|
|
|
@@ -0,0 +1,126 @@ |
|
|
|
/**
|
|
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PAD_GPU_FWD_KERNEL_H_
|
|
|
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PAD_GPU_FWD_KERNEL_H_
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <vector>
|
|
|
|
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
|
|
|
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
|
|
|
#include "backend/kernel_compiler/gpu/cuda_impl/pad_impl.cuh"
|
|
|
|
|
|
|
|
namespace mindspore {
|
|
|
|
namespace kernel {
|
|
|
|
template <typename T>
|
|
|
|
class PadGpuFwdKernel : public GpuKernel {
|
|
|
|
public:
|
|
|
|
PadGpuFwdKernel() : shape_size_(0), temp(0), input_size_(0), output_size_(0), workspace_size_(0) {}
|
|
|
|
~PadGpuFwdKernel() override = default;
|
|
|
|
|
|
|
|
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
|
|
|
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
|
|
|
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
|
|
|
|
|
|
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
|
|
|
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
|
|
|
T *input = GetDeviceAddress<T>(inputs, 0);
|
|
|
|
T *output = GetDeviceAddress<T>(outputs, 0);
|
|
|
|
size_t size = output_size_ / sizeof(T);
|
|
|
|
int pad_left = paddings[3][0];
|
|
|
|
int pad_top = paddings[2][0];
|
|
|
|
T pad_value = 0.0;
|
|
|
|
CalPad(size, input, input_shape_[0], input_shape_[1], input_shape_[2], input_shape_[3], output_shape_[2],
|
|
|
|
output_shape_[3], pad_top, pad_left, pad_value, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Init(const CNodePtr &kernel_node) override {
|
|
|
|
// check number of inputs -> should be 1
|
|
|
|
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
|
|
|
if (input_num != 1) {
|
|
|
|
MS_LOG(ERROR) << "Input number is " << input_num << ", but Pad needs 1 input.";
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// check number of output -> should be 1
|
|
|
|
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
|
|
|
if (output_num != 1) {
|
|
|
|
MS_LOG(ERROR) << "Output number is " << output_num << ", but Pad needs 1 output.";
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
|
|
|
shape_size_ = input_shape.size();
|
|
|
|
// shape adjustement -> from 2d/3d to 4d to standardize
|
|
|
|
if (shape_size_ == 4) {
|
|
|
|
} else if (shape_size_ == 3) {
|
|
|
|
auto it = input_shape.begin();
|
|
|
|
input_shape.insert(it, 1); // batch padding
|
|
|
|
shape_size_ = 4;
|
|
|
|
} else if (shape_size_ == 2) {
|
|
|
|
auto it = input_shape.begin();
|
|
|
|
input_shape.insert(it, 2, 1); // channel padding
|
|
|
|
shape_size_ = 4;
|
|
|
|
}
|
|
|
|
paddings = GetValue<std::vector<std::vector<int>>>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("paddings"));
|
|
|
|
// shape adjustement -> from 2d/3d to 4d to standardize
|
|
|
|
if (paddings.size() == 4) {
|
|
|
|
} else if (paddings.size() == 3) {
|
|
|
|
auto it = paddings.begin();
|
|
|
|
paddings.insert(it, 1, {0, 0}); // batch padding
|
|
|
|
} else if (paddings.size() == 2) {
|
|
|
|
auto it = paddings.begin();
|
|
|
|
paddings.insert(it, 2, {0, 0}); // channel padding
|
|
|
|
}
|
|
|
|
input_size_ = 1;
|
|
|
|
for (size_t i = 0; i < shape_size_; i++) {
|
|
|
|
input_size_ *= input_shape[i];
|
|
|
|
input_shape_.push_back(input_shape[i]);
|
|
|
|
}
|
|
|
|
input_size_ *= sizeof(T);
|
|
|
|
output_size_ = 1;
|
|
|
|
for (size_t i = 0; i < shape_size_; i++) {
|
|
|
|
temp = input_shape[i] + (paddings[i][0] + paddings[i][1]); // compute new dim size
|
|
|
|
output_size_ *= temp;
|
|
|
|
output_shape_.push_back(temp); // correct new dimension size
|
|
|
|
}
|
|
|
|
output_size_ *= sizeof(T);
|
|
|
|
InitSizeLists();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void InitSizeLists() override {
|
|
|
|
input_size_list_.push_back(input_size_);
|
|
|
|
output_size_list_.push_back(output_size_);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
size_t shape_size_;
|
|
|
|
size_t temp;
|
|
|
|
std::vector<std::vector<int>> paddings; // list of paddings (tuple of tuple in python)
|
|
|
|
std::vector<int> input_shape_; // dims of the input data
|
|
|
|
std::vector<int> output_shape_; // dims of the output data
|
|
|
|
// default
|
|
|
|
size_t input_size_;
|
|
|
|
size_t output_size_;
|
|
|
|
size_t workspace_size_;
|
|
|
|
std::vector<size_t> input_size_list_;
|
|
|
|
std::vector<size_t> output_size_list_;
|
|
|
|
std::vector<size_t> workspace_size_list_;
|
|
|
|
};
|
|
|
|
} // namespace kernel
|
|
|
|
} // namespace mindspore
|
|
|
|
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PAD_GPU_FWD_KERNEL_H_
|