|
|
|
@@ -19,18 +19,20 @@ import numpy as np |
|
|
|
|
|
|
|
import mindspore.dataset.engine as de |
|
|
|
import mindspore.dataset.transforms.vision.py_transforms as F |
|
|
|
import mindspore.dataset.transforms.vision.c_transforms as C |
|
|
|
from mindspore import log as logger |
|
|
|
from util import visualize_list, save_and_check_md5 |
|
|
|
from util import visualize_list, save_and_check_md5, diff_mse |
|
|
|
|
|
|
|
DATA_DIR = "../data/dataset/testImageNetData/train/" |
|
|
|
|
|
|
|
GENERATE_GOLDEN = False |
|
|
|
|
|
|
|
def test_invert(plot=False): |
|
|
|
|
|
|
|
def test_invert_py(plot=False): |
|
|
|
""" |
|
|
|
Test Invert |
|
|
|
Test Invert python op |
|
|
|
""" |
|
|
|
logger.info("Test Invert") |
|
|
|
logger.info("Test Invert Python op") |
|
|
|
|
|
|
|
# Original Images |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
@@ -52,7 +54,7 @@ def test_invert(plot=False): |
|
|
|
np.transpose(image, (0, 2, 3, 1)), |
|
|
|
axis=0) |
|
|
|
|
|
|
|
# Color Inverted Images |
|
|
|
# Color Inverted Images |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
|
|
|
|
transforms_invert = F.ComposeOp([F.Decode(), |
|
|
|
@@ -83,11 +85,143 @@ def test_invert(plot=False): |
|
|
|
visualize_list(images_original, images_invert) |
|
|
|
|
|
|
|
|
|
|
|
def test_invert_md5(): |
|
|
|
def test_invert_c(plot=False): |
|
|
|
""" |
|
|
|
Test Invert Cpp op |
|
|
|
""" |
|
|
|
logger.info("Test Invert cpp op") |
|
|
|
|
|
|
|
# Original Images |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
|
|
|
|
transforms_original = [C.Decode(), C.Resize(size=[224, 224])] |
|
|
|
|
|
|
|
ds_original = ds.map(input_columns="image", |
|
|
|
operations=transforms_original) |
|
|
|
|
|
|
|
ds_original = ds_original.batch(512) |
|
|
|
|
|
|
|
for idx, (image, _) in enumerate(ds_original): |
|
|
|
if idx == 0: |
|
|
|
images_original = image |
|
|
|
else: |
|
|
|
images_original = np.append(images_original, |
|
|
|
image, |
|
|
|
axis=0) |
|
|
|
|
|
|
|
# Invert Images |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
|
|
|
|
transform_invert = [C.Decode(), C.Resize(size=[224, 224]), |
|
|
|
C.Invert()] |
|
|
|
|
|
|
|
ds_invert = ds.map(input_columns="image", |
|
|
|
operations=transform_invert) |
|
|
|
|
|
|
|
ds_invert = ds_invert.batch(512) |
|
|
|
|
|
|
|
for idx, (image, _) in enumerate(ds_invert): |
|
|
|
if idx == 0: |
|
|
|
images_invert = image |
|
|
|
else: |
|
|
|
images_invert = np.append(images_invert, |
|
|
|
image, |
|
|
|
axis=0) |
|
|
|
if plot: |
|
|
|
visualize_list(images_original, images_invert) |
|
|
|
|
|
|
|
num_samples = images_original.shape[0] |
|
|
|
mse = np.zeros(num_samples) |
|
|
|
for i in range(num_samples): |
|
|
|
mse[i] = diff_mse(images_invert[i], images_original[i]) |
|
|
|
logger.info("MSE= {}".format(str(np.mean(mse)))) |
|
|
|
|
|
|
|
|
|
|
|
def test_invert_py_c(plot=False): |
|
|
|
""" |
|
|
|
Test Invert Cpp op and python op |
|
|
|
""" |
|
|
|
logger.info("Test Invert cpp and python op") |
|
|
|
|
|
|
|
# Invert Images in cpp |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
ds = ds.map(input_columns=["image"], |
|
|
|
operations=[C.Decode(), C.Resize((224, 224))]) |
|
|
|
|
|
|
|
ds_c_invert = ds.map(input_columns="image", |
|
|
|
operations=C.Invert()) |
|
|
|
|
|
|
|
ds_c_invert = ds_c_invert.batch(512) |
|
|
|
|
|
|
|
for idx, (image, _) in enumerate(ds_c_invert): |
|
|
|
if idx == 0: |
|
|
|
images_c_invert = image |
|
|
|
else: |
|
|
|
images_c_invert = np.append(images_c_invert, |
|
|
|
image, |
|
|
|
axis=0) |
|
|
|
|
|
|
|
# invert images in python |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
ds = ds.map(input_columns=["image"], |
|
|
|
operations=[C.Decode(), C.Resize((224, 224))]) |
|
|
|
|
|
|
|
transforms_p_invert = F.ComposeOp([lambda img: img.astype(np.uint8), |
|
|
|
F.ToPIL(), |
|
|
|
F.Invert(), |
|
|
|
np.array]) |
|
|
|
|
|
|
|
ds_p_invert = ds.map(input_columns="image", |
|
|
|
operations=transforms_p_invert()) |
|
|
|
|
|
|
|
ds_p_invert = ds_p_invert.batch(512) |
|
|
|
|
|
|
|
for idx, (image, _) in enumerate(ds_p_invert): |
|
|
|
if idx == 0: |
|
|
|
images_p_invert = image |
|
|
|
else: |
|
|
|
images_p_invert = np.append(images_p_invert, |
|
|
|
image, |
|
|
|
axis=0) |
|
|
|
|
|
|
|
num_samples = images_c_invert.shape[0] |
|
|
|
mse = np.zeros(num_samples) |
|
|
|
for i in range(num_samples): |
|
|
|
mse[i] = diff_mse(images_p_invert[i], images_c_invert[i]) |
|
|
|
logger.info("MSE= {}".format(str(np.mean(mse)))) |
|
|
|
|
|
|
|
if plot: |
|
|
|
visualize_list(images_c_invert, images_p_invert, visualize_mode=2) |
|
|
|
|
|
|
|
|
|
|
|
def test_invert_one_channel(): |
|
|
|
""" |
|
|
|
Test Invert with md5 check |
|
|
|
Test Invert cpp op with one channel image |
|
|
|
""" |
|
|
|
logger.info("Test Invert C Op With One Channel Images") |
|
|
|
|
|
|
|
c_op = C.Invert() |
|
|
|
|
|
|
|
try: |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
ds = ds.map(input_columns=["image"], |
|
|
|
operations=[C.Decode(), |
|
|
|
C.Resize((224, 224)), |
|
|
|
lambda img: np.array(img[:, :, 0])]) |
|
|
|
|
|
|
|
ds.map(input_columns="image", |
|
|
|
operations=c_op) |
|
|
|
|
|
|
|
except RuntimeError as e: |
|
|
|
logger.info("Got an exception in DE: {}".format(str(e))) |
|
|
|
assert "The shape" in str(e) |
|
|
|
|
|
|
|
|
|
|
|
def test_invert_md5_py(): |
|
|
|
""" |
|
|
|
logger.info("Test Invert with md5 check") |
|
|
|
Test Invert python op with md5 check |
|
|
|
""" |
|
|
|
logger.info("Test Invert python op with md5 check") |
|
|
|
|
|
|
|
# Generate dataset |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
@@ -98,10 +232,34 @@ def test_invert_md5(): |
|
|
|
|
|
|
|
data = ds.map(input_columns="image", operations=transforms_invert()) |
|
|
|
# Compare with expected md5 from images |
|
|
|
filename = "invert_01_result.npz" |
|
|
|
filename = "invert_01_result_py.npz" |
|
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) |
|
|
|
|
|
|
|
|
|
|
|
def test_invert_md5_c(): |
|
|
|
""" |
|
|
|
Test Invert cpp op with md5 check |
|
|
|
""" |
|
|
|
logger.info("Test Invert cpp op with md5 check") |
|
|
|
|
|
|
|
# Generate dataset |
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) |
|
|
|
|
|
|
|
transforms_invert = [C.Decode(), |
|
|
|
C.Resize(size=[224, 224]), |
|
|
|
C.Invert(), |
|
|
|
F.ToTensor()] |
|
|
|
|
|
|
|
data = ds.map(input_columns="image", operations=transforms_invert) |
|
|
|
# Compare with expected md5 from images |
|
|
|
filename = "invert_01_result_c.npz" |
|
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
test_invert(plot=True) |
|
|
|
test_invert_md5() |
|
|
|
test_invert_py(plot=False) |
|
|
|
test_invert_c(plot=False) |
|
|
|
test_invert_py_c(plot=False) |
|
|
|
test_invert_one_channel() |
|
|
|
test_invert_md5_py() |
|
|
|
test_invert_md5_c() |