|
|
|
@@ -178,6 +178,12 @@ void Scheduler::ConstructSubgraphs(std::vector<kernel::LiteKernel *> *kernels) { |
|
|
|
std::vector<kernel::LiteKernel *> subgraph_kernels; |
|
|
|
size_t sub_cnt{0}; |
|
|
|
for (auto temp_kernels : sub_kernels_list) { |
|
|
|
std::vector<Tensor *> output_tensor = kernel::LiteKernelUtil::SubgraphOutputTensors(temp_kernels); |
|
|
|
for (auto tensor : output_tensor) { |
|
|
|
if (context_->float16_priority && tensor->data_type() == kNumberTypeFloat16) { |
|
|
|
tensor->set_data_type(kNumberTypeFloat32); |
|
|
|
} |
|
|
|
} |
|
|
|
kernel::KERNEL_ARCH arch = temp_kernels.front()->desc().arch; |
|
|
|
if (arch == kernel::KERNEL_ARCH::kCPU) { |
|
|
|
for (auto kernel : temp_kernels) { |
|
|
|
@@ -185,12 +191,6 @@ void Scheduler::ConstructSubgraphs(std::vector<kernel::LiteKernel *> *kernels) { |
|
|
|
tensor->set_allocator(context_->allocator.get()); |
|
|
|
} |
|
|
|
} |
|
|
|
std::vector<Tensor *> output_tensor = kernel::LiteKernelUtil::SubgraphOutputTensors(temp_kernels); |
|
|
|
for (auto tensor : output_tensor) { |
|
|
|
if (context_->float16_priority && tensor->data_type() == kNumberTypeFloat16) { |
|
|
|
tensor->set_data_type(kNumberTypeFloat32); |
|
|
|
} |
|
|
|
} |
|
|
|
std::copy(temp_kernels.begin(), temp_kernels.end(), std::back_inserter(subgraph_kernels)); |
|
|
|
} else { |
|
|
|
auto subgraph_kernel = CreateSubKernel(temp_kernels, arch); |
|
|
|
@@ -213,8 +213,8 @@ kernel::LiteKernel *Scheduler::CreateSubKernel(const std::vector<kernel::LiteKer |
|
|
|
std::vector<Tensor *> output_tensors = kernel::LiteKernelUtil::SubgraphOutputTensors(kernels); |
|
|
|
std::vector<kernel::LiteKernel *> input_kernels = kernel::LiteKernelUtil::SubgraphInputKernels(kernels); |
|
|
|
std::vector<kernel::LiteKernel *> output_kernels = kernel::LiteKernelUtil::SubgraphOutputKernels(kernels); |
|
|
|
sub_kernel = |
|
|
|
new kernel::SubGraphOpenCLKernel(input_tensors, output_tensors, input_kernels, output_kernels, kernels); |
|
|
|
sub_kernel = new kernel::SubGraphOpenCLKernel(input_tensors, output_tensors, input_kernels, output_kernels, kernels, |
|
|
|
context_, nullptr); |
|
|
|
sub_kernel->Init(); |
|
|
|
} else if (arch == kernel::KERNEL_ARCH::kNPU) { |
|
|
|
MS_LOG(ERROR) << "NPU kernel is not supported"; |
|
|
|
|