|
|
|
@@ -6491,7 +6491,7 @@ class DynamicRNN(PrimitiveWithInfer): |
|
|
|
|
|
|
|
class DynamicGRUV2(PrimitiveWithInfer): |
|
|
|
r""" |
|
|
|
DynamicGRUV2 Operator. |
|
|
|
Applies a single-layer gated recurrent unit (GRU) to an input sequence. |
|
|
|
|
|
|
|
Args: |
|
|
|
direction (str): A string identifying the direction in the op. Default: 'UNIDIRECTIONAL'. |
|
|
|
@@ -6532,19 +6532,19 @@ class DynamicGRUV2(PrimitiveWithInfer): |
|
|
|
- **y** (Tensor) - A Tensor of shape :math: |
|
|
|
if num_proj > 0 `(num_step, batch_size, min(hidden_size, num_proj)`, |
|
|
|
if num_proj == 0 `(num_step, batch_size, hidden_size)`. |
|
|
|
Has the same data type with input `bais_type`. |
|
|
|
Has the same data type with input `bias_type`. |
|
|
|
- **output_h** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. |
|
|
|
Has the same data type with input `bais_type`. |
|
|
|
Has the same data type with input `bias_type`. |
|
|
|
- **update** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. |
|
|
|
Has the same data type with input `bais_type`. |
|
|
|
Has the same data type with input `bias_type`. |
|
|
|
- **reset** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. |
|
|
|
Has the same data type with input `bais_type`. |
|
|
|
Has the same data type with input `bias_type`. |
|
|
|
- **new** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. |
|
|
|
Has the same data type with input `bais_type`. |
|
|
|
Has the same data type with input `bias_type`. |
|
|
|
- **hidden_new** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. |
|
|
|
Has the same data type with input `bais_type`. |
|
|
|
Has the same data type with input `bias_type`. |
|
|
|
|
|
|
|
- If `bias_input` and `bias_hidden` both are `None`, `bias_type` is float32. |
|
|
|
- If `bias_input` and `bias_hidden` both are `None`, `bias_type` is date type of `init_h`. |
|
|
|
- If `bias_input` is not `None`, `bias_type` is the date type of `bias_input`. |
|
|
|
- If `bias_input` is `None` and `bias_hidden` is not `None, `bias_type` is the date type of `bias_hidden`. |
|
|
|
|
|
|
|
@@ -6563,6 +6563,15 @@ class DynamicGRUV2(PrimitiveWithInfer): |
|
|
|
>>> print(output[0].shape) |
|
|
|
(2, 8, 16) |
|
|
|
""" |
|
|
|
__mindspore_signature__ = ( |
|
|
|
sig.make_sig('x', dtype=sig.sig_dtype.T1), |
|
|
|
sig.make_sig('weight_input', dtype=sig.sig_dtype.T2), |
|
|
|
sig.make_sig('weight_hidden', dtype=sig.sig_dtype.T3), |
|
|
|
sig.make_sig('bias_input', dtype=sig.sig_dtype.T), |
|
|
|
sig.make_sig('bias_hidden', dtype=sig.sig_dtype.T), |
|
|
|
sig.make_sig('seq_length', dtype=sig.sig_dtype.T4), |
|
|
|
sig.make_sig('init_h', dtype=sig.sig_dtype.T), |
|
|
|
) |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
def __init__(self, |
|
|
|
@@ -6631,7 +6640,7 @@ class DynamicGRUV2(PrimitiveWithInfer): |
|
|
|
validator.check_tensor_dtype_valid("weight input dtype", winput_dtype, [mstype.float16], self.name) |
|
|
|
validator.check_tensor_dtype_valid("weight hidden dtype", whidden_dtype, [mstype.float16], self.name) |
|
|
|
validator.check_tensor_dtype_valid("init_h dtype", h_dtype, (mstype.float16, mstype.float32), self.name) |
|
|
|
b_dtype = mstype.float32 |
|
|
|
b_dtype = h_dtype |
|
|
|
if binput_dtype is not None: |
|
|
|
validator.check_tensor_dtype_valid("bias input dtype", binput_dtype, |
|
|
|
(mstype.float16, mstype.float32), self.name) |
|
|
|
|