diff --git a/model_zoo/official/cv/faster_rcnn/eval.py b/model_zoo/official/cv/faster_rcnn/eval.py index 866d9ba7d5..eff5ea3bb0 100644 --- a/model_zoo/official/cv/faster_rcnn/eval.py +++ b/model_zoo/official/cv/faster_rcnn/eval.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import numpy as np from pycocotools.coco import COCO from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net -from mindspore.common import set_seed +from mindspore.common import set_seed, Parameter from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50 from src.config import config @@ -34,16 +34,22 @@ parser = argparse.ArgumentParser(description="FasterRcnn evaluation") parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") parser.add_argument("--ann_file", type=str, default="val.json", help="Ann file, default is val.json.") parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.") +parser.add_argument("--device_target", type=str, default="Ascend", + help="device where the code will be implemented, default is Ascend") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") args_opt = parser.parse_args() -context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) +context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id) def FasterRcnn_eval(dataset_path, ckpt_path, ann_file): """FasterRcnn evaluation.""" ds = create_fasterrcnn_dataset(dataset_path, batch_size=config.test_batch_size, is_training=False) net = Faster_Rcnn_Resnet50(config) param_dict = load_checkpoint(ckpt_path) + if args_opt.device_target == "GPU": + for key, value in param_dict.items(): + tensor = value.asnumpy().astype(np.float32) + param_dict[key] = Parameter(tensor, key) load_param_into_net(net, param_dict) net.set_train(False) diff --git a/model_zoo/official/cv/faster_rcnn/scripts/run_distribute_train_gpu.sh b/model_zoo/official/cv/faster_rcnn/scripts/run_distribute_train_gpu.sh new file mode 100755 index 0000000000..515073e761 --- /dev/null +++ b/model_zoo/official/cv/faster_rcnn/scripts/run_distribute_train_gpu.sh @@ -0,0 +1,44 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +echo "==============================================================================================================" +echo "Please run the script as: " +echo "sh run_distribute_train_gpu.sh DEVICE_NUM PRETRAINED_PATH" +echo "for example: sh run_distribute_train_gpu.sh 8 /path/pretrain.ckpt" +echo "It is better to use absolute path." +echo "==============================================================================================================" + +if [ $# != 2 ] +then + echo "Usage: sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_PATH]" +exit 1 +fi + +rm -rf run_distribute_train +mkdir run_distribute_train +cp -rf ../src/ ../train.py ./run_distribute_train +cd run_distribute_train || exit + +export RANK_SIZE=$1 +PRETRAINED_PATH=$2 +echo "start training on $RANK_SIZE devices" + +mpirun -n $RANK_SIZE \ + python train.py \ + --run_distribute=True \ + --device_target="GPU" \ + --device_num=$RANK_SIZE \ + --pre_trained=$PRETRAINED_PATH > log 2>&1 & diff --git a/model_zoo/official/cv/faster_rcnn/scripts/run_eval_gpu.sh b/model_zoo/official/cv/faster_rcnn/scripts/run_eval_gpu.sh new file mode 100755 index 0000000000..dd6a70e5e5 --- /dev/null +++ b/model_zoo/official/cv/faster_rcnn/scripts/run_eval_gpu.sh @@ -0,0 +1,64 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +if [ $# != 2 ] +then + echo "Usage: sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH]" +exit 1 +fi + +get_real_path(){ + if [ "${1:0:1}" == "/" ]; then + echo "$1" + else + echo "$(realpath -m $PWD/$1)" + fi +} +PATH1=$(get_real_path $1) +PATH2=$(get_real_path $2) +echo $PATH1 +echo $PATH2 + +if [ ! -f $PATH1 ] +then + echo "error: ANN_FILE=$PATH1 is not a file" +exit 1 +fi + +if [ ! -f $PATH2 ] +then + echo "error: CHECKPOINT_PATH=$PATH2 is not a file" +exit 1 +fi + +export DEVICE_NUM=1 +export RANK_SIZE=$DEVICE_NUM +export DEVICE_ID=0 +export RANK_ID=0 + +if [ -d "eval" ]; +then + rm -rf ./eval +fi +mkdir ./eval +cp ../*.py ./eval +cp *.sh ./eval +cp -r ../src ./eval +cd ./eval || exit +env > env.log +echo "start eval for device $DEVICE_ID" +python eval.py --device_target="GPU" --device_id=$DEVICE_ID --ann_file=$PATH1 --checkpoint_path=$PATH2 &> log & +cd .. diff --git a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample.py b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample.py index 3dc91ae3ef..3e9b6ab628 100644 --- a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample.py +++ b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,11 +19,12 @@ import mindspore.nn as nn from mindspore.ops import operations as P from mindspore.common.tensor import Tensor import mindspore.common.dtype as mstype +from mindspore import context class BboxAssignSample(nn.Cell): """ - Bbox assigner and sampler defination. + Bbox assigner and sampler definition. Args: config (dict): Config. @@ -45,12 +46,15 @@ class BboxAssignSample(nn.Cell): def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals): super(BboxAssignSample, self).__init__() cfg = config + _mode_16 = bool(context.get_context("device_target") == "Ascend") + self.dtype = np.float16 if _mode_16 else np.float32 + self.ms_type = mstype.float16 if _mode_16 else mstype.float32 self.batch_size = batch_size - self.neg_iou_thr = Tensor(cfg.neg_iou_thr, mstype.float16) - self.pos_iou_thr = Tensor(cfg.pos_iou_thr, mstype.float16) - self.min_pos_iou = Tensor(cfg.min_pos_iou, mstype.float16) - self.zero_thr = Tensor(0.0, mstype.float16) + self.neg_iou_thr = Tensor(cfg.neg_iou_thr, self.ms_type) + self.pos_iou_thr = Tensor(cfg.pos_iou_thr, self.ms_type) + self.min_pos_iou = Tensor(cfg.min_pos_iou, self.ms_type) + self.zero_thr = Tensor(0.0, self.ms_type) self.num_bboxes = num_bboxes self.num_gts = cfg.num_gts @@ -92,9 +96,9 @@ class BboxAssignSample(nn.Cell): self.assigned_pos_ones = Tensor(np.array(np.ones(self.num_expected_pos), dtype=np.int32)) self.check_neg_mask = Tensor(np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool)) - self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(np.float16)) - self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16)) - self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16)) + self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(self.dtype)) + self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=self.dtype)) + self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=self.dtype)) def construct(self, gt_bboxes_i, gt_labels_i, valid_mask, bboxes, gt_valids): @@ -129,7 +133,7 @@ class BboxAssignSample(nn.Cell): pos_index, valid_pos_index = self.random_choice_with_mask_pos(self.greater(assigned_gt_inds5, 0)) - pos_check_valid = self.cast(self.greater(assigned_gt_inds5, 0), mstype.float16) + pos_check_valid = self.cast(self.greater(assigned_gt_inds5, 0), self.ms_type) pos_check_valid = self.sum_inds(pos_check_valid, -1) valid_pos_index = self.less(self.range_pos_size, pos_check_valid) pos_index = pos_index * self.reshape(self.cast(valid_pos_index, mstype.int32), (self.num_expected_pos, 1)) @@ -140,7 +144,7 @@ class BboxAssignSample(nn.Cell): neg_index, valid_neg_index = self.random_choice_with_mask_neg(self.equal(assigned_gt_inds5, 0)) - num_pos = self.cast(self.logicalnot(valid_pos_index), mstype.float16) + num_pos = self.cast(self.logicalnot(valid_pos_index), self.ms_type) num_pos = self.sum_inds(num_pos, -1) unvalid_pos_index = self.less(self.range_pos_size, num_pos) valid_neg_index = self.logicaland(self.concat((self.check_neg_mask, unvalid_pos_index)), valid_neg_index) diff --git a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample_stage2.py b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample_stage2.py index 5930bff74d..0370005413 100644 --- a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample_stage2.py +++ b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample_stage2.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,11 +19,12 @@ import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore.ops import operations as P from mindspore.common.tensor import Tensor +from mindspore import context class BboxAssignSampleForRcnn(nn.Cell): """ - Bbox assigner and sampler defination. + Bbox assigner and sampler definition. Args: config (dict): Config. @@ -45,6 +46,9 @@ class BboxAssignSampleForRcnn(nn.Cell): def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals): super(BboxAssignSampleForRcnn, self).__init__() cfg = config + _mode_16 = bool(context.get_context("device_target") == "Ascend") + self.dtype = np.float16 if _mode_16 else np.float32 + self.ms_type = mstype.float16 if _mode_16 else mstype.float32 self.batch_size = batch_size self.neg_iou_thr = cfg.neg_iou_thr_stage2 self.pos_iou_thr = cfg.pos_iou_thr_stage2 @@ -83,8 +87,8 @@ class BboxAssignSampleForRcnn(nn.Cell): self.tile = P.Tile() # Check - self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16)) - self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16)) + self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=self.dtype)) + self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=self.dtype)) # Init tensor self.assigned_gt_inds = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) @@ -94,18 +98,18 @@ class BboxAssignSampleForRcnn(nn.Cell): self.assigned_pos_ones = Tensor(np.array(np.ones(self.num_expected_pos), dtype=np.int32)) self.gt_ignores = Tensor(np.array(-1 * np.ones(self.num_gts), dtype=np.int32)) - self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(np.float16)) + self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(self.dtype)) self.check_neg_mask = Tensor(np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool)) - self.bboxs_neg_mask = Tensor(np.zeros((self.num_expected_neg, 4), dtype=np.float16)) + self.bboxs_neg_mask = Tensor(np.zeros((self.num_expected_neg, 4), dtype=self.dtype)) self.labels_neg_mask = Tensor(np.array(np.zeros(self.num_expected_neg), dtype=np.uint8)) self.reshape_shape_pos = (self.num_expected_pos, 1) self.reshape_shape_neg = (self.num_expected_neg, 1) - self.scalar_zero = Tensor(0.0, dtype=mstype.float16) - self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr, dtype=mstype.float16) - self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr, dtype=mstype.float16) - self.scalar_min_pos_iou = Tensor(self.min_pos_iou, dtype=mstype.float16) + self.scalar_zero = Tensor(0.0, dtype=self.ms_type) + self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr, dtype=self.ms_type) + self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr, dtype=self.ms_type) + self.scalar_min_pos_iou = Tensor(self.min_pos_iou, dtype=self.ms_type) def construct(self, gt_bboxes_i, gt_labels_i, valid_mask, bboxes, gt_valids): gt_bboxes_i = self.select(self.cast(self.tile(self.reshape(self.cast(gt_valids, mstype.int32), \ @@ -149,12 +153,12 @@ class BboxAssignSampleForRcnn(nn.Cell): # Get pos index pos_index, valid_pos_index = self.random_choice_with_mask_pos(self.greater(assigned_gt_inds5, 0)) - pos_check_valid = self.cast(self.greater(assigned_gt_inds5, 0), mstype.float16) + pos_check_valid = self.cast(self.greater(assigned_gt_inds5, 0), self.ms_type) pos_check_valid = self.sum_inds(pos_check_valid, -1) valid_pos_index = self.less(self.range_pos_size, pos_check_valid) pos_index = pos_index * self.reshape(self.cast(valid_pos_index, mstype.int32), (self.num_expected_pos, 1)) - num_pos = self.sum_inds(self.cast(self.logicalnot(valid_pos_index), mstype.float16), -1) + num_pos = self.sum_inds(self.cast(self.logicalnot(valid_pos_index), self.ms_type), -1) valid_pos_index = self.cast(valid_pos_index, mstype.int32) pos_index = self.reshape(pos_index, self.reshape_shape_pos) valid_pos_index = self.reshape(valid_pos_index, self.reshape_shape_pos) diff --git a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py index 35130768cd..ec3a8d0fb8 100644 --- a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py +++ b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,6 +20,7 @@ from mindspore.ops import operations as P from mindspore.common.tensor import Tensor import mindspore.common.dtype as mstype from mindspore.ops import functional as F +from mindspore import context from .resnet50 import ResNetFea, ResidualBlockUsing from .bbox_assign_sample_stage2 import BboxAssignSampleForRcnn from .fpn_neck import FeatPyramidNeck @@ -50,6 +51,9 @@ class Faster_Rcnn_Resnet50(nn.Cell): """ def __init__(self, config): super(Faster_Rcnn_Resnet50, self).__init__() + _mode_16 = bool(context.get_context("device_target") == "Ascend") + self.dtype = np.float16 if _mode_16 else np.float32 + self.ms_type = mstype.float16 if _mode_16 else mstype.float32 self.train_batch_size = config.batch_size self.num_classes = config.num_classes self.anchor_scales = config.anchor_scales @@ -157,7 +161,7 @@ class Faster_Rcnn_Resnet50(nn.Cell): self.rpn_max_num = config.rpn_max_num - self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(np.float16)) + self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(self.dtype)) self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool) self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool) self.bbox_mask = Tensor(np.concatenate((self.ones_mask, self.zeros_mask, @@ -165,10 +169,10 @@ class Faster_Rcnn_Resnet50(nn.Cell): self.nms_pad_mask = Tensor(np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask, self.ones_mask, self.zeros_mask), axis=1)) - self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_score_thr) - self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * 0) - self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(np.float16) * -1) - self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_iou_thr) + self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(self.dtype) * config.test_score_thr) + self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(self.dtype) * 0) + self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(self.dtype) * -1) + self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(self.dtype) * config.test_iou_thr) self.test_max_per_img = config.test_max_per_img self.nms_test = P.NMSWithMask(config.test_iou_thr) self.softmax = P.Softmax(axis=1) @@ -183,9 +187,9 @@ class Faster_Rcnn_Resnet50(nn.Cell): # Init tensor roi_align_index = [np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_neg_stage2, 1)) * i, - dtype=np.float16) for i in range(self.train_batch_size)] + dtype=self.dtype) for i in range(self.train_batch_size)] - roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float16) \ + roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=self.dtype) \ for i in range(self.test_batch_size)] self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index)) @@ -276,7 +280,7 @@ class Faster_Rcnn_Resnet50(nn.Cell): self.cast(x[3], mstype.float32)) - roi_feats = self.cast(roi_feats, mstype.float16) + roi_feats = self.cast(roi_feats, self.ms_type) rcnn_masks = self.concat(mask_tuple) rcnn_masks = F.stop_gradient(rcnn_masks) rcnn_mask_squeeze = self.squeeze(self.cast(rcnn_masks, mstype.bool_)) @@ -420,7 +424,7 @@ class Faster_Rcnn_Resnet50(nn.Cell): for i in range(num_levels): anchors = self.anchor_generators[i].grid_anchors( featmap_sizes[i], self.anchor_strides[i]) - multi_level_anchors += (Tensor(anchors.astype(np.float16)),) + multi_level_anchors += (Tensor(anchors.astype(self.dtype)),) return multi_level_anchors diff --git a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/fpn_neck.py b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/fpn_neck.py index 8800518f24..551c5ef0ef 100644 --- a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/fpn_neck.py +++ b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/fpn_neck.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,16 +22,20 @@ from mindspore.common.tensor import Tensor from mindspore.common import dtype as mstype from mindspore.common.initializer import initializer -context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") def bias_init_zeros(shape): """Bias init method.""" - return Tensor(np.array(np.zeros(shape).astype(np.float32)).astype(np.float16)) + if context.get_context("device_target") == "Ascend": + return Tensor(np.array(np.zeros(shape).astype(np.float32)).astype(np.float16)) + return Tensor(np.array(np.zeros(shape).astype(np.float32))) def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'): """Conv2D wrapper.""" shape = (out_channels, in_channels, kernel_size, kernel_size) - weights = initializer("XavierUniform", shape=shape, dtype=mstype.float16) + if context.get_context("device_target") == "Ascend": + weights = initializer("XavierUniform", shape=shape, dtype=mstype.float16).to_tensor() + else: + weights = initializer("XavierUniform", shape=shape, dtype=mstype.float32).to_tensor() shape_bias = (out_channels,) biass = bias_init_zeros(shape_bias) return nn.Conv2d(in_channels, out_channels, diff --git a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/proposal_generator.py b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/proposal_generator.py index f9bcc47df4..bcbb6dcb44 100644 --- a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/proposal_generator.py +++ b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/proposal_generator.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,9 +22,6 @@ from mindspore import Tensor from mindspore import context -context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") - - class Proposal(nn.Cell): """ Proposal subnet. @@ -106,7 +103,11 @@ class Proposal(nn.Cell): self.tile = P.Tile() self.set_train_local(config, training=True) - self.multi_10 = Tensor(10.0, mstype.float16) + _mode_16 = bool(context.get_context("device_target") == "Ascend") + self.dtype = np.float16 if _mode_16 else np.float32 + self.ms_type = mstype.float16 if _mode_16 else mstype.float32 + + self.multi_10 = Tensor(10.0, self.ms_type) def set_train_local(self, config, training=True): """Set training flag.""" @@ -133,7 +134,10 @@ class Proposal(nn.Cell): self.topKv2 = P.TopK(sorted=True) self.topK_shape_stage2 = (self.max_num, 1) self.min_float_num = -65536.0 - self.topK_mask = Tensor(self.min_float_num * np.ones(total_max_topk_input, np.float16)) + if context.get_context("device_target") == "Ascend": + self.topK_mask = Tensor(self.min_float_num * np.ones(total_max_topk_input, np.float16)) + else: + self.topK_mask = Tensor(self.min_float_num * np.ones(total_max_topk_input, np.float32)) def construct(self, rpn_cls_score_total, rpn_bbox_pred_total, anchor_list): proposals_tuple = () @@ -164,16 +168,16 @@ class Proposal(nn.Cell): rpn_cls_score = self.reshape(rpn_cls_score, self.reshape_shape) rpn_cls_score = self.activation(rpn_cls_score) - rpn_cls_score_process = self.cast(self.squeeze(rpn_cls_score[::, 0::]), mstype.float16) + rpn_cls_score_process = self.cast(self.squeeze(rpn_cls_score[::, 0::]), self.ms_type) - rpn_bbox_pred_process = self.cast(self.reshape(rpn_bbox_pred, (-1, 4)), mstype.float16) + rpn_bbox_pred_process = self.cast(self.reshape(rpn_bbox_pred, (-1, 4)), self.ms_type) scores_sorted, topk_inds = self.topKv2(rpn_cls_score_process, self.topK_stage1[idx]) topk_inds = self.reshape(topk_inds, self.topK_shape[idx]) bboxes_sorted = self.gatherND(rpn_bbox_pred_process, topk_inds) - anchors_sorted = self.cast(self.gatherND(anchors, topk_inds), mstype.float16) + anchors_sorted = self.cast(self.gatherND(anchors, topk_inds), self.ms_type) proposals_decode = self.decode(anchors_sorted, bboxes_sorted) @@ -188,7 +192,7 @@ class Proposal(nn.Cell): _, _, _, _, scores = self.split(proposals) scores = self.squeeze(scores) - topk_mask = self.cast(self.topK_mask, mstype.float16) + topk_mask = self.cast(self.topK_mask, self.ms_type) scores_using = self.select(masks, scores, topk_mask) _, topk_inds = self.topKv2(scores_using, self.max_num) diff --git a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/rcnn.py b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/rcnn.py index f5a4efe792..f8e2d1d0db 100644 --- a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/rcnn.py +++ b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/rcnn.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,15 +21,19 @@ from mindspore.ops import operations as P from mindspore.common.tensor import Tensor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter +from mindspore import context class DenseNoTranpose(nn.Cell): """Dense method""" def __init__(self, input_channels, output_channels, weight_init): super(DenseNoTranpose, self).__init__() - - self.weight = Parameter(initializer(weight_init, [input_channels, output_channels], mstype.float16)) - self.bias = Parameter(initializer("zeros", [output_channels], mstype.float16)) + if context.get_context("device_target") == "Ascend": + self.weight = Parameter(initializer(weight_init, [input_channels, output_channels], mstype.float16)) + self.bias = Parameter(initializer("zeros", [output_channels], mstype.float16)) + else: + self.weight = Parameter(initializer(weight_init, [input_channels, output_channels], mstype.float32)) + self.bias = Parameter(initializer("zeros", [output_channels], mstype.float32)) self.matmul = P.MatMul(transpose_b=False) self.bias_add = P.BiasAdd() @@ -68,8 +72,11 @@ class Rcnn(nn.Cell): ): super(Rcnn, self).__init__() cfg = config - self.rcnn_loss_cls_weight = Tensor(np.array(cfg.rcnn_loss_cls_weight).astype(np.float16)) - self.rcnn_loss_reg_weight = Tensor(np.array(cfg.rcnn_loss_reg_weight).astype(np.float16)) + _mode_16 = bool(context.get_context("device_target") == "Ascend") + self.dtype = np.float16 if _mode_16 else np.float32 + self.ms_type = mstype.float16 if _mode_16 else mstype.float32 + self.rcnn_loss_cls_weight = Tensor(np.array(cfg.rcnn_loss_cls_weight).astype(self.dtype)) + self.rcnn_loss_reg_weight = Tensor(np.array(cfg.rcnn_loss_reg_weight).astype(self.dtype)) self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels self.target_means = target_means self.target_stds = target_stds @@ -79,16 +86,16 @@ class Rcnn(nn.Cell): self.test_batch_size = cfg.test_batch_size shape_0 = (self.rcnn_fc_out_channels, representation_size) - weights_0 = initializer("XavierUniform", shape=shape_0[::-1], dtype=mstype.float16) + weights_0 = initializer("XavierUniform", shape=shape_0[::-1], dtype=self.ms_type).to_tensor() shape_1 = (self.rcnn_fc_out_channels, self.rcnn_fc_out_channels) - weights_1 = initializer("XavierUniform", shape=shape_1[::-1], dtype=mstype.float16) + weights_1 = initializer("XavierUniform", shape=shape_1[::-1], dtype=self.ms_type).to_tensor() self.shared_fc_0 = DenseNoTranpose(representation_size, self.rcnn_fc_out_channels, weights_0) self.shared_fc_1 = DenseNoTranpose(self.rcnn_fc_out_channels, self.rcnn_fc_out_channels, weights_1) cls_weight = initializer('Normal', shape=[num_classes, self.rcnn_fc_out_channels][::-1], - dtype=mstype.float16) + dtype=self.ms_type).to_tensor() reg_weight = initializer('Normal', shape=[num_classes * 4, self.rcnn_fc_out_channels][::-1], - dtype=mstype.float16) + dtype=self.ms_type).to_tensor() self.cls_scores = DenseNoTranpose(self.rcnn_fc_out_channels, num_classes, cls_weight) self.reg_scores = DenseNoTranpose(self.rcnn_fc_out_channels, num_classes * 4, reg_weight) @@ -110,13 +117,13 @@ class Rcnn(nn.Cell): self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) - self.value = Tensor(1.0, mstype.float16) + self.value = Tensor(1.0, self.ms_type) self.num_bboxes = (cfg.num_expected_pos_stage2 + cfg.num_expected_neg_stage2) * batch_size rmv_first = np.ones((self.num_bboxes, self.num_classes)) rmv_first[:, 0] = np.zeros((self.num_bboxes,)) - self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16)) + self.rmv_first_tensor = Tensor(rmv_first.astype(self.dtype)) self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size @@ -134,7 +141,7 @@ class Rcnn(nn.Cell): if self.training: bbox_weights = self.cast(self.logicaland(self.greater(labels, 0), mask), mstype.int32) * labels - labels = self.cast(self.onehot(labels, self.num_classes, self.on_value, self.off_value), mstype.float16) + labels = self.cast(self.onehot(labels, self.num_classes, self.on_value, self.off_value), self.ms_type) bbox_targets = self.tile(self.expandims(bbox_targets, 1), (1, self.num_classes, 1)) loss, loss_cls, loss_reg, loss_print = self.loss(x_cls, x_reg, bbox_targets, bbox_weights, labels, mask) @@ -149,12 +156,12 @@ class Rcnn(nn.Cell): loss_print = () loss_cls, _ = self.loss_cls(cls_score, labels) - weights = self.cast(weights, mstype.float16) + weights = self.cast(weights, self.ms_type) loss_cls = loss_cls * weights loss_cls = self.sum_loss(loss_cls, (0,)) / self.sum_loss(weights, (0,)) bbox_weights = self.cast(self.onehot(bbox_weights, self.num_classes, self.on_value, self.off_value), - mstype.float16) + self.ms_type) bbox_weights = bbox_weights * self.rmv_first_tensor pos_bbox_pred = self.reshape(bbox_pred, (self.num_bboxes, -1, 4)) diff --git a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/resnet50.py b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/resnet50.py index f52be4ac4b..cf8f8e8387 100644 --- a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/resnet50.py +++ b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/resnet50.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,12 +22,11 @@ from mindspore.ops import functional as F from mindspore import context -context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") - - def weight_init_ones(shape): """Weight init.""" - return Tensor(np.array(np.ones(shape).astype(np.float32) * 0.01).astype(np.float16)) + if context.get_context("device_target") == "Ascend": + return Tensor(np.array(np.ones(shape).astype(np.float32) * 0.01).astype(np.float16)) + return Tensor(np.array(np.ones(shape).astype(np.float32) * 0.01)) def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'): @@ -41,11 +40,12 @@ def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mod def _BatchNorm2dInit(out_chls, momentum=0.1, affine=True, use_batch_statistics=True): """Batchnorm2D wrapper.""" - gamma_init = Tensor(np.array(np.ones(out_chls)).astype(np.float16)) - beta_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float16)) - moving_mean_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float16)) - moving_var_init = Tensor(np.array(np.ones(out_chls)).astype(np.float16)) - + _mode_16 = bool(context.get_context("device_target") == "Ascend") + dtype = np.float16 if _mode_16 else np.float32 + gamma_init = Tensor(np.array(np.ones(out_chls)).astype(dtype)) + beta_init = Tensor(np.array(np.ones(out_chls) * 0).astype(dtype)) + moving_mean_init = Tensor(np.array(np.ones(out_chls) * 0).astype(dtype)) + moving_var_init = Tensor(np.array(np.ones(out_chls)).astype(dtype)) return nn.BatchNorm2d(out_chls, momentum=momentum, affine=affine, gamma_init=gamma_init, beta_init=beta_init, moving_mean_init=moving_mean_init, moving_var_init=moving_var_init, use_batch_statistics=use_batch_statistics) diff --git a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/rpn.py b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/rpn.py index 6db6e6b18f..218e32b32c 100644 --- a/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/rpn.py +++ b/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/rpn.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import numpy as np import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore.ops import operations as P -from mindspore import Tensor +from mindspore import Tensor, context from mindspore.ops import functional as F from mindspore.common.initializer import initializer from .bbox_assign_sample import BboxAssignSample @@ -100,6 +100,9 @@ class RPN(nn.Cell): cls_out_channels): super(RPN, self).__init__() cfg_rpn = config + _mode_16 = bool(context.get_context("device_target") == "Ascend") + self.dtype = np.float16 if _mode_16 else np.float32 + self.ms_type = mstype.float16 if _mode_16 else mstype.float32 self.num_bboxes = cfg_rpn.num_bboxes self.slice_index = () self.feature_anchor_shape = () @@ -114,7 +117,7 @@ class RPN(nn.Cell): self.batch_size = batch_size self.test_batch_size = cfg_rpn.test_batch_size self.num_layers = 5 - self.real_ratio = Tensor(np.ones((1, 1)).astype(np.float16)) + self.real_ratio = Tensor(np.ones((1, 1)).astype(self.dtype)) self.rpn_convs_list = nn.layer.CellList(self._make_rpn_layer(self.num_layers, in_channels, feat_channels, num_anchors, cls_out_channels)) @@ -123,15 +126,15 @@ class RPN(nn.Cell): self.reshape = P.Reshape() self.concat = P.Concat(axis=0) self.fill = P.Fill() - self.placeh1 = Tensor(np.ones((1,)).astype(np.float16)) + self.placeh1 = Tensor(np.ones((1,)).astype(self.dtype)) self.trans_shape = (0, 2, 3, 1) self.reshape_shape_reg = (-1, 4) self.reshape_shape_cls = (-1,) - self.rpn_loss_reg_weight = Tensor(np.array(cfg_rpn.rpn_loss_reg_weight).astype(np.float16)) - self.rpn_loss_cls_weight = Tensor(np.array(cfg_rpn.rpn_loss_cls_weight).astype(np.float16)) - self.num_expected_total = Tensor(np.array(cfg_rpn.num_expected_neg * self.batch_size).astype(np.float16)) + self.rpn_loss_reg_weight = Tensor(np.array(cfg_rpn.rpn_loss_reg_weight).astype(self.dtype)) + self.rpn_loss_cls_weight = Tensor(np.array(cfg_rpn.rpn_loss_cls_weight).astype(self.dtype)) + self.num_expected_total = Tensor(np.array(cfg_rpn.num_expected_neg * self.batch_size).astype(self.dtype)) self.num_bboxes = cfg_rpn.num_bboxes self.get_targets = BboxAssignSample(cfg_rpn, self.batch_size, self.num_bboxes, False) self.CheckValid = P.CheckValid() @@ -142,9 +145,9 @@ class RPN(nn.Cell): self.cast = P.Cast() self.tile = P.Tile() self.zeros_like = P.ZerosLike() - self.loss = Tensor(np.zeros((1,)).astype(np.float16)) - self.clsloss = Tensor(np.zeros((1,)).astype(np.float16)) - self.regloss = Tensor(np.zeros((1,)).astype(np.float16)) + self.loss = Tensor(np.zeros((1,)).astype(self.dtype)) + self.clsloss = Tensor(np.zeros((1,)).astype(self.dtype)) + self.regloss = Tensor(np.zeros((1,)).astype(self.dtype)) def _make_rpn_layer(self, num_layers, in_channels, feat_channels, num_anchors, cls_out_channels): """ @@ -164,18 +167,18 @@ class RPN(nn.Cell): shp_weight_conv = (feat_channels, in_channels, 3, 3) shp_bias_conv = (feat_channels,) - weight_conv = initializer('Normal', shape=shp_weight_conv, dtype=mstype.float16) - bias_conv = initializer(0, shape=shp_bias_conv, dtype=mstype.float16) + weight_conv = initializer('Normal', shape=shp_weight_conv, dtype=self.ms_type).to_tensor() + bias_conv = initializer(0, shape=shp_bias_conv, dtype=self.ms_type).to_tensor() shp_weight_cls = (num_anchors * cls_out_channels, feat_channels, 1, 1) shp_bias_cls = (num_anchors * cls_out_channels,) - weight_cls = initializer('Normal', shape=shp_weight_cls, dtype=mstype.float16) - bias_cls = initializer(0, shape=shp_bias_cls, dtype=mstype.float16) + weight_cls = initializer('Normal', shape=shp_weight_cls, dtype=self.ms_type).to_tensor() + bias_cls = initializer(0, shape=shp_bias_cls, dtype=self.ms_type).to_tensor() shp_weight_reg = (num_anchors * 4, feat_channels, 1, 1) shp_bias_reg = (num_anchors * 4,) - weight_reg = initializer('Normal', shape=shp_weight_reg, dtype=mstype.float16) - bias_reg = initializer(0, shape=shp_bias_reg, dtype=mstype.float16) + weight_reg = initializer('Normal', shape=shp_weight_reg, dtype=self.ms_type).to_tensor() + bias_reg = initializer(0, shape=shp_bias_reg, dtype=self.ms_type).to_tensor() for i in range(num_layers): rpn_layer.append(RpnRegClsBlock(in_channels, feat_channels, num_anchors, cls_out_channels, \ @@ -248,9 +251,9 @@ class RPN(nn.Cell): mstype.bool_), anchor_using_list, gt_valids_i) - bbox_weight = self.cast(bbox_weight, mstype.float16) - label = self.cast(label, mstype.float16) - label_weight = self.cast(label_weight, mstype.float16) + bbox_weight = self.cast(bbox_weight, self.ms_type) + label = self.cast(label, self.ms_type) + label_weight = self.cast(label_weight, self.ms_type) for j in range(self.num_layers): begin = self.slice_index[j] diff --git a/model_zoo/official/cv/faster_rcnn/src/config.py b/model_zoo/official/cv/faster_rcnn/src/config.py index a2a63947fb..63d727a25b 100644 --- a/model_zoo/official/cv/faster_rcnn/src/config.py +++ b/model_zoo/official/cv/faster_rcnn/src/config.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -113,8 +113,6 @@ config = ed({ # LR "base_lr": 0.02, - "base_step": 58633, - "total_epoch": 13, "warmup_step": 500, "warmup_ratio": 1/3.0, "sgd_step": [8, 11], diff --git a/model_zoo/official/cv/faster_rcnn/src/dataset.py b/model_zoo/official/cv/faster_rcnn/src/dataset.py index 131ac86c0a..ebc7ca0fc5 100644 --- a/model_zoo/official/cv/faster_rcnn/src/dataset.py +++ b/model_zoo/official/cv/faster_rcnn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,6 +21,7 @@ import numpy as np from numpy import random import mmcv +from mindspore import context import mindspore.dataset as de import mindspore.dataset.vision.c_transforms as C from mindspore.mindrecord import FileWriter @@ -213,7 +214,7 @@ def impad_to_multiple_column(img, img_shape, gt_bboxes, gt_label, gt_num): def imnormalize_column(img, img_shape, gt_bboxes, gt_label, gt_num): """imnormalize operation for image""" - img_data = mmcv.imnormalize(img, [123.675, 116.28, 103.53], [58.395, 57.12, 57.375], True) + img_data = mmcv.imnormalize(img, np.array([123.675, 116.28, 103.53]), np.array([58.395, 57.12, 57.375]), True) img_data = img_data.astype(np.float32) return (img_data, img_shape, gt_bboxes, gt_label, gt_num) @@ -232,9 +233,14 @@ def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num): def transpose_column(img, img_shape, gt_bboxes, gt_label, gt_num): """transpose operation for image""" img_data = img.transpose(2, 0, 1).copy() - img_data = img_data.astype(np.float16) - img_shape = img_shape.astype(np.float16) - gt_bboxes = gt_bboxes.astype(np.float16) + if context.get_context("device_target") == "Ascend": + img_data = img_data.astype(np.float16) + img_shape = img_shape.astype(np.float16) + gt_bboxes = gt_bboxes.astype(np.float16) + else: + img_data = img_data.astype(np.float32) + img_shape = img_shape.astype(np.float32) + gt_bboxes = gt_bboxes.astype(np.float32) gt_label = gt_label.astype(np.int32) gt_num = gt_num.astype(np.bool) diff --git a/model_zoo/official/cv/faster_rcnn/src/lr_schedule.py b/model_zoo/official/cv/faster_rcnn/src/lr_schedule.py index d46510a718..d5440246de 100644 --- a/model_zoo/official/cv/faster_rcnn/src/lr_schedule.py +++ b/model_zoo/official/cv/faster_rcnn/src/lr_schedule.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -25,12 +25,10 @@ def a_cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps): learning_rate = (1 + math.cos(base * math.pi)) / 2 * base_lr return learning_rate -def dynamic_lr(config, rank_size=1): +def dynamic_lr(config, steps_per_epoch): """dynamic learning rate generator""" base_lr = config.base_lr - - base_step = (config.base_step // rank_size) + rank_size - total_steps = int(base_step * config.total_epoch) + total_steps = steps_per_epoch * config.epoch_size warmup_steps = int(config.warmup_step) lr = [] for i in range(total_steps): diff --git a/model_zoo/official/cv/faster_rcnn/src/network_define.py b/model_zoo/official/cv/faster_rcnn/src/network_define.py index 658d5c0876..5cbe0abfe0 100644 --- a/model_zoo/official/cv/faster_rcnn/src/network_define.py +++ b/model_zoo/official/cv/faster_rcnn/src/network_define.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import mindspore.nn as nn from mindspore.common.tensor import Tensor from mindspore.ops import functional as F from mindspore.ops import composite as C -from mindspore import ParameterTuple +from mindspore import ParameterTuple, context from mindspore.train.callback import Callback from mindspore.nn.wrap.grad_reducer import DistributedGradReducer @@ -167,7 +167,10 @@ class TrainOneStepCell(nn.Cell): self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) - self.sens = Tensor((np.ones((1,)) * sens).astype(np.float16)) + if context.get_context("device_target") == "Ascend": + self.sens = Tensor((np.ones((1,)) * sens).astype(np.float16)) + else: + self.sens = Tensor((np.ones((1,)) * sens).astype(np.float32)) self.reduce_flag = reduce_flag if reduce_flag: self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) diff --git a/model_zoo/official/cv/faster_rcnn/train.py b/model_zoo/official/cv/faster_rcnn/train.py index bcdbbfe310..67b52eb28d 100644 --- a/model_zoo/official/cv/faster_rcnn/train.py +++ b/model_zoo/official/cv/faster_rcnn/train.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,10 +19,11 @@ import os import time import argparse import ast +import numpy as np import mindspore.common.dtype as mstype -from mindspore import context, Tensor -from mindspore.communication.management import init +from mindspore import context, Tensor, Parameter +from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor from mindspore.train import Model from mindspore.context import ParallelMode @@ -42,20 +43,30 @@ parser = argparse.ArgumentParser(description="FasterRcnn training") parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.") parser.add_argument("--dataset", type=str, default="coco", help="Dataset name, default: coco.") parser.add_argument("--pre_trained", type=str, default="", help="Pretrained file path.") +parser.add_argument("--device_target", type=str, default="Ascend", + help="device where the code will be implemented, default is Ascend") parser.add_argument("--device_id", type=int, default=0, help="Device id, default: 0.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default: 1.") parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default: 0.") args_opt = parser.parse_args() -context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) +context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id) if __name__ == '__main__': if args_opt.run_distribute: - rank = args_opt.rank_id - device_num = args_opt.device_num - context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, - gradients_mean=True) - init() + if args_opt.device_target == "Ascend": + rank = args_opt.rank_id + device_num = args_opt.device_num + context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, + gradients_mean=True) + init() + else: + init("nccl") + context.reset_auto_parallel_context() + rank = get_rank() + device_num = get_group_size() + context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, + gradients_mean=True) else: rank = 0 device_num = 1 @@ -116,10 +127,14 @@ if __name__ == '__main__': for item in list(param_dict.keys()): if not item.startswith('backbone'): param_dict.pop(item) + if args_opt.device_target == "GPU": + for key, value in param_dict.items(): + tensor = value.asnumpy().astype(np.float32) + param_dict[key] = Parameter(tensor, key) load_param_into_net(net, param_dict) loss = LossNet() - lr = Tensor(dynamic_lr(config, rank_size=device_num), mstype.float32) + lr = Tensor(dynamic_lr(config, dataset_size), mstype.float32) opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, weight_decay=config.weight_decay, loss_scale=config.loss_scale) @@ -141,4 +156,4 @@ if __name__ == '__main__': cb += [ckpoint_cb] model = Model(net) - model.train(config.epoch_size, dataset, callbacks=cb) + model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=False)