| @@ -2,7 +2,7 @@ | |||||
| ## Description | ## Description | ||||
| Training AlexNet with CIFAR-10 dataset in MindSpore. | |||||
| Training AlexNet with dataset in MindSpore. | |||||
| This is the simple tutorial for training AlexNet in MindSpore. | This is the simple tutorial for training AlexNet in MindSpore. | ||||
| @@ -10,19 +10,19 @@ This is the simple tutorial for training AlexNet in MindSpore. | |||||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | - Install [MindSpore](https://www.mindspore.cn/install/en). | ||||
| - Download the CIFAR-10 dataset, the directory structure is as follows: | |||||
| - Download the dataset, the directory structure is as follows: | |||||
| ``` | ``` | ||||
| ├─cifar-10-batches-bin | |||||
| ├─10-batches-bin | |||||
| │ | │ | ||||
| └─cifar-10-verify-bin | |||||
| └─10-verify-bin | |||||
| ``` | ``` | ||||
| ## Running the example | ## Running the example | ||||
| ```python | ```python | ||||
| # train AlexNet, hyperparameter setting in config.py | # train AlexNet, hyperparameter setting in config.py | ||||
| python train.py --data_path cifar-10-batches-bin | |||||
| python train.py --data_path 10-batches-bin | |||||
| ``` | ``` | ||||
| You will get the loss value of each step as following: | You will get the loss value of each step as following: | ||||
| @@ -38,8 +38,8 @@ epoch: 1 step: 1538, loss is 1.0221305 | |||||
| Then, evaluate AlexNet according to network model | Then, evaluate AlexNet according to network model | ||||
| ```python | ```python | ||||
| # evaluate AlexNet, 1 epoch training accuracy is up to 51.1%; 10 epoch training accuracy is up to 81.2% | |||||
| python eval.py --data_path cifar-10-verify-bin --ckpt_path checkpoint_alexnet-1_1562.ckpt | |||||
| # evaluate AlexNet | |||||
| python eval.py --data_path 10-verify-bin --ckpt_path checkpoint_alexnet-1_1562.ckpt | |||||
| ``` | ``` | ||||
| ## Note | ## Note | ||||
| @@ -19,9 +19,9 @@ python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt | |||||
| """ | """ | ||||
| import argparse | import argparse | ||||
| from config import alexnet_cfg as cfg | |||||
| from dataset import create_dataset_mnist | |||||
| from alexnet import AlexNet | |||||
| from src.config import alexnet_cfg as cfg | |||||
| from src.dataset import create_dataset_mnist | |||||
| from src.alexnet import AlexNet | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import context | from mindspore import context | ||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
| @@ -19,10 +19,10 @@ python train.py --data_path /YourDataPath | |||||
| """ | """ | ||||
| import argparse | import argparse | ||||
| from config import alexnet_cfg as cfg | |||||
| from dataset import create_dataset_mnist | |||||
| from generator_lr import get_lr | |||||
| from alexnet import AlexNet | |||||
| from src.config import alexnet_cfg as cfg | |||||
| from src.dataset import create_dataset_mnist | |||||
| from src.generator_lr import get_lr | |||||
| from src.alexnet import AlexNet | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import context | from mindspore import context | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| @@ -2,7 +2,7 @@ | |||||
| ## Description | ## Description | ||||
| Training LeNet with MNIST dataset in MindSpore. | |||||
| Training LeNet with dataset in MindSpore. | |||||
| This is the simple and basic tutorial for constructing a network in MindSpore. | This is the simple and basic tutorial for constructing a network in MindSpore. | ||||
| @@ -10,10 +10,10 @@ This is the simple and basic tutorial for constructing a network in MindSpore. | |||||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | - Install [MindSpore](https://www.mindspore.cn/install/en). | ||||
| - Download the MNIST dataset, the directory structure is as follows: | |||||
| - Download the dataset, the directory structure is as follows: | |||||
| ``` | ``` | ||||
| └─MNIST_Data | |||||
| └─Data | |||||
| ├─test | ├─test | ||||
| │ t10k-images.idx3-ubyte | │ t10k-images.idx3-ubyte | ||||
| │ t10k-labels.idx1-ubyte | │ t10k-labels.idx1-ubyte | ||||
| @@ -27,7 +27,7 @@ This is the simple and basic tutorial for constructing a network in MindSpore. | |||||
| ```python | ```python | ||||
| # train LeNet, hyperparameter setting in config.py | # train LeNet, hyperparameter setting in config.py | ||||
| python train.py --data_path MNIST_Data | |||||
| python train.py --data_path Data | |||||
| ``` | ``` | ||||
| You will get the loss value of each step as following: | You will get the loss value of each step as following: | ||||
| @@ -43,8 +43,8 @@ epoch: 1 step: 1741, loss is 0.05018193 | |||||
| Then, evaluate LeNet according to network model | Then, evaluate LeNet according to network model | ||||
| ```python | ```python | ||||
| # evaluate LeNet, after 1 epoch training, the accuracy is up to 96.5% | |||||
| python eval.py --data_path MNIST_Data --ckpt_path checkpoint_lenet-1_1875.ckpt | |||||
| # evaluate LeNet | |||||
| python eval.py --data_path Data --ckpt_path checkpoint_lenet-1_1875.ckpt | |||||
| ``` | ``` | ||||
| ## Note | ## Note | ||||
| @@ -20,9 +20,9 @@ python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt | |||||
| import os | import os | ||||
| import argparse | import argparse | ||||
| from dataset import create_dataset | |||||
| from config import mnist_cfg as cfg | |||||
| from lenet import LeNet5 | |||||
| from src.dataset import create_dataset | |||||
| from src.config import mnist_cfg as cfg | |||||
| from src.lenet import LeNet5 | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import context | from mindspore import context | ||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
| @@ -32,10 +32,10 @@ from mindspore.nn.metrics import Accuracy | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| parser = argparse.ArgumentParser(description='MindSpore MNIST Example') | |||||
| parser = argparse.ArgumentParser(description='MindSpore Lenet Example') | |||||
| parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], | parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], | ||||
| help='device where the code will be implemented (default: Ascend)') | help='device where the code will be implemented (default: Ascend)') | ||||
| parser.add_argument('--data_path', type=str, default="./MNIST_Data", | |||||
| parser.add_argument('--data_path', type=str, default="./Data", | |||||
| help='path where the dataset is saved') | help='path where the dataset is saved') | ||||
| parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\ | parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\ | ||||
| path where the trained ckpt file') | path where the trained ckpt file') | ||||
| @@ -20,9 +20,9 @@ python train.py --data_path /YourDataPath | |||||
| import os | import os | ||||
| import argparse | import argparse | ||||
| from config import mnist_cfg as cfg | |||||
| from dataset import create_dataset | |||||
| from lenet import LeNet5 | |||||
| from src.config import mnist_cfg as cfg | |||||
| from src.dataset import create_dataset | |||||
| from src.lenet import LeNet5 | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import context | from mindspore import context | ||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | ||||
| @@ -31,10 +31,10 @@ from mindspore.nn.metrics import Accuracy | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| parser = argparse.ArgumentParser(description='MindSpore MNIST Example') | |||||
| parser = argparse.ArgumentParser(description='MindSpore Lenet Example') | |||||
| parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], | parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], | ||||
| help='device where the code will be implemented (default: Ascend)') | help='device where the code will be implemented (default: Ascend)') | ||||
| parser.add_argument('--data_path', type=str, default="./MNIST_Data", | |||||
| parser.add_argument('--data_path', type=str, default="./Data", | |||||
| help='path where the dataset is saved') | help='path where the dataset is saved') | ||||
| parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True') | parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True') | ||||