From: @yuan_shen_zhou Reviewed-by: @liangchenghui Signed-off-by:tags/v1.1.0
| @@ -0,0 +1,40 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/arrays/pack_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| Pack, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| PackGpuFwdKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| Pack, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| PackGpuFwdKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE(Pack, | |||
| KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| PackGpuFwdKernel, int) | |||
| MS_REG_GPU_KERNEL_ONE(Pack, | |||
| KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16), | |||
| PackGpuFwdKernel, int16_t) | |||
| MS_REG_GPU_KERNEL_ONE(Pack, | |||
| KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8), | |||
| PackGpuFwdKernel, uchar) | |||
| MS_REG_GPU_KERNEL_ONE(Pack, | |||
| KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool), | |||
| PackGpuFwdKernel, bool) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,113 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_PACK_GPU_KERNEL_H | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_PACK_GPU_KERNEL_H | |||
| #include <vector> | |||
| #include <memory> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/pack.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class PackGpuFwdKernel : public GpuKernel { | |||
| public: | |||
| PackGpuFwdKernel() : axis_(0), input_num_(1), output_size_(0), dims_behind_axis_(1), inputs_host_(nullptr) {} | |||
| ~PackGpuFwdKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| T *output = GetDeviceAddress<T>(outputs, 0); | |||
| T **inputs_array = GetDeviceAddress<T *>(workspace, 0); | |||
| for (size_t i = 0; i < inputs.size(); i++) { | |||
| inputs_host_[i] = GetDeviceAddress<T>(inputs, i); | |||
| } | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(inputs_array, inputs_host_.get(), sizeof(T *) * input_num_, | |||
| cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||
| "Pack opt cudaMemcpyAsync inputs failed"); | |||
| PackKernel(SizeToInt(output_size_), input_num_, dims_behind_axis_, inputs_array, output, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| if (!CheckParam(kernel_node)) { | |||
| return false; | |||
| } | |||
| axis_ = static_cast<int32_t>(GetAttr<int64_t>(kernel_node, "axis")); | |||
| if (axis_ < 0) { | |||
| auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0); | |||
| axis_ += SizeToInt(input_shape.size()); | |||
| } | |||
| auto origin_data_format = AnfAlgo::GetOriginDataFormat(kernel_node); | |||
| auto input_format = AnfAlgo::GetInputFormat(kernel_node, 0); | |||
| axis_ = AxisTransform(origin_data_format, input_format, axis_); | |||
| input_num_ = SizeToInt(AnfAlgo::GetInputTensorNum(kernel_node)); | |||
| inputs_host_ = std::make_unique<T *[]>(input_num_); | |||
| for (int i = 0; i < input_num_; i++) { | |||
| size_t input_size = 1; | |||
| auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, i); | |||
| for (size_t j = 0; j < input_shape.size(); j++) { | |||
| input_size *= input_shape[j]; | |||
| } | |||
| input_size_list_.push_back(input_size * sizeof(T)); | |||
| } | |||
| workspace_size_list_.push_back(sizeof(T *) * input_num_); | |||
| auto output_shape = AnfAlgo::GetOutputDeviceShape(kernel_node, 0); | |||
| output_size_ = 1; | |||
| for (int i = 0; i < SizeToInt(output_shape.size()); i++) { | |||
| output_size_ *= output_shape[i]; | |||
| if (i > axis_ + 1) { | |||
| dims_behind_axis_ *= output_shape[i]; | |||
| } | |||
| } | |||
| output_size_list_.push_back(output_size_ * sizeof(T)); | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override {} | |||
| private: | |||
| bool CheckParam(const CNodePtr &kernel_node) { | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but PackGpuFwdKernel needs 1 output."; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| int axis_; | |||
| int input_num_; | |||
| size_t output_size_; | |||
| int dims_behind_axis_; | |||
| std::unique_ptr<T *[]> inputs_host_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_PACK_GPU_KERNEL_H | |||
| @@ -0,0 +1,57 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <stdio.h> | |||
| #include <stdint.h> | |||
| #include <cuda_runtime.h> | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/pack.cuh" | |||
| template <typename T> | |||
| __global__ void Pack(const int size, const int input_num, const int dims_behind_axis, T** inputs, T* output) { | |||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) { | |||
| int cycle = pos / (input_num * dims_behind_axis); | |||
| int cur_input_index = pos % (input_num * dims_behind_axis) / dims_behind_axis; | |||
| int local_index = pos % (input_num * dims_behind_axis) % dims_behind_axis; | |||
| output[pos] = inputs[cur_input_index][cycle * dims_behind_axis + local_index]; | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void PackKernel(const int size, const int input_num, | |||
| const int dims_behind_axis, T** inputs, T* output, | |||
| cudaStream_t cuda_stream) { | |||
| Pack<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input_num, dims_behind_axis, inputs, output); | |||
| return; | |||
| } | |||
| template void PackKernel(const int size, const int input_num, | |||
| const int dims_behind_axis, float** inputs, float* output, | |||
| cudaStream_t cuda_stream); | |||
| template void PackKernel(const int size, const int input_num, | |||
| const int dims_behind_axis, int** inputs, int* output, | |||
| cudaStream_t cuda_stream); | |||
| template void PackKernel(const int size, const int input_num, | |||
| const int dims_behind_axis, half** inputs, half* output, | |||
| cudaStream_t cuda_stream); | |||
| template void PackKernel(const int size, const int input_num, | |||
| const int dims_behind_axis, short** inputs, short* output, // NOLINT | |||
| cudaStream_t cuda_stream); | |||
| template void PackKernel(const int size, const int input_num, | |||
| const int dims_behind_axis, unsigned char** inputs, unsigned char* output, | |||
| cudaStream_t cuda_stream); | |||
| template void PackKernel(const int size, const int input_num, | |||
| const int dims_behind_axis, bool** inputs, bool* output, | |||
| cudaStream_t cuda_stream); | |||
| @@ -0,0 +1,28 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_PACK_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_PACK_H_ | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| void PackKernel(const int size, | |||
| const int input_num, | |||
| const int dims_behind_axis, | |||
| T** inputs, | |||
| T* output, | |||
| cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_PACK_H_ | |||
| @@ -0,0 +1,162 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| import mindspore.ops.operations.array_ops as P | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| class PackNet(nn.Cell): | |||
| def __init__(self, nptype): | |||
| super(PackNet, self).__init__() | |||
| self.pack = P.Pack(axis=2) | |||
| self.data_np = np.array([0] * 16).astype(nptype) | |||
| self.data_np = np.reshape(self.data_np, (2, 2, 2, 2)) | |||
| self.x1 = Parameter(initializer( | |||
| Tensor(self.data_np), [2, 2, 2, 2]), name='x1') | |||
| self.x2 = Parameter(initializer( | |||
| Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(nptype)), [2, 2, 2, 2]), name='x2') | |||
| @ms_function | |||
| def construct(self): | |||
| return self.pack((self.x1, self.x2)) | |||
| def pack(nptype): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| pack_ = PackNet(nptype) | |||
| output = pack_() | |||
| expect = np.array([[[[[0, 0], | |||
| [0, 1]], | |||
| [[0, 0], | |||
| [2, 3]]], | |||
| [[[0, 0], | |||
| [4, 5]], | |||
| [[0, 0], | |||
| [6, 7]]]], | |||
| [[[[0, 0], | |||
| [8, 9]], | |||
| [[0, 0], | |||
| [10, 11]]], | |||
| [[[0, 0], | |||
| [12, 13]], | |||
| [[0, 0], | |||
| [14, 15]]]]]).astype(nptype) | |||
| assert (output.asnumpy() == expect).all() | |||
| def pack_pynative(nptype): | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') | |||
| x1 = np.array([0] * 16).astype(nptype) | |||
| x1 = np.reshape(x1, (2, 2, 2, 2)) | |||
| x1 = Tensor(x1) | |||
| x2 = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(nptype)) | |||
| expect = np.array([[[[[0, 0], | |||
| [0, 1]], | |||
| [[0, 0], | |||
| [2, 3]]], | |||
| [[[0, 0], | |||
| [4, 5]], | |||
| [[0, 0], | |||
| [6, 7]]]], | |||
| [[[[0, 0], | |||
| [8, 9]], | |||
| [[0, 0], | |||
| [10, 11]]], | |||
| [[[0, 0], | |||
| [12, 13]], | |||
| [[0, 0], | |||
| [14, 15]]]]]).astype(nptype) | |||
| output = P.Pack(axis=2)((x1, x2)) | |||
| assert (output.asnumpy() == expect).all() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_graph_float32(): | |||
| pack(np.float32) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_graph_float16(): | |||
| pack(np.float16) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_graph_int32(): | |||
| pack(np.int32) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_graph_int16(): | |||
| pack(np.int16) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_graph_uint8(): | |||
| pack(np.uint8) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_graph_bool(): | |||
| pack(np.bool) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_pynative_float32(): | |||
| pack_pynative(np.float32) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_pynative_float16(): | |||
| pack_pynative(np.float16) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_pynative_int32(): | |||
| pack_pynative(np.int32) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_pynative_int16(): | |||
| pack_pynative(np.int16) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_pynative_uint8(): | |||
| pack_pynative(np.uint8) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pack_pynative_bool(): | |||
| pack_pynative(np.bool) | |||