|
|
@@ -157,9 +157,7 @@ MSCOCO2017 |
|
|
|
|
|
|
|
|
#### 用法 |
|
|
#### 用法 |
|
|
|
|
|
|
|
|
您可以使用python或shell脚本进行训练。shell脚本的用法如下: |
|
|
|
|
|
|
|
|
|
|
|
- Ascend: |
|
|
|
|
|
|
|
|
使用shell脚本进行训练。shell脚本的用法如下: |
|
|
|
|
|
|
|
|
```训练 |
|
|
```训练 |
|
|
# 八卡并行训练示例: |
|
|
# 八卡并行训练示例: |
|
|
@@ -180,28 +178,17 @@ sh run_single_train.sh DEVICE_ID EPOCH_SIZE LR PRE_TRAINED(optional) PRE_TRAINED |
|
|
#### 运行 |
|
|
#### 运行 |
|
|
|
|
|
|
|
|
```运行 |
|
|
```运行 |
|
|
# 训练示例 |
|
|
|
|
|
|
|
|
|
|
|
训练前,先创建MindRecord文件,以COCO数据集为例 |
|
|
|
|
|
python create_data.py --dataset coco |
|
|
|
|
|
|
|
|
|
|
|
python: |
|
|
|
|
|
data和存储mindrecord文件的路径在config里设置 |
|
|
|
|
|
|
|
|
|
|
|
# 单卡训练示例: |
|
|
|
|
|
|
|
|
训练前,先创建MindRecord文件,以COCO数据集为例 |
|
|
|
|
|
python create_data.py --dataset coco |
|
|
|
|
|
|
|
|
python train.py |
|
|
|
|
|
shell: |
|
|
|
|
|
Ascend: |
|
|
|
|
|
|
|
|
Ascend: |
|
|
|
|
|
# 八卡并行训练示例(在retinanet目录下运行): |
|
|
|
|
|
sh scripts/run_distribute_train.sh 8 500 0.09 RANK_TABLE_FILE(创建的RANK_TABLE_FILE的地址) PRE_TRAINED(预训练checkpoint地址,可选) PRE_TRAINED_EPOCH_SIZE(预训练EPOCH大小,可选) |
|
|
|
|
|
|
|
|
# 八卡并行训练示例(在retinanet目录下运行): |
|
|
|
|
|
|
|
|
例如:sh scripts/run_distribute_train.sh 8 500 0.09 scripts/rank_table_8pcs.json |
|
|
|
|
|
|
|
|
sh scripts/run_distribute_train.sh 8 500 0.1 RANK_TABLE_FILE(创建的RANK_TABLE_FILE的地址) PRE_TRAINED(预训练checkpoint地址) PRE_TRAINED_EPOCH_SIZE(预训练EPOCH大小) |
|
|
|
|
|
例如:sh scripts/run_distribute_train.sh 8 500 0.1 scripts/rank_table_8pcs.json /dataset/retinanet-322_458.ckpt 322 |
|
|
|
|
|
|
|
|
|
|
|
# 单卡训练示例(在retinanet目录下运行): |
|
|
|
|
|
|
|
|
|
|
|
sh scripts/run_single_train.sh 0 500 0.1 /dataset/retinanet-322_458.ckpt 322 |
|
|
|
|
|
|
|
|
# 单卡训练示例(在retinanet目录下运行): |
|
|
|
|
|
sh scripts/run_single_train.sh 0 500 0.09 |
|
|
``` |
|
|
``` |
|
|
|
|
|
|
|
|
#### 结果 |
|
|
#### 结果 |
|
|
@@ -227,7 +214,7 @@ Epoch time: 164531.610, per step time: 359.239 |
|
|
|
|
|
|
|
|
#### <span id="usage">用法</span> |
|
|
#### <span id="usage">用法</span> |
|
|
|
|
|
|
|
|
您可以使用python或shell脚本进行训练。shell脚本的用法如下: |
|
|
|
|
|
|
|
|
使用shell脚本进行评估。shell脚本的用法如下: |
|
|
|
|
|
|
|
|
```eval |
|
|
```eval |
|
|
sh scripts/run_eval.sh [DATASET] [DEVICE_ID] |
|
|
sh scripts/run_eval.sh [DATASET] [DEVICE_ID] |
|
|
@@ -236,13 +223,7 @@ sh scripts/run_eval.sh [DATASET] [DEVICE_ID] |
|
|
#### <span id="running">运行</span> |
|
|
#### <span id="running">运行</span> |
|
|
|
|
|
|
|
|
```eval运行 |
|
|
```eval运行 |
|
|
# 验证示例 |
|
|
|
|
|
|
|
|
|
|
|
python: |
|
|
|
|
|
Ascend: python eval.py |
|
|
|
|
|
checkpoint 的路径在config里设置 |
|
|
|
|
|
shell: |
|
|
|
|
|
Ascend: sh scripts/run_eval.sh coco 0 |
|
|
|
|
|
|
|
|
sh scripts/run_eval.sh coco 0 |
|
|
``` |
|
|
``` |
|
|
|
|
|
|
|
|
> checkpoint 可以在训练过程中产生. |
|
|
> checkpoint 可以在训练过程中产生. |
|
|
@@ -279,9 +260,9 @@ mAP: 0.34747137754625645 |
|
|
| 参数 | Ascend | |
|
|
| 参数 | Ascend | |
|
|
| -------------------------- | ------------------------------------- | |
|
|
| -------------------------- | ------------------------------------- | |
|
|
| 模型名称 | Retinanet | |
|
|
| 模型名称 | Retinanet | |
|
|
| 运行环境 | 华为云 Modelarts | |
|
|
|
|
|
|
|
|
| 运行环境 | Ascend 910; CPU 2.6GHz,192cores;Memory 755G | |
|
|
| 上传时间 | 10/01/2021 | |
|
|
| 上传时间 | 10/01/2021 | |
|
|
| MindSpore 版本 | 1.0.1 | |
|
|
|
|
|
|
|
|
| MindSpore 版本 | 1.2.0 | |
|
|
| 数据集 | 123287 张图片 | |
|
|
| 数据集 | 123287 张图片 | |
|
|
| Batch_size | 32 | |
|
|
| Batch_size | 32 | |
|
|
| 训练参数 | src/config.py | |
|
|
| 训练参数 | src/config.py | |
|
|
@@ -297,9 +278,9 @@ mAP: 0.34747137754625645 |
|
|
| 参数 | Ascend | |
|
|
| 参数 | Ascend | |
|
|
| ------------------- | --------------------------- | |
|
|
| ------------------- | --------------------------- | |
|
|
| 模型名称 | Retinanet | |
|
|
| 模型名称 | Retinanet | |
|
|
| 运行环境 | 华为云 Modelarts | |
|
|
|
|
|
|
|
|
| 运行环境 | Ascend 910; CPU 2.6GHz,192cores;Memory 755G| |
|
|
| 上传时间 | 10/01/2021 | |
|
|
| 上传时间 | 10/01/2021 | |
|
|
| MindSpore 版本 | 1.0.1 | |
|
|
|
|
|
|
|
|
| MindSpore 版本 | 1.2.0 | |
|
|
| 数据集 | 5k 张图片 | |
|
|
| 数据集 | 5k 张图片 | |
|
|
| Batch_size | 32 | |
|
|
| Batch_size | 32 | |
|
|
| 精确度 | mAP[0.3475] | |
|
|
| 精确度 | mAP[0.3475] | |
|
|
|