|
|
|
@@ -208,7 +208,7 @@ class _DepthwiseConv2dNative(nn.Cell): |
|
|
|
self.padding = padding |
|
|
|
self.dilation = dilation |
|
|
|
self.group = group |
|
|
|
if not (isinstance(in_channels, int) and in_channels > 0): |
|
|
|
if not (isinstance(in_channels, int) and in_channels > 0): |
|
|
|
raise ValueError('Attr \'in_channels\' of \'DepthwiseConv2D\' Op passed ' |
|
|
|
+ str(in_channels) + ', should be a int and greater than 0.') |
|
|
|
if (not isinstance(kernel_size, tuple)) or len(kernel_size) != 2 or \ |
|
|
|
@@ -526,12 +526,12 @@ class RootBlockBeta(nn.Cell): |
|
|
|
super(RootBlockBeta, self).__init__() |
|
|
|
self.conv1 = _conv_bn_relu(3, 64, ksize=3, stride=2, padding=0, pad_mode="valid", use_batch_statistics=fine_tune_batch_norm) |
|
|
|
self.conv2 = _conv_bn_relu(64, 64, ksize=3, stride=1, padding=0, pad_mode="same", use_batch_statistics=fine_tune_batch_norm) |
|
|
|
self.conv3 = _conv_bn_relu(64, 128, ksize=3, stride=1, padding=0, pad_mode="same", use_batch_statistics=fine_tune_batch_norm) |
|
|
|
self.conv3 = _conv_bn_relu(64, 128, ksize=3, stride=1, padding=0, pad_m ode="same", use_batch_statistics=fine_tune_batch_norm) |
|
|
|
def construct(self, x): |
|
|
|
x = self.conv1(x) |
|
|
|
x = self.conv2(x) |
|
|
|
x = self.conv3(x) |
|
|
|
return x |
|
|
|
|
|
|
|
class resnet50_dl(fine_tune_batch_norm=False): |
|
|
|
def resnet50_dl(fine_tune_batch_norm=False): |
|
|
|
return ResNetV1(fine_tune_batch_norm) |