| @@ -1,12 +1,12 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| @@ -1,12 +1,12 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| @@ -1,12 +1,12 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| @@ -1,12 +1,12 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| @@ -344,7 +344,7 @@ python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_ | |||
| ### Usage | |||
| Before performing inference, the air file must bu exported by export script on the Ascend910 environment. | |||
| Before performing inference, the model file must be exported by export script on the Ascend910 environment. | |||
| ```shell | |||
| # Ascend310 inference | |||
| @@ -216,7 +216,7 @@ sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [DEVICE_ID] | |||
| ├─lr_schedule.py // 学习率生成器 | |||
| ├─network_define.py // Faster R-CNN网络定义 | |||
| └─util.py // 例行操作 | |||
| ├─export.py // 导出 AIR,MINDIR,ONNX模型的脚本 | |||
| ├─export.py // 导出 AIR,MINDIR模型的脚本 | |||
| ├─eval.py // 评估脚本 | |||
| ├─postprogress.py // 310推理后处理脚本 | |||
| └─train.py // 训练脚本 | |||
| @@ -74,12 +74,14 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil | |||
| . | |||
| └─Inception-v3 | |||
| ├─README.md | |||
| ├─ascend310_infer # application for 310 inference | |||
| ├─scripts | |||
| ├─run_standalone_train_cpu.sh # launch standalone training with cpu platform | |||
| ├─run_standalone_train_gpu.sh # launch standalone training with gpu platform(1p) | |||
| ├─run_distribute_train_gpu.sh # launch distributed training with gpu platform(8p) | |||
| ├─run_standalone_train.sh # launch standalone training with ascend platform(1p) | |||
| ├─run_distribute_train.sh # launch distributed training with ascend platform(8p) | |||
| ├─run_infer_310.sh # shell script for 310 inference | |||
| ├─run_eval_cpu.sh # launch evaluation with cpu platform | |||
| ├─run_eval_gpu.sh # launch evaluation with gpu platform | |||
| └─run_eval.sh # launch evaluating with ascend platform | |||
| @@ -91,6 +93,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil | |||
| ├─lr_generator.py # learning rate generator | |||
| ├─eval.py # eval net | |||
| ├─export.py # convert checkpoint | |||
| ├─postprogress.py # post process for 310 inference | |||
| └─train.py # train net | |||
| ``` | |||
| @@ -238,6 +241,35 @@ Evaluation result will be stored in the example path, you can find result like t | |||
| metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942} | |||
| ``` | |||
| ## Model Export | |||
| ```shell | |||
| python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] | |||
| ``` | |||
| `EXPORT_FORMAT` should be in ["AIR", "MINDIR"] | |||
| ## Inference Process | |||
| ### Usage | |||
| Before performing inference, the model file must be exported by export script on the Ascend910 environment. | |||
| ```shell | |||
| # Ascend310 inference | |||
| sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID] | |||
| ``` | |||
| -NOTE: Ascend310 inference use Imagenet dataset . The label of the image is the number of folder which is started from 0 after sorting. | |||
| ### result | |||
| Inference result is saved in current path, you can find result like this in acc.log file. | |||
| ```python | |||
| accuracy:78.742 | |||
| ``` | |||
| # [Model description](#contents) | |||
| ## [Performance](#contents) | |||
| @@ -85,12 +85,14 @@ InceptionV3的总体网络架构如下: | |||
| . | |||
| └─Inception-v3 | |||
| ├─README.md | |||
| ├─ascend310_infer # 实现310推理源代码 | |||
| ├─scripts | |||
| ├─run_standalone_train_cpu.sh # 启动CPU训练 | |||
| ├─run_standalone_train_gpu.sh # 启动GPU单机训练(单卡) | |||
| ├─run_distribute_train_gpu.sh # 启动GPU分布式训练(8卡) | |||
| ├─run_standalone_train.sh # 启动Ascend单机训练(单卡) | |||
| ├─run_distribute_train.sh # 启动Ascend分布式训练(8卡) | |||
| ├─run_infer_310.sh # Ascend推理shell脚本 | |||
| ├─run_eval_cpu.sh # 启动CPU评估 | |||
| ├─run_eval_gpu.sh # 启动GPU评估 | |||
| └─run_eval.sh # 启动Ascend评估 | |||
| @@ -101,7 +103,8 @@ InceptionV3的总体网络架构如下: | |||
| ├─loss.py # 自定义交叉熵损失函数 | |||
| ├─lr_generator.py # 学习率生成器 | |||
| ├─eval.py # 评估网络 | |||
| ├─export.py # 转换检查点 | |||
| ├─export.py # 导出 AIR,MINDIR模型的脚本 | |||
| ├─postprogress.py # 310推理后处理脚本 | |||
| └─train.py # 训练网络 | |||
| ``` | |||
| @@ -243,6 +246,35 @@ epoch time: 6358482.104 ms, per step time: 16303.800 ms | |||
| metric:{'Loss':1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942} | |||
| ``` | |||
| ## 模型导出 | |||
| ```shell | |||
| python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] | |||
| ``` | |||
| `EXPORT_FORMAT` 可选 ["AIR", "MINDIR"] | |||
| ## 推理过程 | |||
| ### 使用方法 | |||
| 在推理之前需要在昇腾910环境上完成模型的导出。 | |||
| ```shell | |||
| # Ascend310 inference | |||
| sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID] | |||
| ``` | |||
| -注意:310推理使用ImageNet数据集. 图片的标签是将所在文件夹排序后获得的从0开始的编号 | |||
| ### 结果 | |||
| 推理的结果保存在当前目录下,在acc.log日志文件中可以找到类似以下的结果。 | |||
| ```python | |||
| accuracy:78.742 | |||
| ``` | |||
| # 模型描述 | |||
| ## 性能 | |||
| @@ -0,0 +1,14 @@ | |||
| cmake_minimum_required(VERSION 3.14.1) | |||
| project(Ascend310Infer) | |||
| add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined") | |||
| set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) | |||
| option(MINDSPORE_PATH "mindspore install path" "") | |||
| include_directories(${MINDSPORE_PATH}) | |||
| include_directories(${MINDSPORE_PATH}/include) | |||
| include_directories(${PROJECT_SRC_ROOT}) | |||
| find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib) | |||
| file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*) | |||
| add_executable(main src/main.cc src/utils.cc) | |||
| target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags) | |||
| @@ -0,0 +1,23 @@ | |||
| #!/bin/bash | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ ! -d out ]; then | |||
| mkdir out | |||
| fi | |||
| cd out || exit | |||
| cmake .. \ | |||
| -DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`" | |||
| make | |||
| @@ -0,0 +1,32 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INFERENCE_UTILS_H_ | |||
| #define MINDSPORE_INFERENCE_UTILS_H_ | |||
| #include <sys/stat.h> | |||
| #include <dirent.h> | |||
| #include <vector> | |||
| #include <string> | |||
| #include <memory> | |||
| #include "include/api/types.h" | |||
| std::vector<std::string> GetAllFiles(std::string_view dirName); | |||
| DIR *OpenDir(std::string_view dirName); | |||
| std::string RealPath(std::string_view path); | |||
| mindspore::MSTensor ReadFileToTensor(const std::string &file); | |||
| int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs); | |||
| #endif | |||
| @@ -0,0 +1,152 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <sys/time.h> | |||
| #include <gflags/gflags.h> | |||
| #include <dirent.h> | |||
| #include <iostream> | |||
| #include <string> | |||
| #include <algorithm> | |||
| #include <iosfwd> | |||
| #include <vector> | |||
| #include <fstream> | |||
| #include "../inc/utils.h" | |||
| #include "include/dataset/execute.h" | |||
| #include "include/dataset/transforms.h" | |||
| #include "include/dataset/vision.h" | |||
| #include "include/dataset/vision_ascend.h" | |||
| #include "include/api/types.h" | |||
| #include "include/api/model.h" | |||
| #include "include/api/serialization.h" | |||
| #include "include/api/context.h" | |||
| using mindspore::Serialization; | |||
| using mindspore::Model; | |||
| using mindspore::Context; | |||
| using mindspore::Status; | |||
| using mindspore::ModelType; | |||
| using mindspore::Graph; | |||
| using mindspore::GraphCell; | |||
| using mindspore::kSuccess; | |||
| using mindspore::MSTensor; | |||
| using mindspore::DataType; | |||
| using mindspore::dataset::Execute; | |||
| using mindspore::dataset::TensorTransform; | |||
| using mindspore::dataset::vision::Decode; | |||
| using mindspore::dataset::vision::Resize; | |||
| using mindspore::dataset::vision::CenterCrop; | |||
| using mindspore::dataset::vision::Normalize; | |||
| using mindspore::dataset::vision::HWC2CHW; | |||
| using mindspore::dataset::transforms::TypeCast; | |||
| DEFINE_string(model_path, "", "model path"); | |||
| DEFINE_string(dataset_path, ".", "dataset path"); | |||
| DEFINE_int32(device_id, 0, "device id"); | |||
| int main(int argc, char **argv) { | |||
| gflags::ParseCommandLineFlags(&argc, &argv, true); | |||
| if (RealPath(FLAGS_model_path).empty()) { | |||
| std::cout << "Invalid model" << std::endl; | |||
| return 1; | |||
| } | |||
| auto context = std::make_shared<Context>(); | |||
| auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>(); | |||
| ascend310_info->SetDeviceID(FLAGS_device_id); | |||
| context->MutableDeviceInfo().push_back(ascend310_info); | |||
| Graph graph; | |||
| Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph); | |||
| if (ret != kSuccess) { | |||
| std::cout << "Load model failed." << std::endl; | |||
| return 1; | |||
| } | |||
| Model model; | |||
| ret = model.Build(GraphCell(graph), context); | |||
| if (ret != kSuccess) { | |||
| std::cout << "ERROR: Build failed." << std::endl; | |||
| return 1; | |||
| } | |||
| std::vector<MSTensor> modelInputs = model.GetInputs(); | |||
| auto all_files = GetAllFiles(FLAGS_dataset_path); | |||
| if (all_files.empty()) { | |||
| std::cout << "ERROR: no input data." << std::endl; | |||
| return 1; | |||
| } | |||
| std::shared_ptr<TensorTransform> decode(new Decode()); | |||
| std::shared_ptr<TensorTransform> resize(new Resize({299})); | |||
| std::shared_ptr<TensorTransform> centerCrop(new CenterCrop({299})); | |||
| std::shared_ptr<TensorTransform> normalize(new Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375})); | |||
| std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW()); | |||
| mindspore::dataset::Execute transform({decode, resize, centerCrop, normalize, hwc2chw}); | |||
| std::map<double, double> costTime_map; | |||
| size_t size = all_files.size(); | |||
| for (size_t i = 0; i < size; ++i) { | |||
| struct timeval start; | |||
| struct timeval end; | |||
| double startTime_ms; | |||
| double endTime_ms; | |||
| std::vector<MSTensor> inputs; | |||
| std::vector<MSTensor> outputs; | |||
| std::cout << "Start predict input files:" << all_files[i] << std::endl; | |||
| mindspore::MSTensor image = ReadFileToTensor(all_files[i]); | |||
| transform(image, &image); | |||
| inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(), | |||
| image.Data().get(), image.DataSize()); | |||
| gettimeofday(&start, NULL); | |||
| model.Predict(inputs, &outputs); | |||
| gettimeofday(&end, NULL); | |||
| startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; | |||
| endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; | |||
| costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms)); | |||
| WriteResult(all_files[i], outputs); | |||
| } | |||
| double average = 0.0; | |||
| int infer_cnt = 0; | |||
| char tmpCh[256] = {0}; | |||
| for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { | |||
| double diff = 0.0; | |||
| diff = iter->second - iter->first; | |||
| average += diff; | |||
| infer_cnt++; | |||
| } | |||
| average = average/infer_cnt; | |||
| snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d\n", average, infer_cnt); | |||
| std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl; | |||
| std::string file_name = "./time_Result" + std::string("/test_perform_static.txt"); | |||
| std::ofstream file_stream(file_name.c_str(), std::ios::trunc); | |||
| file_stream << tmpCh; | |||
| file_stream.close(); | |||
| costTime_map.clear(); | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,130 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "inc/utils.h" | |||
| #include <fstream> | |||
| #include <algorithm> | |||
| #include <iostream> | |||
| using mindspore::MSTensor; | |||
| using mindspore::DataType; | |||
| std::vector<std::string> GetAllFiles(std::string_view dirName) { | |||
| struct dirent *filename; | |||
| DIR *dir = OpenDir(dirName); | |||
| if (dir == nullptr) { | |||
| return {}; | |||
| } | |||
| std::vector<std::string> res; | |||
| while ((filename = readdir(dir)) != nullptr) { | |||
| std::string dName = std::string(filename->d_name); | |||
| if (dName == "." || dName == ".." || filename->d_type != DT_REG) { | |||
| continue; | |||
| } | |||
| res.emplace_back(std::string(dirName) + "/" + filename->d_name); | |||
| } | |||
| std::sort(res.begin(), res.end()); | |||
| for (auto &f : res) { | |||
| std::cout << "image file: " << f << std::endl; | |||
| } | |||
| return res; | |||
| } | |||
| int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) { | |||
| std::string homePath = "./result_Files"; | |||
| for (size_t i = 0; i < outputs.size(); ++i) { | |||
| size_t outputSize; | |||
| std::shared_ptr<const void> netOutput; | |||
| netOutput = outputs[i].Data(); | |||
| outputSize = outputs[i].DataSize(); | |||
| int pos = imageFile.rfind('/'); | |||
| std::string fileName(imageFile, pos + 1); | |||
| fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin"); | |||
| std::string outFileName = homePath + "/" + fileName; | |||
| FILE * outputFile = fopen(outFileName.c_str(), "wb"); | |||
| fwrite(netOutput.get(), outputSize, sizeof(char), outputFile); | |||
| fclose(outputFile); | |||
| outputFile = nullptr; | |||
| } | |||
| return 0; | |||
| } | |||
| mindspore::MSTensor ReadFileToTensor(const std::string &file) { | |||
| if (file.empty()) { | |||
| std::cout << "Pointer file is nullptr" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| std::ifstream ifs(file); | |||
| if (!ifs.good()) { | |||
| std::cout << "File: " << file << " is not exist" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| if (!ifs.is_open()) { | |||
| std::cout << "File: " << file << "open failed" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| ifs.seekg(0, std::ios::end); | |||
| size_t size = ifs.tellg(); | |||
| mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size); | |||
| ifs.seekg(0, std::ios::beg); | |||
| ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size); | |||
| ifs.close(); | |||
| return buffer; | |||
| } | |||
| DIR *OpenDir(std::string_view dirName) { | |||
| if (dirName.empty()) { | |||
| std::cout << " dirName is null ! " << std::endl; | |||
| return nullptr; | |||
| } | |||
| std::string realPath = RealPath(dirName); | |||
| struct stat s; | |||
| lstat(realPath.c_str(), &s); | |||
| if (!S_ISDIR(s.st_mode)) { | |||
| std::cout << "dirName is not a valid directory !" << std::endl; | |||
| return nullptr; | |||
| } | |||
| DIR *dir; | |||
| dir = opendir(realPath.c_str()); | |||
| if (dir == nullptr) { | |||
| std::cout << "Can not open dir " << dirName << std::endl; | |||
| return nullptr; | |||
| } | |||
| std::cout << "Successfully opened the dir " << dirName << std::endl; | |||
| return dir; | |||
| } | |||
| std::string RealPath(std::string_view path) { | |||
| char realPathMem[PATH_MAX] = {0}; | |||
| char *realPathRet = nullptr; | |||
| realPathRet = realpath(path.data(), realPathMem); | |||
| if (realPathRet == nullptr) { | |||
| std::cout << "File: " << path << " is not exist."; | |||
| return ""; | |||
| } | |||
| std::string realPath(realPathMem); | |||
| std::cout << path << " realpath is: " << realPath << std::endl; | |||
| return realPath; | |||
| } | |||
| @@ -24,9 +24,10 @@ from src.inception_v3 import InceptionV3 | |||
| parser = argparse.ArgumentParser(description='inceptionv3 export') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | |||
| parser.add_argument('--ckpt_file', type=str, required=True, help='inceptionv3 ckpt file.') | |||
| parser.add_argument('--file_name', type=str, default='inceptionv3', help='inceptionv3 output air name.') | |||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | |||
| parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format') | |||
| parser.add_argument('--width', type=int, default=299, help='input width') | |||
| parser.add_argument('--height', type=int, default=299, help='input height') | |||
| parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", | |||
| @@ -42,6 +43,6 @@ if __name__ == '__main__': | |||
| param_dict = load_checkpoint(args.ckpt_file) | |||
| load_param_into_net(net, param_dict) | |||
| input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[cfg.batch_size, 3, args.width, args.height]), ms.float32) | |||
| input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[args.batch_size, 3, args.width, args.height]), ms.float32) | |||
| export(net, input_arr, file_name=args.file_name, file_format=args.file_format) | |||
| @@ -0,0 +1,58 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| '''post process for 310 inference''' | |||
| import os | |||
| import argparse | |||
| import numpy as np | |||
| parser = argparse.ArgumentParser(description='fasterrcnn_export') | |||
| parser.add_argument("--result_path", type=str, required=True, help="result file path") | |||
| parser.add_argument("--label_file", type=str, required=True, help="label file") | |||
| args = parser.parse_args() | |||
| def read_label(label_file): | |||
| f = open(label_file, "r") | |||
| lines = f.readlines() | |||
| img_label = {} | |||
| for line in lines: | |||
| img_id = line.split(":")[0] | |||
| label = line.split(":")[1] | |||
| img_label[img_id] = label | |||
| return img_label | |||
| def cal_acc(result_path, label_file): | |||
| step = 0 | |||
| sum_a = 0 | |||
| img_label = read_label(label_file) | |||
| files = os.listdir(result_path) | |||
| for file in files: | |||
| full_file_path = os.path.join(result_path, file) | |||
| if os.path.isfile(full_file_path): | |||
| result = np.fromfile(full_file_path, dtype=np.float32).reshape(1, 1000) | |||
| pred = np.argmax(result, axis=1) | |||
| step = step + 1 | |||
| if pred == int(img_label[file[:-6]]): | |||
| sum_a = sum_a + 1 | |||
| print("========step:{}========".format(step)) | |||
| print("========sum:{}========".format(sum_a)) | |||
| accuracy = sum_a * 100.0 / step | |||
| print("========accuracy:{}========".format(accuracy)) | |||
| if __name__ == "__main__": | |||
| cal_acc(args.result_path, args.label_file) | |||
| @@ -0,0 +1,107 @@ | |||
| #!/bin/bash | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [[ $# -lt 3 || $# -gt 4 ]]; then | |||
| echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [LABEL_FILE] [DEVICE_ID] | |||
| DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| model=$(get_real_path $1) | |||
| data_path=$(get_real_path $2) | |||
| label_file=$(get_real_path $3) | |||
| if [ $# == 4 ]; then | |||
| device_id=$4 | |||
| elif [ $# == 3 ]; then | |||
| if [ -z $device_id ]; then | |||
| device_id=0 | |||
| else | |||
| device_id=$device_id | |||
| fi | |||
| fi | |||
| echo $model | |||
| echo $data_path | |||
| echo $label_file | |||
| echo $device_id | |||
| export ASCEND_HOME=/usr/local/Ascend/ | |||
| if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then | |||
| export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH | |||
| export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe | |||
| export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp | |||
| else | |||
| export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH | |||
| export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/opp | |||
| fi | |||
| function compile_app() | |||
| { | |||
| cd ../ascend310_infer || exit | |||
| if [ -f "Makefile" ]; then | |||
| make clean | |||
| fi | |||
| sh build.sh &> build.log | |||
| if [ $? -ne 0 ]; then | |||
| echo "compile app code failed" | |||
| exit 1 | |||
| fi | |||
| cd - || exit | |||
| } | |||
| function infer() | |||
| { | |||
| if [ -d result_Files ]; then | |||
| rm -rf ./result_Files | |||
| fi | |||
| if [ -d time_Result ]; then | |||
| rm -rf ./time_Result | |||
| fi | |||
| mkdir result_Files | |||
| mkdir time_Result | |||
| ../ascend310_infer/out/main --model_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log | |||
| if [ $? -ne 0 ]; then | |||
| echo "execute inference failed" | |||
| exit 1 | |||
| fi | |||
| } | |||
| function cal_acc() | |||
| { | |||
| python ../postprocess.py --label_file=$label_file --result_path=result_Files &> acc.log | |||
| if [ $? -ne 0 ]; then | |||
| echo "calculate accuracy failed" | |||
| exit 1 | |||
| fi | |||
| } | |||
| compile_app | |||
| infer | |||
| cal_acc | |||
| @@ -67,11 +67,13 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil | |||
| . | |||
| └─Inception-v4 | |||
| ├─README.md | |||
| ├─ascend310_infer # application for 310 inference | |||
| ├─scripts | |||
| ├─run_distribute_train_gpu.sh # launch distributed training with gpu platform(8p) | |||
| ├─run_eval_gpu.sh # launch evaluating with gpu platform | |||
| ├─run_standalone_train_ascend.sh # launch standalone training with ascend platform(1p) | |||
| ├─run_distribute_train_ascend.sh # launch distributed training with ascend platform(8p) | |||
| ├─run_infer_310.sh # shell script for 310 inference | |||
| └─run_eval_ascend.sh # launch evaluating with ascend platform | |||
| ├─src | |||
| ├─config.py # parameter configuration | |||
| @@ -80,6 +82,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil | |||
| └─callback.py # eval callback function | |||
| ├─eval.py # eval net | |||
| ├─export.py # export checkpoint, surpport .onnx, .air, .mindir convert | |||
| ├─postprogress.py # post process for 310 inference | |||
| └─train.py # train net | |||
| ``` | |||
| @@ -223,6 +226,35 @@ metric: {'Loss': 0.9849, 'Top1-Acc':0.7985, 'Top5-Acc':0.9460} | |||
| metric: {'Loss': 0.8144, 'Top1-Acc': 0.8009, 'Top5-Acc': 0.9457} | |||
| ``` | |||
| ## Model Export | |||
| ```shell | |||
| python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] | |||
| ``` | |||
| `EXPORT_FORMAT` should be in ["AIR", "MINDIR"] | |||
| ## Inference Process | |||
| ### Usage | |||
| Before performing inference, the model file must be exported by export script on the Ascend910 environment. | |||
| ```shell | |||
| # Ascend310 inference | |||
| sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID] | |||
| ``` | |||
| -NOTE:Ascend310 inference use Imagenet dataset . The label of the image is the number of folder which is started from 0 after sorting. | |||
| ### result | |||
| Inference result is saved in current path, you can find result like this in acc.log file. | |||
| ```python | |||
| accuracy:80.044 | |||
| ``` | |||
| # [Model description](#contents) | |||
| ## [Performance](#contents) | |||
| @@ -0,0 +1,14 @@ | |||
| cmake_minimum_required(VERSION 3.14.1) | |||
| project(Ascend310Infer) | |||
| add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined") | |||
| set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) | |||
| option(MINDSPORE_PATH "mindspore install path" "") | |||
| include_directories(${MINDSPORE_PATH}) | |||
| include_directories(${MINDSPORE_PATH}/include) | |||
| include_directories(${PROJECT_SRC_ROOT}) | |||
| find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib) | |||
| file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*) | |||
| add_executable(main src/main.cc src/utils.cc) | |||
| target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags) | |||
| @@ -0,0 +1,23 @@ | |||
| #!/bin/bash | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ ! -d out ]; then | |||
| mkdir out | |||
| fi | |||
| cd out || exit | |||
| cmake .. \ | |||
| -DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`" | |||
| make | |||
| @@ -0,0 +1,32 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INFERENCE_UTILS_H_ | |||
| #define MINDSPORE_INFERENCE_UTILS_H_ | |||
| #include <sys/stat.h> | |||
| #include <dirent.h> | |||
| #include <vector> | |||
| #include <string> | |||
| #include <memory> | |||
| #include "include/api/types.h" | |||
| std::vector<std::string> GetAllFiles(std::string_view dirName); | |||
| DIR *OpenDir(std::string_view dirName); | |||
| std::string RealPath(std::string_view path); | |||
| mindspore::MSTensor ReadFileToTensor(const std::string &file); | |||
| int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs); | |||
| #endif | |||
| @@ -0,0 +1,152 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <sys/time.h> | |||
| #include <gflags/gflags.h> | |||
| #include <dirent.h> | |||
| #include <iostream> | |||
| #include <string> | |||
| #include <algorithm> | |||
| #include <iosfwd> | |||
| #include <vector> | |||
| #include <fstream> | |||
| #include "../inc/utils.h" | |||
| #include "include/dataset/execute.h" | |||
| #include "include/dataset/transforms.h" | |||
| #include "include/dataset/vision.h" | |||
| #include "include/dataset/vision_ascend.h" | |||
| #include "include/api/types.h" | |||
| #include "include/api/model.h" | |||
| #include "include/api/serialization.h" | |||
| #include "include/api/context.h" | |||
| using mindspore::Serialization; | |||
| using mindspore::Model; | |||
| using mindspore::Context; | |||
| using mindspore::Status; | |||
| using mindspore::ModelType; | |||
| using mindspore::Graph; | |||
| using mindspore::GraphCell; | |||
| using mindspore::kSuccess; | |||
| using mindspore::MSTensor; | |||
| using mindspore::DataType; | |||
| using mindspore::dataset::Execute; | |||
| using mindspore::dataset::TensorTransform; | |||
| using mindspore::dataset::vision::Decode; | |||
| using mindspore::dataset::vision::Resize; | |||
| using mindspore::dataset::vision::CenterCrop; | |||
| using mindspore::dataset::vision::Normalize; | |||
| using mindspore::dataset::vision::HWC2CHW; | |||
| using mindspore::dataset::transforms::TypeCast; | |||
| DEFINE_string(model_path, "", "model path"); | |||
| DEFINE_string(dataset_path, ".", "dataset path"); | |||
| DEFINE_int32(device_id, 0, "device id"); | |||
| int main(int argc, char **argv) { | |||
| gflags::ParseCommandLineFlags(&argc, &argv, true); | |||
| if (RealPath(FLAGS_model_path).empty()) { | |||
| std::cout << "Invalid model" << std::endl; | |||
| return 1; | |||
| } | |||
| auto context = std::make_shared<Context>(); | |||
| auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>(); | |||
| ascend310_info->SetDeviceID(FLAGS_device_id); | |||
| context->MutableDeviceInfo().push_back(ascend310_info); | |||
| Graph graph; | |||
| Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph); | |||
| if (ret != kSuccess) { | |||
| std::cout << "Load model failed." << std::endl; | |||
| return 1; | |||
| } | |||
| Model model; | |||
| ret = model.Build(GraphCell(graph), context); | |||
| if (ret != kSuccess) { | |||
| std::cout << "ERROR: Build failed." << std::endl; | |||
| return 1; | |||
| } | |||
| std::vector<MSTensor> modelInputs = model.GetInputs(); | |||
| auto all_files = GetAllFiles(FLAGS_dataset_path); | |||
| if (all_files.empty()) { | |||
| std::cout << "ERROR: no input data." << std::endl; | |||
| return 1; | |||
| } | |||
| std::shared_ptr<TensorTransform> decode(new Decode()); | |||
| std::shared_ptr<TensorTransform> resize(new Resize({299})); | |||
| std::shared_ptr<TensorTransform> centerCrop(new CenterCrop({299})); | |||
| std::shared_ptr<TensorTransform> normalize(new Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375})); | |||
| std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW()); | |||
| mindspore::dataset::Execute transform({decode, resize, centerCrop, normalize, hwc2chw}); | |||
| std::map<double, double> costTime_map; | |||
| size_t size = all_files.size(); | |||
| for (size_t i = 0; i < size; ++i) { | |||
| struct timeval start; | |||
| struct timeval end; | |||
| double startTime_ms; | |||
| double endTime_ms; | |||
| std::vector<MSTensor> inputs; | |||
| std::vector<MSTensor> outputs; | |||
| std::cout << "Start predict input files:" << all_files[i] << std::endl; | |||
| mindspore::MSTensor image = ReadFileToTensor(all_files[i]); | |||
| transform(image, &image); | |||
| inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(), | |||
| image.Data().get(), image.DataSize()); | |||
| gettimeofday(&start, NULL); | |||
| model.Predict(inputs, &outputs); | |||
| gettimeofday(&end, NULL); | |||
| startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; | |||
| endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; | |||
| costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms)); | |||
| WriteResult(all_files[i], outputs); | |||
| } | |||
| double average = 0.0; | |||
| int infer_cnt = 0; | |||
| char tmpCh[256] = {0}; | |||
| for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { | |||
| double diff = 0.0; | |||
| diff = iter->second - iter->first; | |||
| average += diff; | |||
| infer_cnt++; | |||
| } | |||
| average = average/infer_cnt; | |||
| snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d\n", average, infer_cnt); | |||
| std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl; | |||
| std::string file_name = "./time_Result" + std::string("/test_perform_static.txt"); | |||
| std::ofstream file_stream(file_name.c_str(), std::ios::trunc); | |||
| file_stream << tmpCh; | |||
| file_stream.close(); | |||
| costTime_map.clear(); | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,130 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "inc/utils.h" | |||
| #include <fstream> | |||
| #include <algorithm> | |||
| #include <iostream> | |||
| using mindspore::MSTensor; | |||
| using mindspore::DataType; | |||
| std::vector<std::string> GetAllFiles(std::string_view dirName) { | |||
| struct dirent *filename; | |||
| DIR *dir = OpenDir(dirName); | |||
| if (dir == nullptr) { | |||
| return {}; | |||
| } | |||
| std::vector<std::string> res; | |||
| while ((filename = readdir(dir)) != nullptr) { | |||
| std::string dName = std::string(filename->d_name); | |||
| if (dName == "." || dName == ".." || filename->d_type != DT_REG) { | |||
| continue; | |||
| } | |||
| res.emplace_back(std::string(dirName) + "/" + filename->d_name); | |||
| } | |||
| std::sort(res.begin(), res.end()); | |||
| for (auto &f : res) { | |||
| std::cout << "image file: " << f << std::endl; | |||
| } | |||
| return res; | |||
| } | |||
| int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) { | |||
| std::string homePath = "./result_Files"; | |||
| for (size_t i = 0; i < outputs.size(); ++i) { | |||
| size_t outputSize; | |||
| std::shared_ptr<const void> netOutput; | |||
| netOutput = outputs[i].Data(); | |||
| outputSize = outputs[i].DataSize(); | |||
| int pos = imageFile.rfind('/'); | |||
| std::string fileName(imageFile, pos + 1); | |||
| fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin"); | |||
| std::string outFileName = homePath + "/" + fileName; | |||
| FILE * outputFile = fopen(outFileName.c_str(), "wb"); | |||
| fwrite(netOutput.get(), outputSize, sizeof(char), outputFile); | |||
| fclose(outputFile); | |||
| outputFile = nullptr; | |||
| } | |||
| return 0; | |||
| } | |||
| mindspore::MSTensor ReadFileToTensor(const std::string &file) { | |||
| if (file.empty()) { | |||
| std::cout << "Pointer file is nullptr" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| std::ifstream ifs(file); | |||
| if (!ifs.good()) { | |||
| std::cout << "File: " << file << " is not exist" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| if (!ifs.is_open()) { | |||
| std::cout << "File: " << file << "open failed" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| ifs.seekg(0, std::ios::end); | |||
| size_t size = ifs.tellg(); | |||
| mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size); | |||
| ifs.seekg(0, std::ios::beg); | |||
| ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size); | |||
| ifs.close(); | |||
| return buffer; | |||
| } | |||
| DIR *OpenDir(std::string_view dirName) { | |||
| if (dirName.empty()) { | |||
| std::cout << " dirName is null ! " << std::endl; | |||
| return nullptr; | |||
| } | |||
| std::string realPath = RealPath(dirName); | |||
| struct stat s; | |||
| lstat(realPath.c_str(), &s); | |||
| if (!S_ISDIR(s.st_mode)) { | |||
| std::cout << "dirName is not a valid directory !" << std::endl; | |||
| return nullptr; | |||
| } | |||
| DIR *dir; | |||
| dir = opendir(realPath.c_str()); | |||
| if (dir == nullptr) { | |||
| std::cout << "Can not open dir " << dirName << std::endl; | |||
| return nullptr; | |||
| } | |||
| std::cout << "Successfully opened the dir " << dirName << std::endl; | |||
| return dir; | |||
| } | |||
| std::string RealPath(std::string_view path) { | |||
| char realPathMem[PATH_MAX] = {0}; | |||
| char *realPathRet = nullptr; | |||
| realPathRet = realpath(path.data(), realPathMem); | |||
| if (realPathRet == nullptr) { | |||
| std::cout << "File: " << path << " is not exist."; | |||
| return ""; | |||
| } | |||
| std::string realPath(realPathMem); | |||
| std::cout << path << " realpath is: " << realPath << std::endl; | |||
| return realPath; | |||
| } | |||
| @@ -25,9 +25,10 @@ from src.inceptionv4 import Inceptionv4 | |||
| parser = argparse.ArgumentParser(description='inceptionv4 export') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | |||
| parser.add_argument('--ckpt_file', type=str, required=True, help='inceptionv4 ckpt file.') | |||
| parser.add_argument('--file_name', type=str, default='inceptionv4', help='inceptionv4 output air name.') | |||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | |||
| parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format') | |||
| parser.add_argument('--width', type=int, default=299, help='input width') | |||
| parser.add_argument('--height', type=int, default=299, help='input height') | |||
| parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", | |||
| @@ -43,5 +44,5 @@ if __name__ == '__main__': | |||
| param_dict = load_checkpoint(args.ckpt_file) | |||
| load_param_into_net(net, param_dict) | |||
| input_arr = Tensor(np.ones([config.batch_size, 3, args.width, args.height]), ms.float32) | |||
| input_arr = Tensor(np.ones([args.batch_size, 3, args.width, args.height]), ms.float32) | |||
| export(net, input_arr, file_name=args.file_name, file_format=args.file_format) | |||
| @@ -0,0 +1,58 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| '''post process for 310 inference''' | |||
| import os | |||
| import argparse | |||
| import numpy as np | |||
| parser = argparse.ArgumentParser(description='fasterrcnn_export') | |||
| parser.add_argument("--result_path", type=str, required=True, help="result file path") | |||
| parser.add_argument("--label_file", type=str, required=True, help="label file") | |||
| args = parser.parse_args() | |||
| def read_label(label_file): | |||
| f = open(label_file, "r") | |||
| lines = f.readlines() | |||
| img_label = {} | |||
| for line in lines: | |||
| img_id = line.split(":")[0] | |||
| label = line.split(":")[1] | |||
| img_label[img_id] = label | |||
| return img_label | |||
| def cal_acc(result_path, label_file): | |||
| step = 0 | |||
| sum_a = 0 | |||
| img_label = read_label(label_file) | |||
| files = os.listdir(result_path) | |||
| for file in files: | |||
| full_file_path = os.path.join(result_path, file) | |||
| if os.path.isfile(full_file_path): | |||
| result = np.fromfile(full_file_path, dtype=np.float32).reshape(1, 1000) | |||
| pred = np.argmax(result, axis=1) | |||
| step = step + 1 | |||
| if pred == int(img_label[file[:-6]]): | |||
| sum_a = sum_a + 1 | |||
| print("========step:{}========".format(step)) | |||
| print("========sum:{}========".format(sum_a)) | |||
| accuracy = sum_a * 100.0 / step | |||
| print("========accuraty:{}========".format(accuracy)) | |||
| if __name__ == "__main__": | |||
| cal_acc(args.result_path, args.label_file) | |||
| @@ -0,0 +1,104 @@ | |||
| #!/bin/bash | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [[ $# -lt 3 || $# -gt 4 ]]; then | |||
| echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [LABEL_FILE] [DEVICE_ID] | |||
| DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| model=$(get_real_path $1) | |||
| data_path=$(get_real_path $2) | |||
| label_file=$(get_real_path $3) | |||
| device_id=0 | |||
| if [ $# == 4 ]; then | |||
| device_id=$4 | |||
| fi | |||
| echo $model | |||
| echo $data_path | |||
| echo $label_file | |||
| echo $device_id | |||
| export ASCEND_HOME=/usr/local/Ascend/ | |||
| if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then | |||
| export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH | |||
| export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe | |||
| export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp | |||
| else | |||
| export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH | |||
| export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/opp | |||
| fi | |||
| function compile_app() | |||
| { | |||
| cd ../ascend310_infer || exit | |||
| if [ -f "Makefile" ]; then | |||
| make clean | |||
| fi | |||
| sh build.sh &> build.log | |||
| if [ $? -ne 0 ]; then | |||
| echo "compile app code failed" | |||
| exit 1 | |||
| fi | |||
| cd - || exit | |||
| } | |||
| function infer() | |||
| { | |||
| if [ -d result_Files ]; then | |||
| rm -rf ./result_Files | |||
| fi | |||
| if [ -d time_Result ]; then | |||
| rm -rf ./time_Result | |||
| fi | |||
| mkdir result_Files | |||
| mkdir time_Result | |||
| ../ascend310_infer/out/main --model_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log | |||
| if [ $? -ne 0 ]; then | |||
| echo "execute inference failed" | |||
| exit 1 | |||
| fi | |||
| } | |||
| function cal_acc() | |||
| { | |||
| python ../postprocess.py --label_file=$label_file --result_path=result_Files &> acc.log | |||
| if [ $? -ne 0 ]; then | |||
| echo "calculate accuracy failed" | |||
| exit 1 | |||
| fi | |||
| } | |||
| compile_app | |||
| infer | |||
| cal_acc | |||