浏览代码

fix pylint

tags/v1.0.0
jinyaohui 5 年前
父节点
当前提交
334a32d501
共有 3 个文件被更改,包括 16 次插入12 次删除
  1. +6
    -5
      model_zoo/official/cv/psenet/src/dataset.py
  2. +6
    -4
      model_zoo/official/cv/psenet/src/network_define.py
  3. +4
    -3
      tests/ut/python/ops/test_dynamic_shape.py

+ 6
- 5
model_zoo/official/cv/psenet/src/dataset.py 查看文件

@@ -14,19 +14,20 @@
# ============================================================================
import math
import os
import random
import math
import Polygon as plg
import cv2
import pyclipper
import numpy as np
import pyclipper
from PIL import Image
import Polygon as plg
from src.config import config
import mindspore.dataset.engine as de
import mindspore.dataset.vision.py_transforms as py_transforms
from src.config import config
__all__ = ['train_dataset_creator', 'test_dataset_creator']
def get_img(img_path):


+ 6
- 4
model_zoo/official/cv/psenet/src/network_define.py 查看文件

@@ -15,14 +15,16 @@
import time
import numpy as np
import mindspore.nn as nn
from mindspore.ops import functional as F
from mindspore.ops import composite as C
from mindspore import ParameterTuple
from mindspore.common.tensor import Tensor
from mindspore.train.callback import Callback
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
import numpy as np
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.train.callback import Callback
__all__ = ['LossCallBack', 'WithLossCell', 'TrainOneStepCell']


+ 4
- 3
tests/ut/python/ops/test_dynamic_shape.py 查看文件

@@ -13,11 +13,11 @@
# limitations under the License.
# ============================================================================
""" test dynamic shape """
import numpy as np

from mindspore import Tensor, context, nn, Parameter
from mindspore.ops import operations as P
from mindspore import dtype as mstype

import numpy as np
from mindspore.ops import operations as P

context.set_context(mode=context.GRAPH_MODE, save_graphs=False)

@@ -32,6 +32,7 @@ def test_sparse_apply_proximal_ada_grad():
self.lr = 0.01
self.l1 = 0.0
self.l2 = 0.0

def construct(self, grad, indices):
out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
return out[0]


正在加载...
取消
保存