Browse Source

move googlenet into official dir

tags/v0.6.0-beta
liyanliu 5 years ago
parent
commit
3c27503f35
9 changed files with 3 additions and 9 deletions
  1. +3
    -9
      model_zoo/official/cv/googlenet/README.md
  2. +0
    -0
      model_zoo/official/cv/googlenet/eval.py
  3. +0
    -0
      model_zoo/official/cv/googlenet/export.py
  4. +0
    -0
      model_zoo/official/cv/googlenet/scripts/run_eval.sh
  5. +0
    -0
      model_zoo/official/cv/googlenet/scripts/run_train.sh
  6. +0
    -0
      model_zoo/official/cv/googlenet/src/config.py
  7. +0
    -0
      model_zoo/official/cv/googlenet/src/dataset.py
  8. +0
    -0
      model_zoo/official/cv/googlenet/src/googlenet.py
  9. +0
    -0
      model_zoo/official/cv/googlenet/train.py

model_zoo/googlenet/README.md → model_zoo/official/cv/googlenet/README.md View File

@@ -36,14 +36,8 @@ GoogleNet, a 22 layers deep network, was proposed in 2014 and won the first plac
# [Model Architecture](#contents) # [Model Architecture](#contents)
The overall network architecture of GoogleNet is shown below:
![](https://miro.medium.com/max/3780/1*ZFPOSAted10TPd3hBQU8iQ.png)
Specifically, the GoogleNet contains numerous inception modules, which are connected together to go deeper. In general, an inception module with dimensionality reduction consists of **1×1 conv**, **3×3 conv**, **5×5 conv**, and **3×3 max pooling**, which are done altogether for the previous input, and stack together again at output. Specifically, the GoogleNet contains numerous inception modules, which are connected together to go deeper. In general, an inception module with dimensionality reduction consists of **1×1 conv**, **3×3 conv**, **5×5 conv**, and **3×3 max pooling**, which are done altogether for the previous input, and stack together again at output.
![](https://miro.medium.com/max/1108/1*sezFsYW1MyM9YOMa1q909A.png)
# [Dataset](#contents) # [Dataset](#contents)
@@ -230,10 +224,10 @@ accuracy: {'acc': 0.9217}
| Loss | 0.0016 | | Loss | 0.0016 |
| Speed | 1pc: 79 ms/step; 8pcs: 82 ms/step | | Speed | 1pc: 79 ms/step; 8pcs: 82 ms/step |
| Total time | 1pc: 63.85 mins; 8pcs: 11.28 mins | | Total time | 1pc: 63.85 mins; 8pcs: 11.28 mins |
| Parameters (M) | 6.8 |
| Parameters (M) | 13.0 |
| Checkpoint for Fine tuning | 43.07M (.ckpt file) | | Checkpoint for Fine tuning | 43.07M (.ckpt file) |
| Model for inference | 21.50M (.onnx file), 21.60M(.geir file) | | Model for inference | 21.50M (.onnx file), 21.60M(.geir file) |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/googlenet |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/googlenet |
### Inference Performance ### Inference Performance
@@ -243,7 +237,7 @@ accuracy: {'acc': 0.9217}
| Model Version | Inception V1 | | Model Version | Inception V1 |
| Resource | Ascend 910 | | Resource | Ascend 910 |
| Uploaded Date | 06/09/2020 (month/day/year) | | Uploaded Date | 06/09/2020 (month/day/year) |
| MindSpore Version | 0.3.0-alpha |
| MindSpore Version | 0.2.0-alpha |
| Dataset | CIFAR-10, 10,000 images | | Dataset | CIFAR-10, 10,000 images |
| batch_size | 128 | | batch_size | 128 |
| outputs | probability | | outputs | probability |

model_zoo/googlenet/eval.py → model_zoo/official/cv/googlenet/eval.py View File


model_zoo/googlenet/export.py → model_zoo/official/cv/googlenet/export.py View File


model_zoo/googlenet/scripts/run_eval.sh → model_zoo/official/cv/googlenet/scripts/run_eval.sh View File


model_zoo/googlenet/scripts/run_train.sh → model_zoo/official/cv/googlenet/scripts/run_train.sh View File


model_zoo/googlenet/src/config.py → model_zoo/official/cv/googlenet/src/config.py View File


model_zoo/googlenet/src/dataset.py → model_zoo/official/cv/googlenet/src/dataset.py View File


model_zoo/googlenet/src/googlenet.py → model_zoo/official/cv/googlenet/src/googlenet.py View File


model_zoo/googlenet/train.py → model_zoo/official/cv/googlenet/train.py View File


Loading…
Cancel
Save