diff --git a/mindspore/ops/composite/array_ops.py b/mindspore/ops/composite/array_ops.py index 51921e061e..f3bbb3af5e 100644 --- a/mindspore/ops/composite/array_ops.py +++ b/mindspore/ops/composite/array_ops.py @@ -112,12 +112,12 @@ def sequence_mask(lengths, maxlen): If lengths has shape [d_1, d_2, ..., d_n], then the resulting tensor mask has type dtype and shape [d_1, d_2, ..., d_n, maxlen], with mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n]) - Args: - length (Tensor): Tensor to calculate the mask for. All values in this tensor must be + Inputs: + - **lengths** (Tensor) - Tensor to calculate the mask for. All values in this tensor must be less than or equal to `maxlen`. Must be type int32 or int64. - maxlen (int): size of the last dimension of returned tensor. Must be positive and same - type as elements in `lengths`. + - **maxlen** (int) - size of the last dimension of returned tensor. Must be positive and same + type as elements in `lengths`. Default is the maximum value in lengths. Outputs: One mask tensor of shape lengths.shape + (maxlen,). @@ -126,9 +126,8 @@ def sequence_mask(lengths, maxlen): ``GPU`` Examples: - >>> x = Tensor(np.array([[1, 3], [2, 0]]) - >>> sequence_mask = P.SequenceMask() - >>> output = sequence_mask(x, 3) + >>> x = Tensor(np.array([[1, 3], [2, 0]])) + >>> output = C.sequence_mask(x, 3) >>> print(output) [[[True, False, False], [True, True, True]], diff --git a/mindspore/ops/operations/_inner_ops.py b/mindspore/ops/operations/_inner_ops.py index 75e41af212..32d8f4e4cc 100644 --- a/mindspore/ops/operations/_inner_ops.py +++ b/mindspore/ops/operations/_inner_ops.py @@ -690,10 +690,10 @@ class SequenceMask(PrimitiveWithCheck): Inputs: - **lengths** (Tensor) - Tensor to calculate the mask for. All values in this tensor must be - less than `maxlen`. Must be type int32 or int64. + less than or equal to `maxlen`. Must be type int32 or int64. - **maxlen** (int) - size of the last dimension of returned tensor. Must be positive and same - type as elements in `lengths`. + type as elements in `lengths`. Default is the maximum value in lengths. Outputs: One mask tensor of shape lengths.shape + (maxlen,). @@ -702,8 +702,8 @@ class SequenceMask(PrimitiveWithCheck): ``GPU`` Examples: - >>> x = Tensor(np.array([[1, 3], [2, 0]]) - >>> sequence_mask = P.SequenceMask() + >>> x = Tensor(np.array([[1, 3], [2, 0]])) + >>> sequence_mask = ops.SequenceMask() >>> output = sequence_mask(x, 3) >>> print(output) [[[True, False, False], diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index c2f7082b99..41d772586e 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -5689,9 +5689,10 @@ class LARSUpdate(PrimitiveWithInfer): ... super(Net, self).__init__() ... self.lars = ops.LARSUpdate() ... self.reduce = ops.ReduceSum() + ... self.square = ops.Square() ... def construct(self, weight, gradient): - ... w_square_sum = self.reduce(ops.Square()(weight)) - ... grad_square_sum = self.reduce(ops.Square()(gradient)) + ... w_square_sum = self.reduce(self.square(weight)) + ... grad_square_sum = self.reduce(self.square(gradient)) ... grad_t = self.lars(weight, gradient, w_square_sum, grad_square_sum, 0.0, 1.0) ... return grad_t ...