|
|
|
@@ -104,6 +104,12 @@ def _check_input_4d(input_shape, param_name, func_name): |
|
|
|
raise ValueError(f"{func_name} {param_name} should be 4d, but got shape {input_shape}") |
|
|
|
return True |
|
|
|
|
|
|
|
@constexpr |
|
|
|
def _check_input_filter_size(input_shape, param_name, filter_size, func_name): |
|
|
|
_check_input_4d(input_shape, param_name, func_name) |
|
|
|
validator.check(param_name + " shape[2]", input_shape[2], "filter_size", filter_size, Rel.GE, func_name) |
|
|
|
validator.check(param_name + " shape[3]", input_shape[3], "filter_size", filter_size, Rel.GE, func_name) |
|
|
|
|
|
|
|
class SSIM(Cell): |
|
|
|
r""" |
|
|
|
Returns SSIM index between img1 and img2. |
|
|
|
@@ -154,8 +160,7 @@ class SSIM(Cell): |
|
|
|
self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size) |
|
|
|
|
|
|
|
def construct(self, img1, img2): |
|
|
|
_check_input_4d(F.shape(img1), "img1", self.cls_name) |
|
|
|
_check_input_4d(F.shape(img2), "img2", self.cls_name) |
|
|
|
_check_input_filter_size(F.shape(img1), "img1", self.filter_size, self.cls_name) |
|
|
|
P.SameTypeShape()(img1, img2) |
|
|
|
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, self.max_val) |
|
|
|
|