maskrcnn: add export and disable save_graphstags/v1.1.0
| @@ -0,0 +1,47 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """export checkpoint file into air models""" | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import Tensor, context | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net, export | |||||
| from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50 | |||||
| from src.config import config | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='maskrcnn_export') | |||||
| parser.add_argument('--ckpt_file', type=str, default='', help='maskrcnn ckpt file.') | |||||
| parser.add_argument('--output_file', type=str, default='', help='maskrcnn output air name.') | |||||
| args_opt = parser.parse_args() | |||||
| net = Mask_Rcnn_Resnet50(config=config) | |||||
| param_dict = load_checkpoint(args_opt.ckpt_file) | |||||
| load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| bs = config.test_batch_size | |||||
| img = Tensor(np.zeros([bs, 3, 768, 1280], np.float16)) | |||||
| img_metas = Tensor(np.zeros([bs, 4], np.float16)) | |||||
| gt_bboxes = Tensor(np.zeros([bs, 128, 4], np.float16)) | |||||
| gt_labels = Tensor(np.zeros([bs, 128], np.int32)) | |||||
| gt_num = Tensor(np.zeros([bs, 128], np.bool)) | |||||
| gt_mask = Tensor(np.zeros([bs, 128], np.bool)) | |||||
| export(net, img, img_metas, gt_bboxes, gt_labels, gt_num, gt_mask, file_name=args_opt.output_file, | |||||
| file_format="AIR") | |||||
| @@ -16,13 +16,11 @@ | |||||
| import numpy as np | import numpy as np | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import context | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.common import dtype as mstype | from mindspore.common import dtype as mstype | ||||
| from mindspore.common.initializer import initializer | from mindspore.common.initializer import initializer | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True) | |||||
| def bias_init_zeros(shape): | def bias_init_zeros(shape): | ||||
| """Bias init method.""" | """Bias init method.""" | ||||
| @@ -19,10 +19,6 @@ import mindspore.nn as nn | |||||
| import mindspore.common.dtype as mstype | import mindspore.common.dtype as mstype | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| from mindspore import context | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True) | |||||
| class Proposal(nn.Cell): | class Proposal(nn.Cell): | ||||
| @@ -19,10 +19,6 @@ import mindspore.nn as nn | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.ops import functional as F | from mindspore.ops import functional as F | ||||
| from mindspore import context | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True) | |||||
| def weight_init_ones(shape): | def weight_init_ones(shape): | ||||
| @@ -0,0 +1,59 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ##############export checkpoint file into air and onnx models################# | |||||
| python export.py | |||||
| """ | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import Tensor | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net, export | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='resnet export') | |||||
| parser.add_argument('--network_dataset', type=str, default='resnet50_cifar10', choices=['resnet50_cifar10', | |||||
| 'resnet50_imagenet2012', | |||||
| 'resnet101_imagenet2012', | |||||
| "se-resnet50_imagenet2012"], | |||||
| help='network and dataset name.') | |||||
| parser.add_argument('--ckpt_file', type=str, default='', help='resnet ckpt file.') | |||||
| parser.add_argument('--output_file', type=str, default='', help='resnet output air name.') | |||||
| args_opt = parser.parse_args() | |||||
| if args_opt.network_dataset == 'resnet50_cifar10': | |||||
| from src.config import config1 as config | |||||
| from src.resnet import resnet50 as resnet | |||||
| elif args_opt.network_dataset == 'resnet50_imagenet2012': | |||||
| from src.config import config2 as config | |||||
| from src.resnet import resnet50 as resnet | |||||
| elif args_opt.network_dataset == 'resnet101_imagenet2012': | |||||
| from src.config import config3 as config | |||||
| from src.resnet import resnet101 as resnet | |||||
| elif args_opt.network_dataset == 'se-resnet50_imagenet2012': | |||||
| from src.config import config4 as config | |||||
| from src.resnet import se_resnet50 as resnet | |||||
| else: | |||||
| raise ValueError("network and dataset is not support.") | |||||
| net = resnet(config.class_num) | |||||
| assert args_opt.ckpt_file is not None, "checkpoint_path is None." | |||||
| param_dict = load_checkpoint(args_opt.ckpt_file) | |||||
| load_param_into_net(net, param_dict) | |||||
| input_arr = Tensor(np.zeros([1, 3, 224, 224], np.float32)) | |||||
| export(net, input_arr, file_name=args_opt.output_file, file_format="AIR") | |||||
| @@ -0,0 +1,43 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """export checkpoint file into air models""" | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import Tensor, context | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net, export | |||||
| from src.warpctc import StackedRNN | |||||
| from src.config import config | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='warpctc_export') | |||||
| parser.add_argument('--ckpt_file', type=str, default='', help='warpctc ckpt file.') | |||||
| parser.add_argument('--output_file', type=str, default='', help='warpctc output air name.') | |||||
| args_opt = parser.parse_args() | |||||
| captcha_width = config.captcha_width | |||||
| captcha_height = config.captcha_height | |||||
| batch_size = config.batch_size | |||||
| hidden_size = config.hidden_size | |||||
| net = StackedRNN(captcha_height * 3, batch_size, hidden_size) | |||||
| param_dict = load_checkpoint(args_opt.ckpt_file) | |||||
| load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| image = Tensor(np.zeros([batch_size, 3, captcha_height, captcha_width], np.float16)) | |||||
| export(net, image, file_name=args_opt.output_file, file_format="AIR") | |||||
| @@ -32,6 +32,7 @@ class StackedRNN(nn.Cell): | |||||
| batch_size(int): batch size of input data, default is 64 | batch_size(int): batch size of input data, default is 64 | ||||
| hidden_size(int): the hidden size in LSTM layers, default is 512 | hidden_size(int): the hidden size in LSTM layers, default is 512 | ||||
| """ | """ | ||||
| def __init__(self, input_size, batch_size=64, hidden_size=512): | def __init__(self, input_size, batch_size=64, hidden_size=512): | ||||
| super(StackedRNN, self).__init__() | super(StackedRNN, self).__init__() | ||||
| self.batch_size = batch_size | self.batch_size = batch_size | ||||
| @@ -40,22 +41,25 @@ class StackedRNN(nn.Cell): | |||||
| self.reshape = P.Reshape() | self.reshape = P.Reshape() | ||||
| self.cast = P.Cast() | self.cast = P.Cast() | ||||
| k = (1 / hidden_size) ** 0.5 | k = (1 / hidden_size) ** 0.5 | ||||
| self.h1 = Tensor(np.zeros(shape=(batch_size, hidden_size)).astype(np.float16)) | |||||
| self.c1 = Tensor(np.zeros(shape=(batch_size, hidden_size)).astype(np.float16)) | |||||
| self.w1 = Parameter(np.random.uniform(-k, k, (4 * hidden_size, input_size + hidden_size, 1, 1)) | |||||
| .astype(np.float16), name="w1") | |||||
| self.w2 = Parameter(np.random.uniform(-k, k, (4 * hidden_size, hidden_size + hidden_size, 1, 1)) | |||||
| .astype(np.float16), name="w2") | |||||
| self.b1 = Parameter(np.random.uniform(-k, k, (4 * hidden_size, 1, 1, 1)).astype(np.float16), name="b1") | |||||
| self.b2 = Parameter(np.random.uniform(-k, k, (4 * hidden_size, 1, 1, 1)).astype(np.float16), name="b2") | |||||
| self.h2 = Tensor(np.zeros(shape=(batch_size, hidden_size)).astype(np.float16)) | |||||
| self.c2 = Tensor(np.zeros(shape=(batch_size, hidden_size)).astype(np.float16)) | |||||
| self.rnn1 = P.DynamicRNN(forget_bias=0.0) | |||||
| self.rnn2 = P.DynamicRNN(forget_bias=0.0) | |||||
| self.w1 = Parameter(np.random.uniform(-k, k, (input_size + hidden_size, 4 * hidden_size)).astype(np.float16), | |||||
| name="w1") | |||||
| self.w2 = Parameter(np.random.uniform(-k, k, (hidden_size + hidden_size, 4 * hidden_size)).astype(np.float16), | |||||
| name="w2") | |||||
| self.b1 = Parameter(np.random.uniform(-k, k, (4 * hidden_size)).astype(np.float16), name="b1") | |||||
| self.b2 = Parameter(np.random.uniform(-k, k, (4 * hidden_size)).astype(np.float16), name="b2") | |||||
| self.basic_lstm_cell = P.BasicLSTMCell(keep_prob=1.0, forget_bias=0.0, state_is_tuple=True, activation="tanh") | |||||
| self.h1 = Tensor(np.zeros(shape=(1, batch_size, hidden_size)).astype(np.float16)) | |||||
| self.h2 = Tensor(np.zeros(shape=(1, batch_size, hidden_size)).astype(np.float16)) | |||||
| self.c1 = Tensor(np.zeros(shape=(1, batch_size, hidden_size)).astype(np.float16)) | |||||
| self.c2 = Tensor(np.zeros(shape=(1, batch_size, hidden_size)).astype(np.float16)) | |||||
| self.fc_weight = np.random.random((self.num_classes, hidden_size)).astype(np.float32) | self.fc_weight = np.random.random((self.num_classes, hidden_size)).astype(np.float32) | ||||
| self.fc_bias = np.random.random((self.num_classes)).astype(np.float32) | |||||
| self.fc_bias = np.random.random(self.num_classes).astype(np.float32) | |||||
| self.fc = nn.Dense(in_channels=hidden_size, out_channels=self.num_classes, weight_init=Tensor(self.fc_weight), | self.fc = nn.Dense(in_channels=hidden_size, out_channels=self.num_classes, weight_init=Tensor(self.fc_weight), | ||||
| bias_init=Tensor(self.fc_bias)) | bias_init=Tensor(self.fc_bias)) | ||||
| @@ -64,29 +68,22 @@ class StackedRNN(nn.Cell): | |||||
| self.expand_dims = P.ExpandDims() | self.expand_dims = P.ExpandDims() | ||||
| self.concat = P.Concat() | self.concat = P.Concat() | ||||
| self.transpose = P.Transpose() | self.transpose = P.Transpose() | ||||
| self.squeeze = P.Squeeze(axis=0) | |||||
| def construct(self, x): | def construct(self, x): | ||||
| x = self.cast(x, mstype.float16) | x = self.cast(x, mstype.float16) | ||||
| x = self.transpose(x, (3, 0, 2, 1)) | x = self.transpose(x, (3, 0, 2, 1)) | ||||
| x = self.reshape(x, (-1, self.batch_size, self.input_size)) | x = self.reshape(x, (-1, self.batch_size, self.input_size)) | ||||
| h1 = self.h1 | |||||
| c1 = self.c1 | |||||
| h2 = self.h2 | |||||
| c2 = self.c2 | |||||
| c1, h1, _, _, _, _, _ = self.basic_lstm_cell(x[0, :, :], h1, c1, self.w1, self.b1) | |||||
| c2, h2, _, _, _, _, _ = self.basic_lstm_cell(h1, h2, c2, self.w2, self.b2) | |||||
| h2_after_fc = self.fc(h2) | |||||
| output = self.expand_dims(h2_after_fc, 0) | |||||
| for i in range(1, F.shape(x)[0]): | |||||
| c1, h1, _, _, _, _, _ = self.basic_lstm_cell(x[i, :, :], h1, c1, self.w1, self.b1) | |||||
| c2, h2, _, _, _, _, _ = self.basic_lstm_cell(h1, h2, c2, self.w2, self.b2) | |||||
| h2_after_fc = self.fc(h2) | |||||
| h2_after_fc = self.expand_dims(h2_after_fc, 0) | |||||
| output = self.concat((output, h2_after_fc)) | |||||
| y1, _, _, _, _, _, _, _ = self.rnn1(x, self.w1, self.b1, None, self.h1, self.c1) | |||||
| y2, _, _, _, _, _, _, _ = self.rnn2(y1, self.w2, self.b2, None, self.h2, self.c2) | |||||
| output = () | |||||
| for i in range(F.shape(x)[0]): | |||||
| y2_after_fc = self.fc(self.squeeze(y2[i:i + 1:1])) | |||||
| y2_after_fc = self.expand_dims(y2_after_fc, 0) | |||||
| output += (y2_after_fc,) | |||||
| output = self.concat(output) | |||||
| return output | return output | ||||
| @@ -101,6 +98,7 @@ class StackedRNNForGPU(nn.Cell): | |||||
| hidden_size(int): the hidden size in LSTM layers, default is 512 | hidden_size(int): the hidden size in LSTM layers, default is 512 | ||||
| num_layer(int): the number of layer of LSTM. | num_layer(int): the number of layer of LSTM. | ||||
| """ | """ | ||||
| def __init__(self, input_size, batch_size=64, hidden_size=512, num_layer=2): | def __init__(self, input_size, batch_size=64, hidden_size=512, num_layer=2): | ||||
| super(StackedRNNForGPU, self).__init__() | super(StackedRNNForGPU, self).__init__() | ||||
| self.batch_size = batch_size | self.batch_size = batch_size | ||||
| @@ -42,7 +42,7 @@ parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend', | |||||
| parser.set_defaults(run_distribute=False) | parser.set_defaults(run_distribute=False) | ||||
| args_opt = parser.parse_args() | args_opt = parser.parse_args() | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform) | |||||
| if args_opt.platform == 'Ascend': | if args_opt.platform == 'Ascend': | ||||
| device_id = int(os.getenv('DEVICE_ID')) | device_id = int(os.getenv('DEVICE_ID')) | ||||
| context.set_context(device_id=device_id) | context.set_context(device_id=device_id) | ||||