Merge pull request !7621 from liuwenhao/mastertags/v1.1.0
| @@ -0,0 +1,42 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "nnacl/fp32/instance_norm.h" | |||
| #include <math.h> | |||
| #include "nnacl/instance_norm_parameter.h" | |||
| #include "nnacl/op_base.h" | |||
| void InstanceNormFp32(const void *input, const void *mean, const void *variance, InstanceNormParameter *param, | |||
| int task_id, void *output) { | |||
| int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_); | |||
| int completed_units = task_id * units_per_thread; | |||
| if (completed_units >= param->unit_) { | |||
| return; | |||
| } | |||
| int cur_unit = MSMIN(units_per_thread, param->unit_ - completed_units); | |||
| int cur_offset = completed_units * param->channel_; | |||
| for (int n = 0; n < param->batch_; n++) { | |||
| for (int hw = 0; hw < cur_unit; hw++) { | |||
| for (int c = 0; c < param->channel_; c++) { | |||
| float variance_sqrt = sqrt(((const float *)variance)[n * param->channel_ + c] + param->epsilon_); | |||
| ((float *)output)[cur_offset + c] = | |||
| (((const float *)input)[cur_offset + c] - ((const float *)mean)[n * param->channel_ + c]) / variance_sqrt; | |||
| } | |||
| cur_offset += param->channel_; | |||
| } | |||
| cur_offset += (param->unit_ - cur_unit) * param->channel_; | |||
| } | |||
| } | |||
| @@ -0,0 +1,34 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||
| #define MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||
| #include "nnacl/instance_norm_parameter.h" | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| void InstanceNormFp32(const void *input, const void *mean, const void *variance, InstanceNormParameter *param, | |||
| int task_id, void *output); | |||
| void FusedInstanceNormFp32(const void *input, const void *scale, const void *offset, const void *mean, | |||
| const void *variance, InstanceNormParameter *param, int task_id, void *output); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| #endif // MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||
| @@ -0,0 +1,32 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_NNACL_INSTANCE_NORM_PARAMETER_H_ | |||
| #define MINDSPORE_LITE_NNACL_INSTANCE_NORM_PARAMETER_H_ | |||
| #include "nnacl/op_base.h" | |||
| typedef struct InstanceNormParameter { | |||
| OpParameter op_parameter_; | |||
| float epsilon_; | |||
| float momentum_; | |||
| int unit_; | |||
| int batch_; | |||
| int channel_; | |||
| bool fused_; | |||
| } InstanceNormParameter; | |||
| #endif // MINDSPORE_LITE_NNACL_INSTANCE_NORM_PARAMETER_H_ | |||
| @@ -0,0 +1,65 @@ | |||
| /** | |||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/ops/instance_norm.h" | |||
| #include <memory> | |||
| namespace mindspore { | |||
| namespace lite { | |||
| #ifdef PRIMITIVE_WRITEABLE | |||
| float InstanceNorm::GetEpsilon() const { return this->primitive_->value.AsInstanceNorm()->epsilon; } | |||
| void InstanceNorm::SetEpsilon(float epsilon) { this->primitive_->value.AsInstanceNorm()->epsilon = epsilon; } | |||
| int InstanceNorm::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) { | |||
| if (this->primitive_ == nullptr) { | |||
| this->primitive_ = new (std::nothrow) schema::PrimitiveT; | |||
| if (this->primitive_ == nullptr) { | |||
| MS_LOG(ERROR) << "new primitiveT failed"; | |||
| return RET_ERROR; | |||
| } | |||
| this->primitive_->value.type = schema::PrimitiveType_InstanceNorm; | |||
| } | |||
| if (this->primitive_->value.type != schema::PrimitiveType_InstanceNorm) { | |||
| MS_LOG(ERROR) << "Primitive type is error :" << this->primitive_->value.type; | |||
| return RET_ERROR; | |||
| } | |||
| if (this->primitive_->value.value == nullptr) { | |||
| auto attr = new (std::nothrow) schema::InstanceNormT(); | |||
| if (attr == nullptr) { | |||
| MS_LOG(ERROR) << "new InstanceNormT failed"; | |||
| delete this->primitive_; | |||
| return RET_ERROR; | |||
| } | |||
| attr->epsilon = GetValue<float>(prim.GetAttr("epsilon")); | |||
| this->primitive_->value.value = attr; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| #else | |||
| int InstanceNorm::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) { | |||
| MS_ASSERT(nullptr != primitive); | |||
| MS_ASSERT(nullptr != fbb); | |||
| auto val_offset = schema::CreateInstanceNorm(*fbb); | |||
| auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_InstanceNorm, val_offset.o); | |||
| fbb->Finish(prim_offset); | |||
| return RET_OK; | |||
| } | |||
| float InstanceNorm::GetEpsilon() const { return this->primitive_->value_as_InstanceNorm()->epsilon(); } | |||
| #endif | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,45 @@ | |||
| /** | |||
| * Copyright 2019-2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef LITE_MINDSPORE_LITE_C_OPS_INSTANE_NORM_H_ | |||
| #define LITE_MINDSPORE_LITE_C_OPS_INSTANE_NORM_H_ | |||
| #include <vector> | |||
| #include <set> | |||
| #include <cmath> | |||
| #include "src/ops/primitive_c.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| class InstanceNorm : public PrimitiveC { | |||
| public: | |||
| #ifdef PRIMITIVE_WRITEABLE | |||
| MS_DECLARE_PARENT(InstanceNorm, PrimitiveC); | |||
| InstanceNorm() = default; | |||
| explicit InstanceNorm(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {} | |||
| int UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) override; | |||
| void SetEpsilon(float epsilon); | |||
| #else | |||
| InstanceNorm() = default; | |||
| int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override; | |||
| #endif | |||
| float GetEpsilon() const; | |||
| }; | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| #endif // LITE_MINDSPORE_LITE_C_OPS_INSTANE_NORM_H_ | |||
| @@ -31,6 +31,7 @@ | |||
| #include "src/ops/batch_to_space.h" | |||
| #include "src/ops/prior_box.h" | |||
| #include "src/ops/lstm.h" | |||
| #include "src/ops/instance_norm.h" | |||
| #include "src/ops/softmax.h" | |||
| #include "src/ops/activation.h" | |||
| #include "src/ops/deconv2d.h" | |||
| @@ -140,6 +141,7 @@ | |||
| #include "nnacl/matmul_parameter.h" | |||
| #include "nnacl/fp32/roi_pooling.h" | |||
| #include "nnacl/softmax_parameter.h" | |||
| #include "nnacl/instance_norm_parameter.h" | |||
| #include "nnacl/fp32/tile.h" | |||
| #include "nnacl/fp32/topk.h" | |||
| #include "nnacl/reduce_parameter.h" | |||
| @@ -219,6 +221,22 @@ OpParameter *PopulateBatchNorm(const mindspore::lite::PrimitiveC *primitive) { | |||
| return reinterpret_cast<OpParameter *>(batch_norm_param); | |||
| } | |||
| OpParameter *PopulateInstanceNorm(const mindspore::lite::PrimitiveC *primitive) { | |||
| const auto param = | |||
| reinterpret_cast<mindspore::lite::InstanceNorm *>(const_cast<mindspore::lite::PrimitiveC *>(primitive)); | |||
| InstanceNormParameter *instance_norm_param = | |||
| reinterpret_cast<InstanceNormParameter *>(malloc(sizeof(InstanceNormParameter))); | |||
| if (instance_norm_param == nullptr) { | |||
| MS_LOG(ERROR) << "malloc InstanceNormParameter failed."; | |||
| return nullptr; | |||
| } | |||
| memset(instance_norm_param, 0, sizeof(InstanceNormParameter)); | |||
| instance_norm_param->op_parameter_.type_ = primitive->Type(); | |||
| instance_norm_param->epsilon_ = param->GetEpsilon(); | |||
| instance_norm_param->fused_ = false; | |||
| return reinterpret_cast<OpParameter *>(instance_norm_param); | |||
| } | |||
| OpParameter *PopulateFillParameter(const mindspore::lite::PrimitiveC *primitive) { | |||
| const auto param = reinterpret_cast<mindspore::lite::Fill *>(const_cast<mindspore::lite::PrimitiveC *>(primitive)); | |||
| FillParameter *fill_param = reinterpret_cast<FillParameter *>(malloc(sizeof(FillParameter))); | |||
| @@ -0,0 +1,93 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/runtime/kernel/arm/fp32/instance_norm.h" | |||
| #include "nnacl/fp32/instance_norm.h" | |||
| #include "src/kernel_registry.h" | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_InstanceNorm; | |||
| namespace mindspore::kernel { | |||
| int InstanceNormCPUKernel::Init() { | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| return ReSize(); | |||
| } | |||
| int InstanceNormCPUKernel::ReSize() { | |||
| auto input_shapes = in_tensors_[0]->shape(); | |||
| auto n_dim = input_shapes.size(); | |||
| auto param = reinterpret_cast<InstanceNormParameter *>(op_parameter_); | |||
| param->batch_ = input_shapes[0]; | |||
| param->channel_ = input_shapes[n_dim - 1]; | |||
| param->unit_ = 1; | |||
| for (size_t i = 1; i < n_dim - 1; i++) { | |||
| param->unit_ *= input_shapes[i]; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int InstanceNormCPUKernel::Run() { | |||
| auto ret = ParallelLaunch(this->context_->thread_pool_, InstanceNormRun, this, op_parameter_->thread_num_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "InstanceNormRun error error_code[" << ret << "]"; | |||
| } | |||
| return ret; | |||
| } | |||
| int InstanceNormCPUKernel::DoExecute(int task_id) { | |||
| auto param = reinterpret_cast<InstanceNormParameter *>(op_parameter_); | |||
| InstanceNormFp32(in_tensors_.at(0)->MutableData(), in_tensors_.at(1)->MutableData(), in_tensors_.at(2)->MutableData(), | |||
| param, task_id, out_tensors_.at(0)->MutableData()); | |||
| return mindspore::lite::RET_OK; | |||
| } | |||
| int InstanceNormRun(void *cdata, int task_id) { | |||
| auto kernel = reinterpret_cast<InstanceNormCPUKernel *>(cdata); | |||
| auto ret = kernel->DoExecute(task_id); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "InstanceNormRun error task_id[" << task_id << "] error_code[" << ret << "]"; | |||
| } | |||
| return ret; | |||
| } | |||
| kernel::LiteKernel *CpuInstanceNormKernelCreator(const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter, | |||
| const lite::InnerContext *ctx, const kernel::KernelKey &desc, | |||
| const mindspore::lite::PrimitiveC *primitive) { | |||
| MS_ASSERT(opParameter != nullptr); | |||
| auto *kernel = new (std::nothrow) InstanceNormCPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "new InstanceNormCPUKernel fail!"; | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: " | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_InstanceNorm, CpuInstanceNormKernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -0,0 +1,46 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||
| #include <vector> | |||
| #include "src/lite_kernel.h" | |||
| #include "include/context.h" | |||
| #include "nnacl/instance_norm_parameter.h" | |||
| #include "src/runtime/runtime_api.h" | |||
| using mindspore::lite::InnerContext; | |||
| namespace mindspore::kernel { | |||
| class InstanceNormCPUKernel : public LiteKernel { | |||
| public: | |||
| InstanceNormCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx, | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) {} | |||
| ~InstanceNormCPUKernel() override = default; | |||
| int Init() override; | |||
| int ReSize() override; | |||
| int Run() override; | |||
| virtual int DoExecute(int task_id); | |||
| }; | |||
| int InstanceNormRun(void *cdata, int task_id); | |||
| } // namespace mindspore::kernel | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||
| @@ -0,0 +1,134 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include "src/common/log_adapter.h" | |||
| #include "common/common_test.h" | |||
| #include "mindspore/lite/nnacl/fp32/instance_norm.h" | |||
| #include "mindspore/lite/src/kernel_registry.h" | |||
| #include "mindspore/lite/src/lite_kernel.h" | |||
| namespace mindspore { | |||
| class TestInstanceNormFp32 : public mindspore::CommonTest { | |||
| public: | |||
| TestInstanceNormFp32() {} | |||
| }; | |||
| TEST_F(TestInstanceNormFp32, INTest1) { | |||
| std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399, | |||
| -1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344}; | |||
| std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514}; | |||
| std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003}; | |||
| InstanceNormParameter op_param; | |||
| op_param.op_parameter_.type_ = schema::PrimitiveType_InstanceNorm; | |||
| op_param.epsilon_ = 0.001f; | |||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {3}); | |||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {3}); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input2_tensor.SetData(in_data2.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||
| std::vector<float> output(12); | |||
| std::vector<float> corr_out = {-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535, | |||
| -3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324}; | |||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| output0_tensor.SetData(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| ASSERT_NE(creator, nullptr); | |||
| lite::InnerContext ctx; | |||
| ctx.thread_num_ = 4; | |||
| ASSERT_EQ(lite::RET_OK, ctx.Init()); | |||
| kernel::LiteKernel *kernel = | |||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||
| ASSERT_NE(kernel, nullptr); | |||
| auto output_tensor_shape = output0_tensor.shape(); | |||
| kernel->Run(); | |||
| printf("==================output data=================\n"); | |||
| for (int i = 0; i < output0_tensor.ElementsNum(); i++) { | |||
| std::cout << output[i] << " ,"; | |||
| } | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| input2_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| } | |||
| TEST_F(TestInstanceNormFp32, INTest2) { | |||
| std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399, | |||
| -1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344, | |||
| -11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399, | |||
| -1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344}; | |||
| std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514, 12.352293, 5.122387, 14.249514}; | |||
| std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003, 14.632595, 0.70900035, 11.179003}; | |||
| InstanceNormParameter op_param; | |||
| op_param.op_parameter_.type_ = schema::PrimitiveType_InstanceNorm; | |||
| op_param.epsilon_ = 0.001f; | |||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {2, 2, 2, 3}); | |||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {6}); | |||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {6}); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input2_tensor.SetData(in_data2.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||
| std::vector<float> output(24); | |||
| std::vector<float> corr_out = {-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535, | |||
| -3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324, | |||
| -6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535, | |||
| -3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324}; | |||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {2, 2, 2, 3}); | |||
| output0_tensor.SetData(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| ASSERT_NE(creator, nullptr); | |||
| lite::InnerContext ctx; | |||
| ctx.thread_num_ = 4; | |||
| ASSERT_EQ(lite::RET_OK, ctx.Init()); | |||
| kernel::LiteKernel *kernel = | |||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||
| ASSERT_NE(kernel, nullptr); | |||
| auto output_tensor_shape = output0_tensor.shape(); | |||
| kernel->Run(); | |||
| printf("==================output data=================\n"); | |||
| for (int i = 0; i < output0_tensor.ElementsNum(); i++) { | |||
| std::cout << output[i] << " ,"; | |||
| } | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| input2_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| } | |||
| } // namespace mindspore | |||