From: @zhaozhenlong Reviewed-by: @zhang_xue_tong,@zhanghaibo5 Signed-off-by: @zhang_xue_tongpull/14496/MERGE
| @@ -0,0 +1,76 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "src/runtime/kernel/npu/argmax_npu.h" | |||||
| #include <memory> | |||||
| #include "include/graph/op/all_ops.h" | |||||
| #include "src/kernel_registry.h" | |||||
| #include "src/runtime/agent/npu/npu_converter_utils.h" | |||||
| using mindspore::kernel::KERNEL_ARCH::kNPU; | |||||
| using mindspore::lite::KernelRegistrar; | |||||
| using mindspore::schema::PrimitiveType_ArgMaxFusion; | |||||
| namespace mindspore::kernel { | |||||
| int ArgmaxNPUKernel::IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | |||||
| OpParameter *opParameter) { | |||||
| return RET_OK; | |||||
| } | |||||
| int ArgmaxNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | |||||
| const std::vector<ge::Operator *> &npu_inputs) { | |||||
| op_ = new (std::nothrow) hiai::op::ArgMaxExt2(name_); | |||||
| if (op_ == nullptr) { | |||||
| MS_LOG(ERROR) << "New argmax npu operator for " << name_ << " failed."; | |||||
| return RET_ERROR; | |||||
| } | |||||
| op_->set_input_x(*npu_inputs[0]); | |||||
| auto axis_const_ = new (std::nothrow) hiai::op::Const(name_ + "_axis"); | |||||
| if (axis_const_ == nullptr) { | |||||
| MS_LOG(ERROR) << "New weight const failed."; | |||||
| return RET_ERROR; | |||||
| } | |||||
| ge::TensorDesc tensor_desc(ge::Shape({1}), ge::FORMAT_NCHW, ge::DT_INT32); | |||||
| std::shared_ptr<ge::Tensor> ge_tensor = | |||||
| std::make_shared<ge::Tensor>(tensor_desc, reinterpret_cast<const uint8_t *>(&(param_->axis_)), sizeof(int)); | |||||
| if (ge_tensor == nullptr) { | |||||
| MS_LOG(ERROR) << "new ge_tensor failed."; | |||||
| return RET_ERROR; | |||||
| } | |||||
| axis_const_->set_attr_value(ge_tensor); | |||||
| op_->set_input_axis(*axis_const_); | |||||
| op_->set_attr_keep_dims(param_->keep_dims_); | |||||
| op_->set_attr_outmaxval(param_->out_value_); | |||||
| op_->set_attr_topk(param_->topk_); | |||||
| return RET_OK; | |||||
| } | |||||
| ge::Operator *mindspore::kernel::ArgmaxNPUKernel::GetNPUOp() { return op_; } | |||||
| ArgmaxNPUKernel::~ArgmaxNPUKernel() { | |||||
| if (op_ != nullptr) { | |||||
| delete op_; | |||||
| op_ = nullptr; | |||||
| } | |||||
| if (axis_const_ != nullptr) { | |||||
| delete axis_const_; | |||||
| axis_const_ = nullptr; | |||||
| } | |||||
| } | |||||
| REG_KERNEL(kNPU, kNumberTypeFloat32, PrimitiveType_ArgMaxFusion, NPUKernelCreator<ArgmaxNPUKernel>) | |||||
| } // namespace mindspore::kernel | |||||
| @@ -0,0 +1,48 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_ARGMAX_NPU_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_ARGMAX_NPU_H_ | |||||
| #include <vector> | |||||
| #include "include/graph/op/all_ops.h" | |||||
| #include "include/graph/compatible/all_ops.h" | |||||
| #include "src/runtime/kernel/npu/npu_kernel.h" | |||||
| #include "nnacl/arg_min_max_parameter.h" | |||||
| namespace mindspore::kernel { | |||||
| class ArgmaxNPUKernel : public NPUKernel { | |||||
| public: | |||||
| ArgmaxNPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx) | |||||
| : NPUKernel(parameter, inputs, outputs, ctx) { | |||||
| param_ = reinterpret_cast<ArgMinMaxParameter *>(parameter); | |||||
| } | |||||
| ~ArgmaxNPUKernel() override; | |||||
| int IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | |||||
| OpParameter *opParameter) override; | |||||
| int SetNPUInputs(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | |||||
| const std::vector<ge::Operator *> &npu_inputs) override; | |||||
| ge::Operator *GetNPUOp() override; | |||||
| private: | |||||
| hiai::op::ArgMaxExt2 *op_ = nullptr; | |||||
| hiai::op::Const *axis_const_ = nullptr; | |||||
| ArgMinMaxParameter *param_; | |||||
| }; | |||||
| } // namespace mindspore::kernel | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_ARGMAX_NPU_H_ | |||||
| @@ -26,10 +26,17 @@ using mindspore::schema::PrimitiveType_Reshape; | |||||
| namespace mindspore::kernel { | namespace mindspore::kernel { | ||||
| int ReshapeNPUKernel::IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | int ReshapeNPUKernel::IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs, | ||||
| OpParameter *opParameter) { | OpParameter *opParameter) { | ||||
| if (reshape_param_->shape_dim_ == 0) { | |||||
| MS_LOG(ERROR) << "Npu reshape op only supports const shape."; | |||||
| if (inputs.size() == 1 && reshape_param_->shape_dim_ == 0) { | |||||
| MS_LOG(WARNING) << "Npu reshape op only supports const shape."; | |||||
| return RET_ERROR; | return RET_ERROR; | ||||
| } | } | ||||
| if (inputs.size() > 1) { | |||||
| auto shape_tensor = inputs.at(1); | |||||
| if (!shape_tensor->IsConst()) { | |||||
| MS_LOG(WARNING) << "Npu reshape op only supports const shape."; | |||||
| return RET_ERROR; | |||||
| } | |||||
| } | |||||
| return RET_OK; | return RET_OK; | ||||
| } | } | ||||
| @@ -81,3 +81,4 @@ posenet_mobilenet_float_075_1_default_1.tflite 395 | |||||
| nasnet_mobile.tflite 1 | nasnet_mobile.tflite 1 | ||||
| ml_video_edit_art_generate.onnx 0.5 | ml_video_edit_art_generate.onnx 0.5 | ||||
| ml_video_edit_art_transfer.onnx 3 3 | ml_video_edit_art_transfer.onnx 3 3 | ||||
| ml_video_edit_enhance_update.onnx 0.5 | |||||
| @@ -72,3 +72,4 @@ mtk_face_features_v2.onnx;1,256,192,3 | |||||
| mtk_face_recognition_v3.onnx | mtk_face_recognition_v3.onnx | ||||
| mtk_face_recognition_v2.onnx | mtk_face_recognition_v2.onnx | ||||
| ml_2012_ocr_detection.onnx | ml_2012_ocr_detection.onnx | ||||
| ml_video_edit_enhance_update.onnx | |||||
| @@ -246,7 +246,7 @@ void ConvTransformFusion::CalNewWeightTensor(const CNodePtr &conv_node, const te | |||||
| int kernel_num, const float *trans_scale) const { | int kernel_num, const float *trans_scale) const { | ||||
| MS_ASSERT(weight_data != nullptr); | MS_ASSERT(weight_data != nullptr); | ||||
| MS_ASSERT(trans_scale != nullptr); | MS_ASSERT(trans_scale != nullptr); | ||||
| if (weight_tensor->shape().size() != 4) { | |||||
| if (weight_tensor->shape().size() > 4) { | |||||
| MS_LOG(ERROR) << "weight tensor shape error"; | MS_LOG(ERROR) << "weight tensor shape error"; | ||||
| return; | return; | ||||
| } | } | ||||