| @@ -0,0 +1,118 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "multinomial_impl.cuh" | |||
| template <typename T> | |||
| __global__ void NormInput(T *input, const size_t distributions, const size_t categories) { | |||
| size_t size = distributions * categories; | |||
| for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) { | |||
| if ((pos + 1) % categories != 0) { | |||
| int de_pos = (1 + pos / categories) * categories - 1; | |||
| input[pos] /= input[de_pos]; | |||
| } | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void CheckZeroKernel(const size_t distributions, const size_t categories, const T *input, T *out) { | |||
| out[0] = 0; | |||
| for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (distributions); pos += blockDim.x * gridDim.x) { | |||
| if (input[(1 + pos) * categories - 1] <= 0) { | |||
| out[0] = 1; | |||
| } | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void CheckZero(const size_t distributions, const size_t categories, const T *input, T *output, | |||
| cudaStream_t cuda_stream) { | |||
| CheckZeroKernel<<<GET_BLOCKS(distributions), GET_THREADS, 0, cuda_stream>>>(distributions, categories, input, output); | |||
| } | |||
| template <typename T> | |||
| __global__ void CheckNonNegKernel(const size_t size, const T *input, T *out) { | |||
| out[0] = 0; | |||
| for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) { | |||
| if (input[pos] < 0) { | |||
| out[0] = 1; | |||
| } | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void CheckNonNeg(const size_t size, const T *input, T *output, cudaStream_t cuda_stream) { | |||
| CheckNonNegKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, output); | |||
| } | |||
| template <typename T> | |||
| __device__ int BinarySearchForMultinomial(T *start_addr, int size, T rand) { | |||
| int start = 0; | |||
| int end = size; | |||
| while (end - start > 0) { | |||
| int mid = start + (end - start) / 2; | |||
| T mid_val = start_addr[mid]; | |||
| if (mid_val < rand) { | |||
| start = mid + 1; | |||
| } else { | |||
| end = mid; | |||
| } | |||
| } | |||
| if (start == size) { | |||
| start = size - 1; | |||
| } | |||
| return start; | |||
| } | |||
| template <typename T> | |||
| __global__ void MultinomialKernel(int seed, T *input, int num_sample, curandState *globalState, int *output, | |||
| size_t distributions, size_t categories) { | |||
| int count = num_sample * distributions; | |||
| for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < count; i += blockDim.x * gridDim.x) { | |||
| int j = i / num_sample % distributions; | |||
| curand_init(seed, i, 0, &globalState[i]); | |||
| auto rand = curand_uniform(&globalState[i]); | |||
| int pick = BinarySearchForMultinomial(input + j * categories, categories, rand); | |||
| output[i] = pick; | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void Multinomial(int seed, T *input, int num_sample, curandState *globalState, int *output, size_t distributions, | |||
| size_t categories, cudaStream_t cuda_stream) { | |||
| int RNG_seed = 0; | |||
| if (seed != 0) { | |||
| RNG_seed = seed; | |||
| } else { | |||
| RNG_seed = time(NULL); | |||
| } | |||
| int count = distributions * num_sample; | |||
| int count1 = distributions * categories; | |||
| NormInput<<<GET_BLOCKS(count1), GET_THREADS, 0, cuda_stream>>>(input, distributions, categories); | |||
| MultinomialKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(RNG_seed, input, num_sample, globalState, | |||
| output, distributions, categories); | |||
| return; | |||
| } | |||
| template void Multinomial<float>(int seed, float *input, int num_sample, curandState *globalState, int *output, | |||
| size_t distributions, size_t categories, cudaStream_t cuda_stream); | |||
| template void CheckNonNeg<float>(const size_t size, const float *input, float *output, cudaStream_t cuda_stream); | |||
| template void CheckZero<float>(const size_t distributions, const size_t categories, const float *input, float *output, | |||
| cudaStream_t cuda_stream); | |||
| @@ -0,0 +1,29 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MULTINOMIAL_IMPL_CUH_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MULTINOMIAL_IMPL_CUH_ | |||
| #include <curand_kernel.h> | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| void Multinomial(int seed, T *input, int num_sample, curandState *globalState, int *output, size_t distributions, | |||
| size_t categories, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void CheckNonNeg(const size_t size, const T *input, T *output, cudaStream_t stream); | |||
| template <typename T> | |||
| void CheckZero(const size_t distributions, const size_t categories, const T *input, T *output, cudaStream_t stream); | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MULTINOMIAL_IMPL_CUH_ | |||
| @@ -0,0 +1,26 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/math/multinomial_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| Multinomial, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| MultinomialGpuKernel, float) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,141 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MULTINOMIAL_GPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MULTINOMIAL_GPU_KERNEL_H_ | |||
| #include <curand_kernel.h> | |||
| #include <cuda_runtime_api.h> | |||
| #include <vector> | |||
| #include <string> | |||
| #include <map> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/multinomial_impl.cuh" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/float_status_impl.cuh" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/cumsum_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class MultinomialGpuKernel : public GpuKernel { | |||
| public: | |||
| MultinomialGpuKernel() : input_size_0_(0), output_size_(0), distributions_(0), workspace_size_(sizeof(curandState)) {} | |||
| ~MultinomialGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| void *workspace_addr = GetDeviceAddress<void *>(workspace, 0); | |||
| curandState *devStates = reinterpret_cast<curandState *>(workspace_addr); | |||
| int *output_addr = GetDeviceAddress<int>(outputs, 0); | |||
| T *input_addr = GetDeviceAddress<T>(inputs, 0); | |||
| int categories = SizeToInt(inputs[0]->size / sizeof(T)) / distributions_; | |||
| int num_sample = SizeToInt(outputs[0]->size / sizeof(T)) / distributions_; | |||
| // check input | |||
| T *flag = nullptr; | |||
| T *cflag = nullptr; | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMalloc(reinterpret_cast<void **>(&cflag), sizeof(T)), "cudaMalloc failed."); | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMallocHost(&flag, sizeof(T)), "cudaMallocHost failed."); | |||
| CalFloatStatus(input_size_0_ / sizeof(T), input_addr, cflag, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpy(flag, cflag, sizeof(T), cudaMemcpyDeviceToHost), "cudaMemcpyAsync failed."); | |||
| if (*flag > 0) { | |||
| MS_LOG(EXCEPTION) << "Input is invalid (containing NaN, -inf or inf)"; | |||
| } | |||
| CheckNonNeg(input_size_0_ / sizeof(T), input_addr, cflag, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpy(flag, cflag, sizeof(T), cudaMemcpyDeviceToHost), "cudaMemcpyAsync failed."); | |||
| if (*flag > 0) { | |||
| MS_LOG(EXCEPTION) << "Input is invalid (input element < 0)"; | |||
| } | |||
| T *cum_sum_input = nullptr; | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMalloc(reinterpret_cast<void **>(&cum_sum_input), input_size_0_), | |||
| "cudaMalloc failed."); | |||
| CumSum(input_addr, cum_sum_input, cum_sum_input, IntToSize(distributions_), IntToSize(categories), 1, | |||
| IntToSize(categories), 1, false, false, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| CheckZero(IntToSize(distributions_), IntToSize(categories), cum_sum_input, cflag, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpy(flag, cflag, sizeof(T), cudaMemcpyDeviceToHost), "cudaMemcpyAsync failed."); | |||
| if (*flag > 0) { | |||
| MS_LOG(EXCEPTION) << "Input is invalid (sum <= 0)"; | |||
| } | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaStreamSynchronize(reinterpret_cast<cudaStream_t>(stream_ptr)), | |||
| "cudaStreamSynchronize failed."); | |||
| Multinomial(seed_, cum_sum_input, num_sample, devStates, output_addr, IntToSize(distributions_), | |||
| IntToSize(categories), reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaFree(cum_sum_input), "cudaFree failed."); | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaFree(cflag), "cudaFree failed."); | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaFreeHost(flag), "cudaFreeHost failed."); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node); | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 2) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but multinomial needs 2 input."; | |||
| return false; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but multinomial needs 1 output."; | |||
| return false; | |||
| } | |||
| auto input_shape_0 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| if (input_shape_0.size() == 1) { | |||
| distributions_ = 1; | |||
| } else { | |||
| distributions_ = input_shape_0[0]; | |||
| } | |||
| input_size_0_ = sizeof(T); | |||
| for (size_t i = 0; i < input_shape_0.size(); i++) { | |||
| input_size_0_ *= input_shape_0[i]; | |||
| } | |||
| auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||
| output_size_ = sizeof(int); | |||
| for (size_t i = 0; i < output_shape.size(); i++) { | |||
| output_size_ *= output_shape[i]; | |||
| workspace_size_ *= output_shape[i]; | |||
| } | |||
| seed_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed")); | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_0_); | |||
| input_size_list_.push_back(sizeof(int)); | |||
| output_size_list_.push_back(output_size_); | |||
| workspace_size_list_.push_back(workspace_size_); | |||
| } | |||
| private: | |||
| size_t input_size_0_; | |||
| size_t output_size_; | |||
| size_t distributions_; | |||
| size_t workspace_size_; | |||
| int seed_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MULTINOMIAL_GPU_KERNEL_H_ | |||
| @@ -0,0 +1,39 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| from mindspore.ops import composite as C | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| context.set_context(device_target='GPU') | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_multinomial(): | |||
| x0 = Tensor(np.array([0.9, 0.2]).astype(np.float32)) | |||
| x1 = Tensor(np.array([[0.9, 0.2], [0.9, 0.2]]).astype(np.float32)) | |||
| out0 = C.multinomial(x0, 1, True) | |||
| out1 = C.multinomial(x0, 2, True) | |||
| out2 = C.multinomial(x1, 6, True) | |||
| out3 = C.multinomial(x0, 1, False) | |||
| out4 = C.multinomial(x0, 2, False) | |||
| assert out0.asnumpy().shape == (1,) | |||
| assert out1.asnumpy().shape == (2,) | |||
| assert out2.asnumpy().shape == (2, 6) | |||
| assert out3.asnumpy().shape == (1,) | |||
| assert out4.asnumpy().shape == (2,) | |||