| @@ -117,19 +117,19 @@ def package_summary_event(data_list, step): | |||
| summary_value.tag = tag | |||
| # get the summary type and parse the tag | |||
| if summary_type == 'Scalar': | |||
| summary_value.scalar_value = _get_scalar_summary(tag, data) | |||
| if not _fill_scalar_summary(tag, data, summary_value): | |||
| del summary.value[-1] | |||
| elif summary_type == 'Tensor': | |||
| summary_tensor = summary_value.tensor | |||
| _get_tensor_summary(tag, data, summary_tensor) | |||
| _fill_tensor_summary(tag, data, summary_value.tensor) | |||
| elif summary_type == 'Image': | |||
| summary_image = summary_value.image | |||
| _get_image_summary(tag, data, summary_image, MS_IMAGE_TENSOR_FORMAT) | |||
| if not _fill_image_summary(tag, data, summary_value.image, MS_IMAGE_TENSOR_FORMAT): | |||
| del summary.value[-1] | |||
| elif summary_type == 'Histogram': | |||
| summary_histogram = summary_value.histogram | |||
| _fill_histogram_summary(tag, data, summary_histogram) | |||
| _fill_histogram_summary(tag, data, summary_value.histogram) | |||
| else: | |||
| # The data is invalid ,jump the data | |||
| logger.error("Summary type(%r) is error, tag = %r", summary_type, tag) | |||
| del summary.value[-1] | |||
| return summary_event | |||
| @@ -173,7 +173,7 @@ def _nptype_to_prototype(np_value): | |||
| return proto | |||
| def _get_scalar_summary(tag: str, np_value): | |||
| def _fill_scalar_summary(tag: str, np_value, summary): | |||
| """ | |||
| Package the scalar summary. | |||
| @@ -185,25 +185,20 @@ def _get_scalar_summary(tag: str, np_value): | |||
| Summary, return scalar summary content. | |||
| """ | |||
| logger.debug("Set(%r) the scalar summary value", tag) | |||
| if np_value.ndim == 0: | |||
| if np_value.size == 1: | |||
| # is scalar | |||
| scalar_value = np_value.item() | |||
| elif np_value.ndim == 1: | |||
| # Because now GE can't providesumm the real shape info to convert the Tensor | |||
| # So consider the dim = 1, shape = (1,) tensor is scalar | |||
| scalar_value = np_value[0] | |||
| if np_value.shape != (1,): | |||
| logger.error("The tensor is not Scalar, tag = %r, Shape = %r", tag, np_value.shape) | |||
| else: | |||
| np_list = np_value.reshape(-1).tolist() | |||
| scalar_value = np_list[0] | |||
| logger.error("The value is not Scalar, tag = %r, ndim = %r", tag, np_value.ndim) | |||
| logger.debug("The tag(%r) value is: %r", tag, scalar_value) | |||
| return scalar_value | |||
| def _get_tensor_summary(tag: str, np_value, summary_tensor): | |||
| summary.scalar_value = np_value.item() | |||
| return True | |||
| if np_value.size > 1: | |||
| logger.warning("The tensor is not a single scalar, tag = %r, ndim = %r, shape = %r", tag, np_value.ndim, | |||
| np_value.shape) | |||
| summary.scalar_value = next(np_value.flat).item() | |||
| return True | |||
| logger.error("There no values inside tensor, tag = %r, size = %r", tag, np_value.size) | |||
| return False | |||
| def _fill_tensor_summary(tag: str, np_value, summary_tensor): | |||
| """ | |||
| Package the tensor summary. | |||
| @@ -287,12 +282,18 @@ def _fill_histogram_summary(tag: str, np_value: np.ndarray, summary) -> None: | |||
| logger.warning('There are no valid values in the ndarray(size=%d, shape=%d)', total, np_value.shape) | |||
| # summary.{min, max, sum} are 0s by default, no need to explicitly set | |||
| else: | |||
| summary.min = ma_value.min() | |||
| summary.max = ma_value.max() | |||
| summary.sum = ma_value.sum() | |||
| # BUG: max of a masked array with dtype np.float16 returns inf | |||
| # See numpy issue#15077 | |||
| if issubclass(np_value.dtype.type, np.floating): | |||
| summary.min = ma_value.min(fill_value=np.PINF) | |||
| summary.max = ma_value.max(fill_value=np.NINF) | |||
| else: | |||
| summary.min = ma_value.min() | |||
| summary.max = ma_value.max() | |||
| summary.sum = ma_value.sum(dtype=np.float64) | |||
| bins = _calc_histogram_bins(valid) | |||
| range_ = summary.min, summary.max | |||
| hists, edges = np.histogram(np_value, bins=bins, range=range_) | |||
| bins = np.linspace(summary.min, summary.max, bins + 1, dtype=np_value.dtype) | |||
| hists, edges = np.histogram(np_value, bins=bins) | |||
| for hist, edge1, edge2 in zip(hists, edges, edges[1:]): | |||
| bucket = summary.buckets.add() | |||
| @@ -301,7 +302,7 @@ def _fill_histogram_summary(tag: str, np_value: np.ndarray, summary) -> None: | |||
| bucket.left = edge1 | |||
| def _get_image_summary(tag: str, np_value, summary_image, input_format='NCHW'): | |||
| def _fill_image_summary(tag: str, np_value, summary_image, input_format='NCHW'): | |||
| """ | |||
| Package the image summary. | |||
| @@ -315,8 +316,14 @@ def _get_image_summary(tag: str, np_value, summary_image, input_format='NCHW'): | |||
| Summary, return image summary content. | |||
| """ | |||
| logger.debug("Set(%r) the image summary value", tag) | |||
| if np_value.ndim != 4: | |||
| logger.error("The value is not Image, tag = %r, ndim = %r", tag, np_value.ndim) | |||
| if np_value.ndim != 4 or np_value.shape[1] not in (1, 3): | |||
| logger.error("The value is not Image, tag = %r, ndim = %r, shape=%r", tag, np_value.ndim, np_value.shape) | |||
| return False | |||
| if np_value.ndim != len(input_format): | |||
| logger.error("The tensor with dim(%r) can't convert the format(%r) because dim not same", np_value.ndim, | |||
| input_format) | |||
| return False | |||
| # convert the tensor format | |||
| tensor = _convert_image_format(np_value, input_format) | |||
| @@ -337,7 +344,7 @@ def _get_image_summary(tag: str, np_value, summary_image, input_format='NCHW'): | |||
| summary_image.width = width | |||
| summary_image.colorspace = channel | |||
| summary_image.encoded_image = image_string | |||
| return summary_image | |||
| return True | |||
| def _make_image(tensor, rescale=1): | |||
| @@ -376,30 +383,21 @@ def _convert_image_format(np_tensor, input_format, out_format='HWC'): | |||
| Returns: | |||
| Tensor, return format image. | |||
| """ | |||
| out_tensor = None | |||
| if np_tensor.ndim != len(input_format): | |||
| logger.error("The tensor with dim(%r) can't convert the format(%r) because dim not same", np_tensor.ndim, | |||
| input_format) | |||
| return out_tensor | |||
| input_format = input_format.upper() | |||
| if len(input_format) == 4: | |||
| # convert the NCHW | |||
| if input_format != 'NCHW': | |||
| index = [input_format.find(c) for c in 'NCHW'] | |||
| tensor_nchw = np_tensor.transpose(index) | |||
| else: | |||
| tensor_nchw = np_tensor | |||
| # convert the NCHW | |||
| if input_format != 'NCHW': | |||
| index = [input_format.find(c) for c in 'NCHW'] | |||
| tensor_nchw = np_tensor.transpose(index) | |||
| else: | |||
| tensor_nchw = np_tensor | |||
| # make grid to expand N | |||
| tensor_chw = _make_canvas_for_imgs(tensor_nchw) | |||
| # make grid to expand N | |||
| tensor_chw = _make_canvas_for_imgs(tensor_nchw) | |||
| # convert to out format | |||
| out_index = ['CHW'.find(c) for c in out_format] | |||
| out_tensor = tensor_chw.transpose(out_index) | |||
| else: | |||
| logger.error("Don't support the format(%r) convert", input_format) | |||
| # convert to out format | |||
| out_index = ['CHW'.find(c) for c in out_format] | |||
| out_tensor = tensor_chw.transpose(out_index) | |||
| return out_tensor | |||
| @@ -415,15 +413,9 @@ def _make_canvas_for_imgs(tensor, col_imgs=8): | |||
| Tensor, retrun canvas of image. | |||
| """ | |||
| # expand the N1HW to N3HW | |||
| out_canvas = None | |||
| if tensor.shape[1] == 1: | |||
| tensor = np.concatenate([tensor, tensor, tensor], 1) | |||
| # check the tensor format | |||
| if tensor.ndim != 4 or tensor.shape[1] != 3: | |||
| logger.error("The image tensor with ndim(%r) and shape(%r) is not 'NCHW' format", tensor.ndim, tensor.shape) | |||
| return out_canvas | |||
| # expand the N | |||
| n = tensor.shape[0] | |||
| h = tensor.shape[2] | |||