row: hidden_size; col: input_size, need transpose | |||
| // result -- row: seq_len * batch; col: hidden_size | |||
| auto weight_i = in_tensors_.at(1); | |||
| MS_ASSERT(weight_i != nullptr); | |||
| weight_i_ptr_ = reinterpret_cast<float16_t *>( | |||
| malloc(weight_batch_ * lstm_param_->input_col_align_ * lstm_param_->input_size_ * sizeof(float16_t))); | |||
| if (weight_i_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc weight_i_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| if (weight_i->data_type() == kNumberTypeFloat32) { | |||
| PackLstmWeightFp32ToFp16(weight_i_ptr_, reinterpret_cast<float *>(weight_i->data_c()), weight_batch_, | |||
| lstm_param_->input_size_, lstm_param_->hidden_size_, lstm_param_->input_col_align_); | |||
| } else if (weight_i->data_type() == kNumberTypeFloat16) { | |||
| PackLstmWeightFp16(weight_i_ptr_, reinterpret_cast<float16_t *>(weight_i->data_c()), weight_batch_, | |||
| lstm_param_->input_size_, lstm_param_->hidden_size_, lstm_param_->input_col_align_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of weight tensor for lstm."; | |||
| MS_LOG(ERROR) << "Unsupported data type of weight_i tensor for lstm."; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int LstmFp16CPUKernel::InitWeightBias() { | |||
| auto weight_batch = lstm_param_->bidirectional_ ? 8 : 4; | |||
| // malloc and init input * weight right matrix buffer | |||
| auto weight_i = in_tensors_.at(1); | |||
| MS_ASSERT(weight_i != nullptr); | |||
| if (!is_vec_ || weight_i->data_type() == kNumberTypeFloat32) { | |||
| weight_i_ptr_ = reinterpret_cast<float16_t *>( | |||
| malloc(weight_batch * lstm_param_->col_align_ * lstm_param_->input_size_ * sizeof(float16_t))); | |||
| if (weight_i_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc weight_i_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| // input bias | |||
| auto bias = in_tensors_.at(3); | |||
| MS_ASSERT(bias != nullptr); | |||
| input_bias_ = | |||
| reinterpret_cast<float16_t *>(malloc(weight_batch_ * lstm_param_->input_col_align_ * sizeof(float16_t))); | |||
| if (input_bias_ == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc input_bias_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| auto ret = InitWeight(weight_i, weight_i_ptr_, lstm_param_->input_size_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel init weight_i failed."; | |||
| memset(input_bias_, 0, weight_batch_ * lstm_param_->input_col_align_ * sizeof(float16_t)); | |||
| if (bias->data_type() == kNumberTypeFloat32) { | |||
| PackLstmBiasFp32ToFp16(input_bias_, reinterpret_cast<float *>(bias->data_c()), weight_batch_, | |||
| lstm_param_->hidden_size_, lstm_param_->input_col_align_, lstm_param_->bidirectional_); | |||
| } else if (bias->data_type() == kNumberTypeFloat16) { | |||
| PackLstmBiasFp16(input_bias_, reinterpret_cast<float16_t *>(bias->data_c()), weight_batch_, | |||
| lstm_param_->hidden_size_, lstm_param_->input_col_align_, lstm_param_->bidirectional_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of bias tensor for lstm."; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| // malloc and init state * weight right matrix buffer | |||
| int LstmFp16CPUKernel::InitStateWeightBias() { | |||
| // malloc and init state * weight right matrix buffer, state * weight will be executed seq_len_ times. | |||
| // state -- row: batch; col: hidden_size | |||
| // weight -- row: hidden_size; col: hidden_size, need transpose | |||
| // result -- row: batch; col: hidden_size | |||
| auto weight_h = in_tensors_.at(2); | |||
| MS_ASSERT(weight_h != nullptr); | |||
| if (!is_vec_ || weight_h->data_type() == kNumberTypeFloat32) { | |||
| weight_h_ptr_ = reinterpret_cast<float16_t *>( | |||
| malloc(weight_batch * lstm_param_->col_align_ * lstm_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (weight_h_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc weight_h_ptr_ error."; | |||
| weight_h_ptr_ = reinterpret_cast<float16_t *>( | |||
| malloc(weight_batch_ * lstm_param_->state_col_align_ * lstm_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (weight_h_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc weight_h_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| if (!is_vec_) { | |||
| if (weight_h->data_type() == kNumberTypeFloat32) { | |||
| PackLstmWeightFp32ToFp16(weight_h_ptr_, reinterpret_cast<float *>(weight_h->data_c()), weight_batch_, | |||
| lstm_param_->hidden_size_, lstm_param_->hidden_size_, lstm_param_->state_col_align_); | |||
| } else if (weight_h->data_type() == kNumberTypeFloat16) { | |||
| PackLstmWeightFp16(weight_h_ptr_, reinterpret_cast<float16_t *>(weight_h->data_c()), weight_batch_, | |||
| lstm_param_->hidden_size_, lstm_param_->hidden_size_, lstm_param_->state_col_align_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of weight_h tensor for lstm."; | |||
| return RET_ERROR; | |||
| } | |||
| } else { | |||
| if (weight_h->data_type() == kNumberTypeFloat32) { | |||
| Float32ToFloat16(reinterpret_cast<float *>(weight_h->data_c()), weight_h_ptr_, weight_h->ElementsNum()); | |||
| } else if (weight_h->data_type() == kNumberTypeFloat16) { | |||
| memcpy(weight_h_ptr_, reinterpret_cast<float16_t *>(weight_h->data_c()), weight_h->ElementsNum()); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of weight_h tensor for lstm."; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| ret = InitWeight(weight_h, weight_h_ptr_, lstm_param_->hidden_size_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel init weight_h failed."; | |||
| return RET_ERROR; | |||
| } | |||
| int bias_batch = lstm_param_->bidirectional_ ? 16 : 8; | |||
| // state bias | |||
| auto bias = in_tensors_.at(3); | |||
| MS_ASSERT(bias != nullptr); | |||
| if (!is_vec_ || bias->data_type() == kNumberTypeFloat32) { | |||
| bias_ptr_ = reinterpret_cast<float16_t *>(malloc(bias_batch * lstm_param_->col_align_ * sizeof(float16_t))); | |||
| if (bias_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc bias_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(bias_ptr_, 0, bias_batch * lstm_param_->col_align_ * sizeof(float16_t)); | |||
| state_bias_ = | |||
| reinterpret_cast<float16_t *>(malloc(weight_batch_ * lstm_param_->state_col_align_ * sizeof(float16_t))); | |||
| if (state_bias_ == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc state_bias_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(state_bias_, 0, weight_batch_ * lstm_param_->state_col_align_ * sizeof(float16_t)); | |||
| if (bias->data_type() == kNumberTypeFloat32) { | |||
| auto bias_data = reinterpret_cast<float *>(bias->data_c()); | |||
| for (int i = 0; i < bias_batch; i++) { | |||
| auto src_batch = bias_data + i * lstm_param_->hidden_size_; | |||
| auto dst_batch = bias_ptr_ + i * lstm_param_->col_align_; | |||
| Float32ToFloat16(src_batch, dst_batch, lstm_param_->hidden_size_); | |||
| } | |||
| auto state_bias_data = reinterpret_cast<float *>(bias->data_c()) + 4 * lstm_param_->hidden_size_; | |||
| PackLstmBiasFp32ToFp16(state_bias_, state_bias_data, weight_batch_, lstm_param_->hidden_size_, | |||
| lstm_param_->state_col_align_, lstm_param_->bidirectional_); | |||
| } else if (bias->data_type() == kNumberTypeFloat16) { | |||
| auto bias_data = reinterpret_cast<float16_t *>(bias->data_c()); | |||
| if (is_vec_) { | |||
| bias_ptr_ = bias_data; | |||
| } else { | |||
| for (int i = 0; i < bias_batch; i++) { | |||
| auto src_batch = bias_data + i * lstm_param_->hidden_size_; | |||
| auto dst_batch = bias_ptr_ + i * lstm_param_->col_align_; | |||
| memcpy(dst_batch, src_batch, lstm_param_->hidden_size_ * sizeof(float16_t)); | |||
| } | |||
| } | |||
| auto state_bias_data = reinterpret_cast<float16_t *>(bias->data_c()) + 4 * lstm_param_->hidden_size_; | |||
| PackLstmBiasFp16(state_bias_, state_bias_data, weight_batch_, lstm_param_->hidden_size_, | |||
| lstm_param_->state_col_align_, lstm_param_->bidirectional_); | |||
| } else { | |||
| MS_LOG(ERROR) << "Unsupported data type of bias tensor for lstm."; | |||
| return RET_ERROR; | |||
| @@ -194,9 +212,16 @@ int LstmFp16CPUKernel::ReSize() { | |||
| } | |||
| FreeTmpBuffer(); | |||
| ret = InitWeightBias(); | |||
| ret = InitInputWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Lstm fp16 InitWeightBias error."; | |||
| MS_LOG(ERROR) << "Lstm fp16 InitInputWeightBias error."; | |||
| FreeTmpBuffer(); | |||
| return RET_ERROR; | |||
| } | |||
| ret = InitStateWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Lstm fp16 InitStateWeightBias error."; | |||
| FreeTmpBuffer(); | |||
| return RET_ERROR; | |||
| } | |||
| @@ -204,42 +229,51 @@ int LstmFp16CPUKernel::ReSize() { | |||
| } | |||
| int LstmFp16CPUKernel::MallocRunBuffer() { | |||
| if (!is_vec_) { | |||
| matmul_buffer_[0] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(4 * lstm_param_->row_align_ * lstm_param_->input_size_ * sizeof(float16_t))); | |||
| if (matmul_buffer_[0] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc input * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| for (int i = 0; i < 6; i++) { | |||
| buffer_[i] = nullptr; | |||
| } | |||
| buffer_[0] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(lstm_param_->input_row_align_ * lstm_param_->input_size_ * sizeof(float16_t))); | |||
| if (buffer_[0] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc input * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| buffer_[1] = reinterpret_cast<float16_t *>(context_->allocator->Malloc( | |||
| 4 * lstm_param_->seq_len_ * lstm_param_->batch_ * lstm_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (buffer_[1] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc state * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| matmul_buffer_[1] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(4 * lstm_param_->row_align_ * lstm_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (matmul_buffer_[1] == nullptr) { | |||
| if (!is_vec_) { | |||
| buffer_[2] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(lstm_param_->state_row_align_ * lstm_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (buffer_[2] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc state * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| gate_buffer_ = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(8 * lstm_param_->batch_ * lstm_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (gate_buffer_ == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc gate_buffer error."; | |||
| buffer_[3] = reinterpret_cast<float16_t *>( | |||
| context_->allocator->Malloc(4 * lstm_param_->batch_ * lstm_param_->hidden_size_ * sizeof(float16_t))); | |||
| if (buffer_[3] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc state gate buffer error."; | |||
| return RET_ERROR; | |||
| } | |||
| state_buffer_[0] = nullptr; | |||
| state_buffer_[1] = nullptr; | |||
| if (!(lstm_param_->zoneout_cell_ >= -FLT_EPSILON && lstm_param_->zoneout_cell_ <= FLT_EPSILON)) { | |||
| int buffer_size = lstm_param_->batch_ * lstm_param_->hidden_size_ * sizeof(float16_t); | |||
| state_buffer_[0] = reinterpret_cast<float16_t *>(context_->allocator->Malloc(buffer_size)); | |||
| if (state_buffer_[0] == nullptr) { | |||
| buffer_[4] = reinterpret_cast<float16_t *>(context_->allocator->Malloc(buffer_size)); | |||
| if (buffer_[4] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc state_buffer for cell error."; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| if (!(lstm_param_->zoneout_hidden_ >= -FLT_EPSILON && lstm_param_->zoneout_hidden_ <= FLT_EPSILON)) { | |||
| int buffer_size = lstm_param_->batch_ * lstm_param_->hidden_size_ * sizeof(float16_t); | |||
| state_buffer_[1] = reinterpret_cast<float16_t *>(context_->allocator->Malloc(buffer_size)); | |||
| if (state_buffer_[1] == nullptr) { | |||
| buffer_[5] = reinterpret_cast<float16_t *>(context_->allocator->Malloc(buffer_size)); | |||
| if (buffer_[5] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmFp16CPUKernel malloc state_buffer for hidden error."; | |||
| return RET_ERROR; | |||
| } | |||
| @@ -273,12 +307,11 @@ int LstmFp16CPUKernel::Run() { | |||
| } | |||
| MS_ASSERT(weight_i_ptr_); | |||
| MS_ASSERT(weight_h_ptr_); | |||
| MS_ASSERT(bias_ptr_); | |||
| MS_ASSERT(gate_buffer_); | |||
| LstmFp16(output_ptr, input_ptr, weight_i_ptr_, weight_h_ptr_, bias_ptr_, | |||
| MS_ASSERT(input_bias_); | |||
| MS_ASSERT(state_bias_); | |||
| LstmFp16(output_ptr, input_ptr, weight_i_ptr_, weight_h_ptr_, input_bias_, state_bias_, | |||
| reinterpret_cast<float16_t *>(output_hidden_state->data_c()), | |||
| reinterpret_cast<float16_t *>(output_cell_state->data_c()), gate_buffer_, state_buffer_, matmul_buffer_, | |||
| lstm_param_); | |||
| reinterpret_cast<float16_t *>(output_cell_state->data_c()), buffer_, lstm_param_); | |||
| FreeRunBuffer(); | |||
| return RET_OK; | |||
| } | |||
| @@ -40,16 +40,16 @@ class LstmFp16CPUKernel : public LiteKernel { | |||
| void FreeTmpBuffer(); | |||
| void FreeRunBuffer(); | |||
| int InitParam(); | |||
| int InitWeight(const lite::Tensor *tensor, float16_t *ptr, int deep); | |||
| int InitWeightBias(); | |||
| int InitInputWeightBias(); | |||
| int InitStateWeightBias(); | |||
| int MallocRunBuffer(); | |||
| float16_t *gate_buffer_ = nullptr; | |||
| float16_t *state_buffer_[2]; | |||
| float16_t *weight_i_ptr_ = nullptr; | |||
| float16_t *weight_h_ptr_ = nullptr; | |||
| float16_t *bias_ptr_ = nullptr; | |||
| float16_t *matmul_buffer_[2]; | |||
| float16_t *input_bias_ = nullptr; | |||
| float16_t *state_bias_ = nullptr; | |||
| float16_t *buffer_[6]; | |||
| int weight_batch_ = 0; | |||
| bool is_vec_ = false; | |||
| LstmParameter *lstm_param_ = nullptr; | |||
| }; | |||
| @@ -29,29 +29,33 @@ using mindspore::schema::PrimitiveType_GRU; | |||
| namespace mindspore::kernel { | |||
| void GruCPUKernel::FreeTmpBuffer() { | |||
| if (weight_g_ptr_ != nullptr) { | |||
| free(weight_g_ptr_); | |||
| weight_g_ptr_ = nullptr; | |||
| } | |||
| if (input_bias_ != nullptr) { | |||
| free(input_bias_); | |||
| input_bias_ = nullptr; | |||
| } | |||
| if (!is_vec_) { | |||
| if (weight_g_ptr_ != nullptr) { | |||
| free(weight_g_ptr_); | |||
| weight_g_ptr_ = nullptr; | |||
| } | |||
| if (weight_r_ptr_ != nullptr) { | |||
| free(weight_r_ptr_); | |||
| weight_r_ptr_ = nullptr; | |||
| } | |||
| if (bias_ptr_ != nullptr) { | |||
| free(bias_ptr_); | |||
| bias_ptr_ = nullptr; | |||
| } | |||
| } | |||
| if (state_bias_ != nullptr) { | |||
| free(state_bias_); | |||
| state_bias_ = nullptr; | |||
| } | |||
| } | |||
| void GruCPUKernel::FreeRunBuffer() { | |||
| context_->allocator->Free(gate_buffer_); | |||
| context_->allocator->Free(buffer_[0]); | |||
| context_->allocator->Free(buffer_[1]); | |||
| if (!is_vec_) { | |||
| for (int i = 0; i < 2; i++) { | |||
| context_->allocator->Free(matmul_buffer_[i]); | |||
| } | |||
| context_->allocator->Free(buffer_[2]); | |||
| } | |||
| context_->allocator->Free(buffer_[3]); | |||
| } | |||
| int GruCPUKernel::InitParam() { | |||
| @@ -67,9 +71,9 @@ int GruCPUKernel::InitParam() { | |||
| std::vector<int> w_shape = weight_g->shape(); | |||
| gru_param_->hidden_size_ = w_shape.at(1) / 3; | |||
| gru_param_->input_step_ = gru_param_->batch_ * gru_param_->input_size_; | |||
| gru_param_->output_step_ = gru_param_->bidirectional_ ? 2 * gru_param_->batch_ * gru_param_->hidden_size_ | |||
| : gru_param_->batch_ * gru_param_->hidden_size_; | |||
| weight_batch_ = gru_param_->bidirectional_ ? 6 : 3; | |||
| #ifdef ENABLE_AVX | |||
| row_tile_ = C6NUM; | |||
| @@ -84,56 +88,75 @@ int GruCPUKernel::InitParam() { | |||
| row_tile_ = C12NUM; | |||
| col_tile_ = C8NUM; | |||
| #endif | |||
| gru_param_->input_row_align_ = UP_ROUND(gru_param_->seq_len_ * gru_param_->batch_, row_tile_); | |||
| gru_param_->input_col_align_ = UP_ROUND(gru_param_->hidden_size_, col_tile_); | |||
| is_vec_ = gru_param_->batch_ == 1; | |||
| gru_param_->row_align_ = is_vec_ ? 1 : UP_ROUND(gru_param_->batch_, row_tile_); | |||
| gru_param_->col_align_ = is_vec_ ? gru_param_->hidden_size_ : UP_ROUND(gru_param_->hidden_size_, col_tile_); | |||
| gru_param_->state_row_align_ = is_vec_ ? 1 : UP_ROUND(gru_param_->batch_, row_tile_); | |||
| gru_param_->state_col_align_ = is_vec_ ? gru_param_->hidden_size_ : UP_ROUND(gru_param_->hidden_size_, col_tile_); | |||
| return RET_OK; | |||
| } | |||
| int GruCPUKernel::InitWeightBias() { | |||
| auto weight_batch = gru_param_->bidirectional_ ? 6 : 3; | |||
| if (!is_vec_) { | |||
| // malloc and init input * weight right matrix buffer | |||
| auto weight_g = in_tensors_.at(1); | |||
| MS_ASSERT(weight_g != nullptr); | |||
| weight_g_ptr_ = reinterpret_cast<float *>( | |||
| malloc(weight_batch * gru_param_->col_align_ * gru_param_->input_size_ * sizeof(float))); | |||
| if (weight_g_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc weight_g_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| auto weight_i_data = reinterpret_cast<float *>(weight_g->data_c()); | |||
| PackLstmWeight(weight_g_ptr_, weight_i_data, weight_batch, gru_param_->input_size_, gru_param_->hidden_size_, | |||
| gru_param_->col_align_); | |||
| int GruCPUKernel::InitInputWeightBias() { | |||
| // malloc and init input * weight right matrix buffer | |||
| // input -- row: seq_len * batch; col: input_size | |||
| // weight -- row: hidden_size; col: input_size, need transpose | |||
| // result -- row: seq_len * batch; col: hidden_size | |||
| auto weight_g = in_tensors_.at(1); | |||
| MS_ASSERT(weight_g != nullptr); | |||
| weight_g_ptr_ = reinterpret_cast<float *>( | |||
| malloc(weight_batch_ * gru_param_->input_col_align_ * gru_param_->input_size_ * sizeof(float))); | |||
| if (weight_g_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc weight_g_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| auto weight_g_data = reinterpret_cast<float *>(weight_g->data_c()); | |||
| PackLstmWeight(weight_g_ptr_, weight_g_data, weight_batch_, gru_param_->input_size_, gru_param_->hidden_size_, | |||
| gru_param_->input_col_align_); | |||
| // malloc and init state * weight right matrix buffer | |||
| auto weight_r = in_tensors_.at(2); | |||
| MS_ASSERT(weight_r != nullptr); | |||
| // input bias | |||
| input_bias_ = reinterpret_cast<float *>(malloc(weight_batch_ * gru_param_->input_col_align_ * sizeof(float))); | |||
| if (input_bias_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc input_bias_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(input_bias_, 0, weight_batch_ * gru_param_->input_col_align_ * sizeof(float)); | |||
| PackLstmBias(input_bias_, reinterpret_cast<float *>(in_tensors_.at(3)->data_c()), weight_batch_, | |||
| gru_param_->hidden_size_, gru_param_->input_col_align_, gru_param_->bidirectional_); | |||
| return RET_OK; | |||
| } | |||
| int GruCPUKernel::InitStateWeightBias() { | |||
| // malloc and init state * weight right matrix buffer, state * weight will be executed seq_len_ times. | |||
| // state -- row: batch; col: hidden_size | |||
| // weight -- row: hidden_size; col: hidden_size, need transpose | |||
| // result -- row: batch; col: hidden_size | |||
| auto weight_r = in_tensors_.at(2); | |||
| MS_ASSERT(weight_r != nullptr); | |||
| auto weight_r_data = reinterpret_cast<float *>(weight_r->data_c()); | |||
| if (!is_vec_) { | |||
| weight_r_ptr_ = reinterpret_cast<float *>( | |||
| malloc(weight_batch * gru_param_->col_align_ * gru_param_->hidden_size_ * sizeof(float))); | |||
| malloc(weight_batch_ * gru_param_->state_col_align_ * gru_param_->hidden_size_ * sizeof(float))); | |||
| if (weight_r_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc weight_r_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| auto weight_r_data = reinterpret_cast<float *>(weight_r->data_c()); | |||
| PackLstmWeight(weight_r_ptr_, weight_r_data, weight_batch, gru_param_->hidden_size_, gru_param_->hidden_size_, | |||
| gru_param_->col_align_); | |||
| // init bias | |||
| int bias_batch = gru_param_->bidirectional_ ? 16 : 8; | |||
| bias_ptr_ = reinterpret_cast<float *>(malloc(bias_batch * gru_param_->col_align_ * sizeof(float))); | |||
| if (bias_ptr_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc bias_ptr_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(bias_ptr_, 0, bias_batch * gru_param_->col_align_ * sizeof(float)); | |||
| auto bias_data = reinterpret_cast<float *>(in_tensors_.at(3)->data_c()); | |||
| for (int i = 0; i < bias_batch; i++) { | |||
| auto src_batch = bias_data + i * gru_param_->hidden_size_; | |||
| auto dst_batch = bias_ptr_ + i * gru_param_->col_align_; | |||
| memcpy(dst_batch, src_batch, gru_param_->hidden_size_ * sizeof(float)); | |||
| } | |||
| PackLstmWeight(weight_r_ptr_, weight_r_data, weight_batch_, gru_param_->hidden_size_, gru_param_->hidden_size_, | |||
| gru_param_->state_col_align_); | |||
| } else { | |||
| weight_r_ptr_ = weight_r_data; | |||
| } | |||
| // state bias | |||
| state_bias_ = reinterpret_cast<float *>(malloc(weight_batch_ * gru_param_->state_col_align_ * sizeof(float))); | |||
| if (state_bias_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc state_bias_ error."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(state_bias_, 0, weight_batch_ * gru_param_->state_col_align_ * sizeof(float)); | |||
| auto state_bias = reinterpret_cast<float *>(in_tensors_.at(3)->data_c()) + 3 * gru_param_->hidden_size_; | |||
| PackLstmBias(state_bias_, state_bias, weight_batch_, gru_param_->hidden_size_, gru_param_->state_col_align_, | |||
| gru_param_->bidirectional_); | |||
| return RET_OK; | |||
| } | |||
| @@ -152,9 +175,16 @@ int GruCPUKernel::ReSize() { | |||
| } | |||
| FreeTmpBuffer(); | |||
| ret = InitWeightBias(); | |||
| ret = InitInputWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "GruCPUKernel InitWeightBias error."; | |||
| MS_LOG(ERROR) << "GruCPUKernel InitInputWeightBias error."; | |||
| FreeTmpBuffer(); | |||
| return RET_ERROR; | |||
| } | |||
| ret = InitStateWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "GruCPUKernel InitStateWeightBias error."; | |||
| FreeTmpBuffer(); | |||
| return RET_ERROR; | |||
| } | |||
| @@ -162,25 +192,36 @@ int GruCPUKernel::ReSize() { | |||
| } | |||
| int GruCPUKernel::MallocRunBuffer() { | |||
| if (!is_vec_) { | |||
| matmul_buffer_[0] = reinterpret_cast<float *>( | |||
| context_->allocator->Malloc(3 * gru_param_->row_align_ * gru_param_->input_size_ * sizeof(float))); | |||
| if (matmul_buffer_[0] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc input * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| for (int i = 0; i < 4; i++) { | |||
| buffer_[i] = nullptr; | |||
| } | |||
| buffer_[0] = reinterpret_cast<float *>( | |||
| context_->allocator->Malloc(gru_param_->input_row_align_ * gru_param_->input_size_ * sizeof(float))); | |||
| if (buffer_[0] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc input * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| buffer_[1] = reinterpret_cast<float *>(context_->allocator->Malloc(3 * gru_param_->seq_len_ * gru_param_->batch_ * | |||
| gru_param_->hidden_size_ * sizeof(float))); | |||
| if (buffer_[1] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc input * weight result matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| matmul_buffer_[1] = reinterpret_cast<float *>( | |||
| context_->allocator->Malloc(3 * gru_param_->row_align_ * gru_param_->hidden_size_ * sizeof(float))); | |||
| if (matmul_buffer_[1] == nullptr) { | |||
| if (!is_vec_) { | |||
| buffer_[2] = reinterpret_cast<float *>( | |||
| context_->allocator->Malloc(gru_param_->state_row_align_ * gru_param_->hidden_size_ * sizeof(float))); | |||
| if (buffer_[2] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc state * weight left matirx error."; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| gate_buffer_ = reinterpret_cast<float *>( | |||
| context_->allocator->Malloc(6 * gru_param_->batch_ * gru_param_->hidden_size_ * sizeof(float))); | |||
| if (gate_buffer_ == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc gate_buffer error."; | |||
| buffer_[3] = reinterpret_cast<float *>( | |||
| context_->allocator->Malloc(3 * gru_param_->batch_ * gru_param_->hidden_size_ * sizeof(float))); | |||
| if (buffer_[3] == nullptr) { | |||
| MS_LOG(ERROR) << "GruCPUKernel malloc state gate buffer error."; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| @@ -215,18 +256,12 @@ int GruCPUKernel::Run() { | |||
| return RET_ERROR; | |||
| } | |||
| if (is_vec_) { | |||
| weight_g_ptr_ = reinterpret_cast<float *>(in_tensors_[1]->data_c()); | |||
| weight_r_ptr_ = reinterpret_cast<float *>(in_tensors_[2]->data_c()); | |||
| bias_ptr_ = reinterpret_cast<float *>(in_tensors_[3]->data_c()); | |||
| } | |||
| MS_ASSERT(weight_g_ptr_ != nullptr); | |||
| MS_ASSERT(weight_r_ptr_ != nullptr); | |||
| MS_ASSERT(bias_ptr_ != nullptr); | |||
| MS_ASSERT(gate_buffer_ != nullptr); | |||
| Gru(output_ptr, input_ptr, weight_g_ptr_, weight_r_ptr_, bias_ptr_, | |||
| reinterpret_cast<float *>(output_hidden_state->data_c()), gate_buffer_, matmul_buffer_, check_seq_len, | |||
| gru_param_); | |||
| MS_ASSERT(input_bias_ != nullptr); | |||
| MS_ASSERT(state_bias_ != nullptr); | |||
| Gru(output_ptr, input_ptr, weight_g_ptr_, weight_r_ptr_, input_bias_, state_bias_, | |||
| reinterpret_cast<float *>(output_hidden_state->data_c()), buffer_, check_seq_len, gru_param_); | |||
| FreeRunBuffer(); | |||
| return RET_OK; | |||
| } | |||
| @@ -39,15 +39,17 @@ class GruCPUKernel : public LiteKernel { | |||
| void FreeRunBuffer(); | |||
| int InitParam(); | |||
| int MallocRunBuffer(); | |||
| int InitWeightBias(); | |||
| int InitInputWeightBias(); | |||
| int InitStateWeightBias(); | |||
| float *gate_buffer_ = nullptr; | |||
| float *weight_g_ptr_ = nullptr; | |||
| float *weight_r_ptr_ = nullptr; | |||
| float *bias_ptr_ = nullptr; | |||
| float *matmul_buffer_[2]; | |||
| float *input_bias_ = nullptr; | |||
| float *state_bias_ = nullptr; | |||
| float *buffer_[4]; | |||
| int row_tile_ = 0; | |||
| int col_tile_ = 0; | |||
| int weight_batch_ = 0; | |||
| bool is_vec_ = false; | |||
| GruParameter *gru_param_ = nullptr; | |||
| }; | |||
| @@ -52,15 +52,18 @@ void LstmCPUKernel::FreeTmpBuffer() { | |||
| } | |||
| void LstmCPUKernel::FreeRunBuffer() { | |||
| for (int i = 0; i < 2; i++) { | |||
| context_->allocator->Free(state_buffer_[i]); | |||
| } | |||
| context_->allocator->Free(buffer_[0]); | |||
| context_->allocator->Free(buffer_[1]); | |||
| if (!is_vec_) { | |||
| context_->allocator->Free(buffer_[2]); | |||
| } | |||
| context_->allocator->Free(buffer_[3]); | |||
| if (!(lstm_param_->zoneout_cell_ >= -FLT_EPSILON && lstm_param_->zoneout_cell_ <= FLT_EPSILON)) { | |||
| context_->allocator->Free(buffer_[4]); | |||
| } | |||
| if (!(lstm_param_->zoneout_hidden_ >= -FLT_EPSILON && lstm_param_->zoneout_hidden_ <= FLT_EPSILON)) { | |||
| context_->allocator->Free(buffer_[5]); | |||
| } | |||
| } | |||
| int LstmCPUKernel::InitInputWeightBias() { | |||
| @@ -197,7 +200,7 @@ int LstmCPUKernel::ReSize() { | |||
| } | |||
| int LstmCPUKernel::MallocRunBuffer() { | |||
| for (int i = 0; i < 4; i++) { | |||
| for (int i = 0; i < 6; i++) { | |||
| buffer_[i] = nullptr; | |||
| } | |||
| buffer_[0] = reinterpret_cast<float *>( | |||
| @@ -216,7 +219,7 @@ int LstmCPUKernel::MallocRunBuffer() { | |||
| if (!is_vec_) { | |||
| buffer_[2] = reinterpret_cast<float *>( | |||
| context_->allocator->Malloc(4 * lstm_param_->state_row_align_ * lstm_param_->hidden_size_ * sizeof(float))); | |||
| context_->allocator->Malloc(lstm_param_->state_row_align_ * lstm_param_->hidden_size_ * sizeof(float))); | |||
| if (buffer_[2] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmCPUKernel malloc state * weight left matirx error."; | |||
| return RET_ERROR; | |||
| @@ -229,20 +232,19 @@ int LstmCPUKernel::MallocRunBuffer() { | |||
| MS_LOG(ERROR) << "LstmCPUKernel malloc state gate buffer error."; | |||
| return RET_ERROR; | |||
| } | |||
| state_buffer_[0] = nullptr; | |||
| state_buffer_[1] = nullptr; | |||
| if (!(lstm_param_->zoneout_cell_ >= -FLT_EPSILON && lstm_param_->zoneout_cell_ <= FLT_EPSILON)) { | |||
| auto buffer_size = lstm_param_->batch_ * lstm_param_->hidden_size_ * sizeof(float); | |||
| state_buffer_[0] = reinterpret_cast<float *>(context_->allocator->Malloc(buffer_size)); | |||
| if (state_buffer_[0] == nullptr) { | |||
| buffer_[4] = reinterpret_cast<float *>(context_->allocator->Malloc(buffer_size)); | |||
| if (buffer_[4] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmCPUKernel malloc state_buffer for cell error."; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| if (!(lstm_param_->zoneout_hidden_ >= -FLT_EPSILON && lstm_param_->zoneout_hidden_ <= FLT_EPSILON)) { | |||
| auto buffer_size = lstm_param_->batch_ * lstm_param_->hidden_size_ * sizeof(float); | |||
| state_buffer_[1] = reinterpret_cast<float *>(context_->allocator->Malloc(buffer_size)); | |||
| if (state_buffer_[1] == nullptr) { | |||
| buffer_[5] = reinterpret_cast<float *>(context_->allocator->Malloc(buffer_size)); | |||
| if (buffer_[5] == nullptr) { | |||
| MS_LOG(ERROR) << "LstmCPUKernel malloc state_buffer for hidden error."; | |||
| return RET_ERROR; | |||
| } | |||
| @@ -281,7 +283,7 @@ int LstmCPUKernel::Run() { | |||
| MS_ASSERT(state_bias_); | |||
| Lstm(output_ptr, input_ptr, weight_i_ptr_, weight_h_ptr_, input_bias_, state_bias_, | |||
| reinterpret_cast<float *>(output_hidden_state->data_c()), reinterpret_cast<float *>(output_cell_state->data_c()), | |||
| state_buffer_, buffer_, lstm_param_); | |||
| buffer_, lstm_param_); | |||
| FreeRunBuffer(); | |||
| return RET_OK; | |||
| } | |||
| @@ -44,12 +44,11 @@ class LstmCPUKernel : public LiteKernel { | |||
| int InitInputWeightBias(); | |||
| int InitStateWeightBias(); | |||
| float *state_buffer_[2]; | |||
| float *weight_i_ptr_ = nullptr; | |||
| float *weight_h_ptr_ = nullptr; | |||
| float *input_bias_ = nullptr; | |||
| float *state_bias_ = nullptr; | |||
| float *buffer_[4]; | |||
| float *buffer_[6]; | |||
| int row_tile_ = 0; | |||
| int col_tile_ = 0; | |||
| int weight_batch_ = 0; | |||