From: @yuan_shen_zhou Reviewed-by: @liangchenghui,@liangchenghui Signed-off-by: @liangchenghui,@liangchenghuitags/v1.1.0
| @@ -0,0 +1,38 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "l2_loss.cuh" | |||||
| #include "runtime/device/gpu/cuda_common.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/util.cuh" | |||||
| template <typename T> | |||||
| __global__ void L2LossKernel(const size_t input_size, const T *input , T *output) { | |||||
| T ret = 0; | |||||
| for (size_t id = blockIdx.x * blockDim.x + threadIdx.x; id < input_size; id += blockDim.x * gridDim.x) { | |||||
| ret = (input[id] * input[id]); | |||||
| ret /= static_cast<T>(2); | |||||
| MsAtomicAdd(output, ret); | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| void L2Loss(const size_t input_size, const T *input , T *output, cudaStream_t stream) { | |||||
| L2LossKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, input, output); | |||||
| } | |||||
| template void L2Loss<float>(const size_t input_size, const float *input , float *output, cudaStream_t stream); | |||||
| template void L2Loss<half>(const size_t input_size, const half *input , half *output, cudaStream_t stream); | |||||
| @@ -0,0 +1,21 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_L2_LOSS_H_ | |||||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_L2_LOSS_H_ | |||||
| template <typename T> | |||||
| void L2Loss(const size_t input_size, const T *input , T *output, cudaStream_t stream); | |||||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_L2_LOSS_H_ | |||||
| @@ -0,0 +1,26 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/nn/l2_loss_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE(L2Loss, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||||
| L2LossGpuKernel, float) | |||||
| MS_REG_GPU_KERNEL_ONE(L2Loss, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||||
| L2LossGpuKernel, half) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,71 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_L2_LOSS_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_L2_LOSS_GPU_KERNEL_H_ | |||||
| #include <vector> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/l2_loss.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class L2LossGpuKernel : public GpuKernel { | |||||
| public: | |||||
| L2LossGpuKernel() : input_size_(1) {} | |||||
| ~L2LossGpuKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspaces, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *input = GetDeviceAddress<T>(inputs, 0); | |||||
| T *output = GetDeviceAddress<T>(outputs, 0); | |||||
| L2Loss(input_size_, input, output, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| output_size_list_.push_back(sizeof(T)); | |||||
| } | |||||
| private: | |||||
| size_t input_size_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_L2_LOSS_GPU_KERNEL_H_ | |||||
| @@ -2157,9 +2157,7 @@ class L2Loss(PrimitiveWithInfer): | |||||
| Set `input_x` as x and output as loss. | Set `input_x` as x and output as loss. | ||||
| .. math:: | .. math:: | ||||
| loss = sum(x ** 2) / nelement(x) | |||||
| :math:`nelement(x)` represents the number of `input_x`. | |||||
| loss = sum(x ** 2) / 2 | |||||
| Inputs: | Inputs: | ||||
| - **input_x** (Tensor) - A input Tensor. Data type must be float16 or float32. | - **input_x** (Tensor) - A input Tensor. Data type must be float16 or float32. | ||||
| @@ -2168,7 +2166,7 @@ class L2Loss(PrimitiveWithInfer): | |||||
| Tensor, has the same dtype as `input_x`. The output tensor is the value of loss which is a scalar tensor. | Tensor, has the same dtype as `input_x`. The output tensor is the value of loss which is a scalar tensor. | ||||
| Supported Platforms: | Supported Platforms: | ||||
| ``Ascend`` | |||||
| ``Ascend`` ``GPU`` | |||||
| Examples | Examples | ||||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16) | >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16) | ||||
| @@ -0,0 +1,100 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| import mindspore as ms | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| class L2LossNet(nn.Cell): | |||||
| def __init__(self): | |||||
| super(L2LossNet, self).__init__() | |||||
| self.l2_loss = P.L2Loss() | |||||
| def construct(self, x): | |||||
| return self.l2_loss(x) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_gather_pynative_fp32_22(): | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| error = 1e-4 | |||||
| x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float32) | |||||
| expect = np.array(15, np.float32) | |||||
| output = P.L2Loss()(x) | |||||
| diff = output.asnumpy() - expect | |||||
| assert np.all(diff < error) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_gather_pynative_fp16_22(): | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| error = 1e-4 | |||||
| x = Tensor(np.array([[1., 2.], [3., 4.]]), ms.float16) | |||||
| expect = np.array(15, np.float16) | |||||
| output = P.L2Loss()(x) | |||||
| diff = output.asnumpy() - expect | |||||
| assert np.all(diff < error) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_gather_pynative_fp32_14(): | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| error = 1e-4 | |||||
| x = Tensor(np.array([1., 2., 3., 4.]), ms.float32) | |||||
| expect = np.array(15, np.float32) | |||||
| output = P.L2Loss()(x) | |||||
| diff = output.asnumpy() - expect | |||||
| assert np.all(diff < error) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_gather_pynative_fp16_14(): | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| error = 1e-4 | |||||
| x = Tensor(np.array([1., 2., 3., 4.]), ms.float16) | |||||
| expect = np.array(15, np.float16) | |||||
| output = P.L2Loss()(x) | |||||
| diff = output.asnumpy() - expect | |||||
| assert np.all(diff < error) | |||||
| def test_gather_graph_fp32_14(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| error = 1e-4 | |||||
| x = Tensor(np.array([1., 2., 3., 4.]), ms.float32) | |||||
| expect = np.array(15, np.float32) | |||||
| l2_loss = L2LossNet() | |||||
| output = l2_loss(x) | |||||
| diff = output.asnumpy() - expect | |||||
| assert np.all(diff < error) | |||||
| def test_gather_graph_fp16_14(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| error = 1e-4 | |||||
| x = Tensor(np.array([1., 2., 3., 4.]), ms.float16) | |||||
| expect = np.array(15, np.float16) | |||||
| l2_loss = L2LossNet() | |||||
| output = l2_loss(x) | |||||
| diff = output.asnumpy() - expect | |||||
| assert np.all(diff < error) | |||||