Merge pull request !1695 from liuwenhao/mastertags/v0.5.0-beta
| @@ -14,18 +14,17 @@ | |||||
| # ============================================================================ | # ============================================================================ | ||||
| """multitype_ops directory test case""" | """multitype_ops directory test case""" | ||||
| import numpy as np | import numpy as np | ||||
| from functools import partial, reduce | |||||
| import pytest | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| from mindspore import dtype as mstype | from mindspore import dtype as mstype | ||||
| from mindspore.ops import functional as F, composite as C | |||||
| from mindspore.ops import functional as F | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| import pytest | |||||
| class TensorIntAutoCast(nn.Cell): | class TensorIntAutoCast(nn.Cell): | ||||
| def __init__(self, ): | |||||
| def __init__(self,): | |||||
| super(TensorIntAutoCast, self).__init__() | super(TensorIntAutoCast, self).__init__() | ||||
| self.i = 2 | self.i = 2 | ||||
| @@ -35,7 +34,7 @@ class TensorIntAutoCast(nn.Cell): | |||||
| class TensorFPAutoCast(nn.Cell): | class TensorFPAutoCast(nn.Cell): | ||||
| def __init__(self, ): | |||||
| def __init__(self,): | |||||
| super(TensorFPAutoCast, self).__init__() | super(TensorFPAutoCast, self).__init__() | ||||
| self.f = 1.2 | self.f = 1.2 | ||||
| @@ -45,7 +44,7 @@ class TensorFPAutoCast(nn.Cell): | |||||
| class TensorBoolAutoCast(nn.Cell): | class TensorBoolAutoCast(nn.Cell): | ||||
| def __init__(self, ): | |||||
| def __init__(self,): | |||||
| super(TensorBoolAutoCast, self).__init__() | super(TensorBoolAutoCast, self).__init__() | ||||
| self.f = True | self.f = True | ||||
| @@ -55,7 +54,7 @@ class TensorBoolAutoCast(nn.Cell): | |||||
| class TensorAutoCast(nn.Cell): | class TensorAutoCast(nn.Cell): | ||||
| def __init__(self, ): | |||||
| def __init__(self,): | |||||
| super(TensorAutoCast, self).__init__() | super(TensorAutoCast, self).__init__() | ||||
| def construct(self, t1, t2): | def construct(self, t1, t2): | ||||
| @@ -65,7 +64,7 @@ class TensorAutoCast(nn.Cell): | |||||
| def test_tensor_auto_cast(): | def test_tensor_auto_cast(): | ||||
| context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
| t0 = Tensor([True, False], mstype.bool_) | |||||
| Tensor([True, False], mstype.bool_) | |||||
| t_uint8 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint8) | t_uint8 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint8) | ||||
| t_int8 = Tensor(np.ones([2, 1, 2, 2]), mstype.int8) | t_int8 = Tensor(np.ones([2, 1, 2, 2]), mstype.int8) | ||||
| t_int16 = Tensor(np.ones([2, 1, 2, 2]), mstype.int16) | t_int16 = Tensor(np.ones([2, 1, 2, 2]), mstype.int16) | ||||
| @@ -13,7 +13,6 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """ test nn ops """ | """ test nn ops """ | ||||
| import functools | |||||
| import numpy as np | import numpy as np | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| import mindspore.common.dtype as mstype | import mindspore.common.dtype as mstype | ||||
| @@ -14,10 +14,10 @@ | |||||
| # ============================================================================ | # ============================================================================ | ||||
| import pytest | import pytest | ||||
| import mindspore.nn as nn | |||||
| from mindspore.common.api import ms_function | |||||
| import numpy as np | import numpy as np | ||||
| import mindspore.nn as nn | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| from mindspore.common.api import ms_function | |||||
| from mindspore.common.initializer import initializer | from mindspore.common.initializer import initializer | ||||
| from mindspore.ops import composite as C | from mindspore.ops import composite as C | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| @@ -196,10 +196,6 @@ def test_multi_layer_bilstm(): | |||||
| bidirectional = True | bidirectional = True | ||||
| dropout = 0.0 | dropout = 0.0 | ||||
| num_directions = 1 | |||||
| if bidirectional: | |||||
| num_directions = 2 | |||||
| net = MultiLayerBiLstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, | net = MultiLayerBiLstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, | ||||
| dropout) | dropout) | ||||
| y, h, c, _, _ = net() | y, h, c, _, _ = net() | ||||
| @@ -305,9 +301,6 @@ def test_grad(): | |||||
| has_bias = True | has_bias = True | ||||
| bidirectional = False | bidirectional = False | ||||
| dropout = 0.0 | dropout = 0.0 | ||||
| num_directions = 1 | |||||
| if bidirectional: | |||||
| num_directions = 2 | |||||
| net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)) | net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)) | ||||
| dy = np.array([[[-3.5471e-01, 7.0540e-01], | dy = np.array([[[-3.5471e-01, 7.0540e-01], | ||||
| [2.7161e-01, 1.0865e+00]], | [2.7161e-01, 1.0865e+00]], | ||||
| @@ -94,7 +94,7 @@ def test_random_crop_and_resize_op_py(plot=False): | |||||
| for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): | for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): | ||||
| crop_and_resize = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) | crop_and_resize = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) | ||||
| original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) | original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) | ||||
| original = cv2.resize(original, (512,256)) | |||||
| original = cv2.resize(original, (512, 256)) | |||||
| mse = diff_mse(crop_and_resize, original) | mse = diff_mse(crop_and_resize, original) | ||||
| logger.info("random_crop_and_resize_op_{}, mse: {}".format(num_iter + 1, mse)) | logger.info("random_crop_and_resize_op_{}, mse: {}".format(num_iter + 1, mse)) | ||||
| num_iter += 1 | num_iter += 1 | ||||
| @@ -78,4 +78,4 @@ def test_layer_switch(): | |||||
| net = MySwitchNet() | net = MySwitchNet() | ||||
| x = Tensor(np.ones((3, 3, 24, 24)), mindspore.float32) | x = Tensor(np.ones((3, 3, 24, 24)), mindspore.float32) | ||||
| index = Tensor(0, dtype=mindspore.int32) | index = Tensor(0, dtype=mindspore.int32) | ||||
| y = net(x, index) | |||||
| net(x, index) | |||||
| @@ -28,7 +28,7 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \ | |||||
| class AssignAddNet(nn.Cell): | class AssignAddNet(nn.Cell): | ||||
| def __init__(self, ): | |||||
| def __init__(self,): | |||||
| super(AssignAddNet, self).__init__() | super(AssignAddNet, self).__init__() | ||||
| self.op = P.AssignAdd() | self.op = P.AssignAdd() | ||||
| self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_add1") | self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_add1") | ||||
| @@ -39,7 +39,7 @@ class AssignAddNet(nn.Cell): | |||||
| class AssignSubNet(nn.Cell): | class AssignSubNet(nn.Cell): | ||||
| def __init__(self, ): | |||||
| def __init__(self,): | |||||
| super(AssignSubNet, self).__init__() | super(AssignSubNet, self).__init__() | ||||
| self.op = P.AssignSub() | self.op = P.AssignSub() | ||||
| self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_sub1") | self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_sub1") | ||||