| @@ -53,12 +53,8 @@ include(${MICRO_CMAKE_PATH}/package_wrapper.cmake) | |||
| list(APPEND OP_FILES ${NNACL_OPS} ${WRAPPER_SRC} ${RUNTIME_SRC}) | |||
| if(PLATFORM_ARM64) | |||
| set(LIB_PATH "${OPERATOR_LIBRARY_PATH}/lib/arm64") | |||
| elseif(PLATFORM_ARM32) | |||
| set(LIB_PATH "${OPERATOR_LIBRARY_PATH}/lib/arm32a") | |||
| else() | |||
| set(LIB_PATH "${OPERATOR_LIBRARY_PATH}/lib/x86") | |||
| set(LIB_PATH "${OPERATOR_LIBRARY_PATH}/lib") | |||
| if(NOT PLATFORM_ARM64 AND NOT PLATFORM_ARM32) | |||
| list(APPEND OP_FILES ${CMSIS_OPS}) | |||
| endif() | |||
| @@ -0,0 +1,60 @@ | |||
| cmake_minimum_required(VERSION 3.14) | |||
| project(benchmark) | |||
| if(NOT DEFINED MODEL_LIB) | |||
| message(FATAL_ERROR "MODEL_LIB not set") | |||
| endif() | |||
| get_filename_component(MODEL_LIB ${MODEL_LIB} ABSOLUTE BASE_DIR ${CMAKE_CURRENT_BINARY_DIR}) | |||
| function(parse_lib_info lib_full_path lib_name lib_path) | |||
| string(FIND "${lib_full_path}" "/" POS REVERSE) | |||
| math(EXPR POS "${POS} + 1") | |||
| string(SUBSTRING ${lib_full_path} 0 ${POS} path) | |||
| set(${lib_path} ${path} PARENT_SCOPE) | |||
| string(SUBSTRING ${lib_full_path} "${POS}" "-1" name) | |||
| set(${lib_name} ${name} PARENT_SCOPE) | |||
| endfunction(parse_lib_info) | |||
| parse_lib_info(${MODEL_LIB} MODEL_LIB_NAME MODEL_LIB_PATH) | |||
| message("project name: ${MODEL_LIB_NAME}") | |||
| option(MICRO_BUILD_ARM64 "build android arm64" OFF) | |||
| option(MICRO_BUILD_ARM32A "build android arm32" OFF) | |||
| if(MICRO_BUILD_ARM64 OR MICRO_BUILD_ARM32A) | |||
| add_compile_definitions(ENABLE_NEON) | |||
| add_compile_definitions(ENABLE_ARM) | |||
| endif() | |||
| if(MICRO_BUILD_ARM64) | |||
| add_compile_definitions(ENABLE_ARM64) | |||
| set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=armv8.2-a+dotprod") | |||
| endif() | |||
| if(MICRO_BUILD_ARM32A) | |||
| add_compile_definitions(ENABLE_ARM32) | |||
| add_definitions(-mfloat-abi=softfp -mfpu=neon) | |||
| endif() | |||
| set(CMAKE_C_FLAGS "${CMAKE_ENABLE_C99} ${CMAKE_C_FLAGS}") | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17") | |||
| if("${CMAKE_BUILD_TYPE}" STREQUAL "Debug") | |||
| message(STATUS "build benchmark with debug info") | |||
| set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -DDebug -g") | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DDebug -g") | |||
| set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fvisibility=default") | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fvisibility=default") | |||
| else() | |||
| set(CMAKE_C_FLAGS "-fPIC -fPIE -D_FORTIFY_SOURCE=2 -O2 -Wall -Werror -fstack-protector-strong -Wno-attributes \ | |||
| -Wno-deprecated-declarations -Wno-missing-braces ${CMAKE_C_FLAGS}") | |||
| set(CMAKE_CXX_FLAGS "-fPIC -fPIE -D_FORTIFY_SOURCE=2 -O2 -Wall -Werror -fstack-protector-strong -Wno-attributes \ | |||
| -Wno-deprecated-declarations -Wno-missing-braces -Wno-overloaded-virtual ${CMAKE_CXX_FLAGS}") | |||
| endif() | |||
| link_directories(${MODEL_LIB_PATH}) | |||
| include(benchmark.cmake) | |||
| add_executable(benchmark ${SRC_FILES}) | |||
| target_link_libraries(benchmark ${MODEL_LIB_NAME} -lm -pthread) | |||
| @@ -0,0 +1,97 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include <string> | |||
| #include <cstring> | |||
| #include "include/lite_session.h" | |||
| #include "include/ms_tensor.h" | |||
| #include "include/errorcode.h" | |||
| #include "load_input.h" | |||
| using namespace mindspore; | |||
| void usage() { | |||
| printf( | |||
| "-- mindspore benchmark params usage:\n" | |||
| "args[0]: executable file\n" | |||
| "args[1]: inputs binary file\n" | |||
| "args[2]: model weight binary file\n" | |||
| "args[3]: loop count for performance test\n" | |||
| "args[4]: runtime thread num\n" | |||
| "args[5]: runtime thread bind mode\n\n"); | |||
| } | |||
| int main(int argc, const char **argv) { | |||
| if (argc < 2) { | |||
| std::cout << "input command is invalid\n" << std::endl; | |||
| usage(); | |||
| return lite::RET_ERROR; | |||
| } | |||
| std::cout << "start run benchmark" << std::endl; | |||
| const char *model_buffer = nullptr; | |||
| int model_size = 0; | |||
| // read .net file by ReadBinaryFile; | |||
| if (argc >= 3) { | |||
| model_buffer = static_cast<const char *>(ReadInputData(argv[2], &model_size)); | |||
| } | |||
| session::LiteSession *session = mindspore::session::LiteSession::CreateSession(model_buffer, model_size, nullptr); | |||
| if (session == nullptr) { | |||
| std::cerr << "create lite session failed" << std::endl; | |||
| return lite::RET_ERROR; | |||
| } | |||
| // set model inputs tensor data | |||
| std::vector<tensor::MSTensor *> inputs = session->GetInputs(); | |||
| size_t inputs_num = inputs.size(); | |||
| void *inputs_binbuf[inputs_num]; | |||
| int inputs_size[inputs_num]; | |||
| for (size_t i = 0; i < inputs_num; ++i) { | |||
| inputs_size[i] = inputs[i]->Size(); | |||
| } | |||
| int ret = ReadInputsFile(const_cast<char *>(argv[1]), inputs_binbuf, inputs_size, inputs_num); | |||
| if (ret != lite::RET_OK) { | |||
| return lite::RET_ERROR; | |||
| } | |||
| for (size_t i = 0; i < inputs_num; ++i) { | |||
| void *input_data = inputs[i]->MutableData(); | |||
| memcpy(input_data, inputs_binbuf[i], inputs_size[i]); | |||
| } | |||
| ret = session->RunGraph(); | |||
| if (ret != lite::RET_OK) { | |||
| return lite::RET_ERROR; | |||
| } | |||
| auto outputs = session->GetOutputs(); | |||
| std::cout << "output size: " << outputs.size() << std::endl; | |||
| for (const auto &item : outputs) { | |||
| auto output = item.second; | |||
| std::cout << "name: " << output->tensor_name() << ", size: " << output->Size() << std::endl; | |||
| } | |||
| std::cout << "run benchmark success" << std::endl; | |||
| delete session; | |||
| for (size_t i = 0; i < inputs_num; ++i) { | |||
| free(inputs_binbuf[i]); | |||
| } | |||
| return lite::RET_OK; | |||
| } | |||
| @@ -0,0 +1,8 @@ | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}) | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/../src/) | |||
| include_directories(${HEADER_PATH}) | |||
| set(SRC_FILES | |||
| benchmark.cc | |||
| load_input.c | |||
| debug_utils.c | |||
| ) | |||
| @@ -0,0 +1,216 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <inttypes.h> | |||
| #include "debug_utils.h" | |||
| #define UP_DIV(x, y) (((x) + (y) - (1)) / (y)) | |||
| static const unsigned int kPrintNums = 20; | |||
| static const unsigned int kLineSplitNum = 44; | |||
| static const unsigned int kLineNum = 45; | |||
| unsigned int GetTensorElementSize(const MicroTensor *tensor) { | |||
| unsigned int ans = 1; | |||
| if (tensor->format == Format_NC4HW4) { | |||
| for (unsigned int i = 0; i < tensor->ndim; ++i) { | |||
| unsigned int dim = tensor->dim[i]; | |||
| if (i == 1) { | |||
| dim = UP_DIV(dim, 4) * 4; | |||
| } | |||
| ans *= dim; | |||
| } | |||
| } else { | |||
| for (unsigned int i = 0; i < tensor->ndim; ++i) { | |||
| ans *= tensor->dim[i]; | |||
| } | |||
| } | |||
| return ans; | |||
| } | |||
| static const char *const TypeNames[] = {"DT_FLOAT", "DT_FLOAT16", "DT_INT8", "DT_INT32", "DT_UINT8", "DT_INT16", | |||
| "", "", "DT_UINT32", "DT_INT64", "DT_UINT16", "", | |||
| "", "", "", "", "DT_UNDEFINED", ""}; | |||
| const char *EnumNameFormat(enum Format e) { | |||
| switch (e) { | |||
| case Format_NCHW: | |||
| return "NCHW"; | |||
| case Format_NHWC: | |||
| return "NHWC"; | |||
| case Format_HWKC: | |||
| return "HWKC"; | |||
| case Format_HWCK: | |||
| return "HWCK"; | |||
| case Format_KCHW: | |||
| return "KCHW"; | |||
| case Format_CKHW: | |||
| return "CKHW"; | |||
| case Format_KHWC: | |||
| return "KHWC"; | |||
| case Format_CHWK: | |||
| return "CHWK"; | |||
| case Format_NC4HW4: | |||
| return "NC4HW4"; | |||
| case Format_NUM_OF_FORMAT: | |||
| return "NUM_OF_FORMAT"; | |||
| default: | |||
| return ""; | |||
| } | |||
| } | |||
| void PrintTensorData(MicroTensor *tensor) { | |||
| void *data = tensor->data; | |||
| unsigned int elenums = GetTensorElementSize(tensor); | |||
| if (data == NULL || elenums == 0) { | |||
| MICRO_ERROR("print tensor data failed"); | |||
| return; | |||
| } | |||
| switch (tensor->type) { | |||
| case DataType_DT_FLOAT: { | |||
| float *addr = (float *)(data); | |||
| for (int i = 0; i < elenums && i < kPrintNums; ++i) { | |||
| printf("%f, ", addr[i]); | |||
| } | |||
| break; | |||
| } | |||
| case DataType_DT_INT32: { | |||
| int32_t *addr = (int32_t *)(data); | |||
| for (int i = 0; i < elenums && i < kPrintNums; ++i) { | |||
| printf("%d, ", addr[i]); | |||
| } | |||
| break; | |||
| } | |||
| case DataType_DT_INT8: { | |||
| int8_t *addr = (int8_t *)(data); | |||
| for (int i = 0; i < elenums && i < kPrintNums; ++i) { | |||
| printf("%d, ", addr[i]); | |||
| } | |||
| break; | |||
| } | |||
| case DataType_DT_UINT32: { | |||
| uint32_t *addr = (uint32_t *)(data); | |||
| for (int i = 0; i < elenums && i < kPrintNums; ++i) { | |||
| printf("%u, ", addr[i]); | |||
| } | |||
| break; | |||
| } | |||
| case DataType_DT_UINT8: { | |||
| uint8_t *addr = (uint8_t *)(data); | |||
| for (int i = 0; i < elenums && i < kPrintNums; ++i) { | |||
| printf("%u, ", addr[i]); | |||
| } | |||
| break; | |||
| } | |||
| default: | |||
| MICRO_ERROR("unsupported data type %d", tensor->type); | |||
| } | |||
| printf("\n"); | |||
| } | |||
| void PrintDataToFile(const void *data, const size_t elenums, const enum DataType type, FILE *file) { | |||
| if (data == NULL || elenums == 0) { | |||
| MICRO_ERROR("print tensor data to file failed"); | |||
| return; | |||
| } | |||
| switch (type) { | |||
| case DataType_DT_FLOAT: { | |||
| float *addr = (float *)(data); | |||
| for (int i = 0; i < elenums; ++i) { | |||
| fprintf(file, "%0.15f, ", addr[i]); | |||
| if (i % kLineNum == kLineSplitNum) { | |||
| fprintf(file, "\n"); | |||
| } | |||
| } | |||
| break; | |||
| } | |||
| case DataType_DT_INT32: { | |||
| int32_t *addr = (int32_t *)(data); | |||
| for (int i = 0; i < elenums; ++i) { | |||
| fprintf(file, "%d, ", addr[i]); | |||
| if (i % kLineNum == kLineSplitNum) { | |||
| fprintf(file, "\n"); | |||
| } | |||
| } | |||
| break; | |||
| } | |||
| case DataType_DT_INT8: { | |||
| int8_t *addr = (int8_t *)(data); | |||
| for (int i = 0; i < elenums; ++i) { | |||
| fprintf(file, "%d, ", addr[i]); | |||
| if (i % kLineNum == kLineSplitNum) { | |||
| fprintf(file, "\n"); | |||
| } | |||
| } | |||
| break; | |||
| } | |||
| case DataType_DT_UINT32: { | |||
| uint32_t *addr = (uint32_t *)(data); | |||
| for (int i = 0; i < elenums; ++i) { | |||
| fprintf(file, "%u, ", addr[i]); | |||
| if (i % kLineNum == kLineSplitNum) { | |||
| fprintf(file, "\n"); | |||
| } | |||
| } | |||
| break; | |||
| } | |||
| case DataType_DT_UINT8: { | |||
| uint8_t *addr = (uint8_t *)(data); | |||
| for (int i = 0; i < elenums; ++i) { | |||
| fprintf(file, "%u, ", addr[i]); | |||
| if (i % kLineNum == kLineSplitNum) { | |||
| fprintf(file, "\n"); | |||
| } | |||
| } | |||
| break; | |||
| } | |||
| default: | |||
| MICRO_ERROR("unsupported data type %d", type); | |||
| } | |||
| fprintf(file, "\n"); | |||
| } | |||
| void PrintTensor(MicroTensor *tensor, FILE *output_file, const char *is_input) { | |||
| if (output_file == NULL) { | |||
| MICRO_ERROR("output file is NULL"); | |||
| return; | |||
| } | |||
| fprintf(output_file, "%s ", is_input); | |||
| for (int i = 0; i < tensor->ndim; ++i) { | |||
| fprintf(output_file, "%u, ", tensor->dim[i]); | |||
| } | |||
| fprintf(output_file, "\n"); | |||
| const char *type = TypeNames[tensor->type]; | |||
| const char *format = EnumNameFormat(tensor->format); | |||
| unsigned int tensorSize = GetTensorElementSize(tensor); | |||
| fprintf(output_file, "%s type:%s, format:%s, elementSize: %u\n", is_input, type, format, tensorSize); | |||
| fprintf(output_file, "%s Data:\n", is_input); | |||
| PrintDataToFile(tensor->data, tensorSize, tensor->type, output_file); | |||
| (void)fflush(output_file); | |||
| } | |||
| uint64_t GetTimeUs() { | |||
| const int USEC = 1000000; | |||
| const int MSEC = 1000; | |||
| struct timespec ts = {0, 0}; | |||
| if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) { | |||
| return 0; | |||
| } | |||
| uint64_t retval = (uint64_t)((ts.tv_sec * USEC) + (ts.tv_nsec / MSEC)); | |||
| return retval; | |||
| } | |||
| @@ -0,0 +1,34 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_MICRO_MICRODEBUGUTIL_H_ | |||
| #define MINDSPORE_LITE_MICRO_MICRODEBUGUTIL_H_ | |||
| #include <stdio.h> | |||
| #include <sys/time.h> | |||
| #include <time.h> | |||
| #include <stdint.h> | |||
| #include "microtensor.h" | |||
| void PrintTensor(MicroTensor *tensor, FILE *output_file, const char *is_input); | |||
| void PrintTensorData(MicroTensor *tensor); | |||
| uint64_t GetTimeUs(); | |||
| #endif // MINDSPORE_LITE_MICRO_MICRODEBUGUTIL_H_ | |||
| @@ -0,0 +1,95 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "load_input.h" | |||
| #include <stdlib.h> | |||
| #include <stdio.h> | |||
| #include <string.h> | |||
| void *ReadInputData(const char *real_input_path, int *size) { | |||
| if (real_input_path == NULL) { | |||
| return NULL; | |||
| } | |||
| if (strstr(real_input_path, ".bin") || strstr(real_input_path, ".net")) { | |||
| FILE *file; | |||
| file = fopen(real_input_path, "rb+"); | |||
| if (!file) { | |||
| printf("Can't find %s\n", real_input_path); | |||
| return NULL; | |||
| } | |||
| int curr_file_posi = ftell(file); | |||
| fseek(file, 0, SEEK_END); | |||
| *size = ftell(file); | |||
| unsigned char *buf = malloc((*size)); | |||
| (void)memset(buf, 0, (*size)); | |||
| fseek(file, curr_file_posi, SEEK_SET); | |||
| int read_size = (int)(fread(buf, 1, *size, file)); | |||
| if (read_size != (*size)) { | |||
| printf("read file failed, total file size: %d, read_size: %d\n", (*size), read_size); | |||
| fclose(file); | |||
| free(buf); | |||
| return NULL; | |||
| } | |||
| fclose(file); | |||
| return (void *)buf; | |||
| } else { | |||
| printf("input data file should be .bin , .net"); | |||
| return NULL; | |||
| } | |||
| } | |||
| void SaveOutputData(char *final_name, unsigned char *output_data, unsigned int out_size) { | |||
| FILE *output_file; | |||
| output_file = fopen(final_name, "w"); | |||
| if (output_file == NULL) { | |||
| printf("fopen output file: %s failed\n", final_name); | |||
| return; | |||
| } | |||
| unsigned char str[out_size]; | |||
| for (unsigned int i = 0; i < out_size; ++i) { | |||
| str[i] = output_data[i]; | |||
| fprintf(output_file, "%d\t", str[i]); | |||
| } | |||
| fclose(output_file); | |||
| } | |||
| int ReadInputsFile(char *path, void **buffers, const int *inputs_size, int inputs_num) { | |||
| char *inputs_path[inputs_num]; | |||
| char *delim = ","; | |||
| char *token; | |||
| int i = 0; | |||
| while ((token = strtok_r(path, delim, &path))) { | |||
| if (i >= inputs_num) { | |||
| printf("inputs num is error, need: %d\n", inputs_num); | |||
| return -1; | |||
| } | |||
| inputs_path[i] = token; | |||
| printf("input %d: %s\n", i, inputs_path[i]); | |||
| i++; | |||
| } | |||
| for (i = 0; i < inputs_num; ++i) { | |||
| int size = 0; | |||
| buffers[i] = ReadInputData(inputs_path[i], &size); | |||
| if (size != inputs_size[i] || buffers[i] == NULL) { | |||
| printf("size mismatch, %s, input: %d, needed: %d\n", inputs_path[i], size, inputs_size[i]); | |||
| return -1; | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,36 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MICRO_EXAMPLE_LOAD_INPUT_LOAD_INPUT_H_ | |||
| #define MICRO_EXAMPLE_LOAD_INPUT_LOAD_INPUT_H_ | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| void *ReadInputData(const char *real_input_path, int *size); | |||
| void SaveOutputData(char *final_name, unsigned char *output_data, unsigned int out_size); | |||
| int ReadInputsFile(char *path, void **buffers, const int *inputs_size, int inputs_num); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| #endif // MICRO_EXAMPLE_LOAD_INPUT_LOAD_INPUT_H_ | |||
| @@ -15,111 +15,58 @@ | |||
| # ============================================================================ | |||
| set -e | |||
| CURRENT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" | |||
| MINDSPORE_ROOT_DIR=${${CURRENT_DIR}%%/mindspore/lite/micro/example/mnist} | |||
| BASEPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" | |||
| MINDSPORE_ROOT_DIR=${${BASEPATH}%%/mindspore/lite/micro/example/mnist} | |||
| OUTPUT_DIR=${1:-${MINDSPORE_ROOT_DIR}/output} | |||
| THREAD_NUM=${2:-32} | |||
| MODULE_NAME=mnist | |||
| OUTPUT_IR=Reshape-64.ir | |||
| CALIB_OUT=${CURRENT_DIR}/Reshape-64.out | |||
| echo "current dir is: ${BASEPATH}" | |||
| echo "current dir is: ${CURRENT_DIR}" | |||
| echo "packed output dir is :${OUTPUT_DIR}" | |||
| VERSION_HEADER=${MINDSPORE_ROOT_DIR}/mindspore/lite/include/version.h | |||
| INPUT_BIN=${BASEPATH}/mnist_input.bin | |||
| if [ ! -d "${OUTPUT_DIR}" ]; then | |||
| echo "folder ${OUTPUT_DIR} does not exist" | |||
| return 1 | |||
| fi | |||
| # rm if already exist | |||
| WORKSPACE=${CURRENT_DIR}/build | |||
| rm -rf ${WORKSPACE} | |||
| mkdir ${WORKSPACE} || exit 1 | |||
| PROJECT_DIR=${WORKSPACE}/${MODULE_NAME} | |||
| compare_output() { | |||
| local OUTPUT_FILE=$1 | |||
| local CALIB_FILE=$2 | |||
| if [[ ! -f "${OUTPUT_FILE}" || ! -f "${CALIB_FILE}" ]]; then | |||
| echo "file ${OUTPUT_FILE}, ${CALIB_FILE} does not exist, pwd $(pwd)" | |||
| exit 1 | |||
| fi | |||
| lines=$(cat ${CALIB_FILE} | wc -l) | |||
| for ((i = 1; i <= $lines; i++)); do | |||
| line1=$(awk 'NR=="'${i}'"{print $0}' ${CALIB_FILE}) | |||
| line2=$(awk 'NR=="'${i}'"{print $0}' ${OUTPUT_FILE}) | |||
| if [[ "${line1}" != "${line2}" ]]; then | |||
| echo -e "file ${OUTPUT_FILE}, ${CALIB_FILE}, compare failed! line: ${i}" | |||
| exit 1 | |||
| fi | |||
| done | |||
| echo -e "compare success, ${OUTPUT_FILE}, ${CALIB_FILE}" | |||
| get_version() { | |||
| VERSION_MAJOR=$(grep "const int ms_version_major =" ${VERSION_HEADER} | tr -dc "[0-9]") | |||
| VERSION_MINOR=$(grep "const int ms_version_minor =" ${VERSION_HEADER} | tr -dc "[0-9]") | |||
| VERSION_REVISION=$(grep "const int ms_version_revision =" ${VERSION_HEADER} | tr -dc "[0-9]") | |||
| VERSION_STR=${VERSION_MAJOR}.${VERSION_MINOR}.${VERSION_REVISION} | |||
| } | |||
| get_version | |||
| MINDSPORE_FILE_NAME="mindspore-lite-${VERSION_STR}-inference-linux-x64" | |||
| MINDSPORE_FILE="${MINDSPORE_FILE_NAME}.tar.gz" | |||
| MINDSPORE_LITE_DOWNLOAD_URL="https://ms-release.obs.cn-north-4.myhuaweicloud.com/${VERSION_STR}/MindSpore/lite/release/linux/${MINDSPORE_FILE}" | |||
| # cp oplib and codegen | |||
| cp ${OUTPUT_DIR}/mindspore-lite-*-codegen-linux-x64.tar.gz ${WORKSPACE}/ || exit 1 | |||
| cd ${WORKSPACE} || exit 1 | |||
| tar -zxf mindspore-lite-*-codegen-linux-x64.tar.gz || exit 1 | |||
| cd mindspore-lite-*-codegen-linux-x64 || exit 1 | |||
| mv operator_library/ ${WORKSPACE}/ || exit 1 | |||
| mv codegen ${WORKSPACE}/ || exit 1 | |||
| cd - | |||
| rm -r mindspore-lite-*-codegen-linux-x64 || exit 1 | |||
| rm mindspore-lite-*-codegen-linux-x64.tar.gz || exit 1 | |||
| # convert model | |||
| cp ${OUTPUT_DIR}/mindspore-lite-*-converter-linux-x64.tar.gz ${WORKSPACE}/ || exit 1 | |||
| cd ${WORKSPACE} || exit 1 | |||
| tar -zxf mindspore-lite-*-converter-linux-x64.tar.gz || exit 1 | |||
| rm mindspore-lite-*-converter-linux-x64.tar.gz || exit 1 | |||
| cd mindspore-lite-*-converter-linux-x64 || exit 1 | |||
| export LD_LIBRARY_PATH=./lib/:./third_party/protobuf/lib:./third_party/flatbuffers/lib:./third_party/glog/lib | |||
| converter/converter_lite --fmk=TFLITE \ | |||
| --modelFile=${CURRENT_DIR}/mnist.tflite \ | |||
| --outputFile=${WORKSPACE}/mnist | |||
| cd - | |||
| rm -rf mindspore-lite-*-converter-linux-x64 || exit 1 | |||
| mkdir -p build | |||
| # generate code | |||
| ${WORKSPACE}/codegen --modelPath=${WORKSPACE}/mnist.ms \ | |||
| --moduleName=${MODULE_NAME} \ | |||
| --isWeightFile=true \ | |||
| --debugMode=true | |||
| rm codegen | |||
| if [ ! -d "${PROJECT_DIR}" ]; then | |||
| echo "folder ${PROJECT_DIR} does not exist" | |||
| return 1 | |||
| if [ ! -e ${BASEPATH}/build/${MINDSPORE_FILE} ]; then | |||
| wget -c -O ${BASEPATH}/build/${MINDSPORE_FILE} --no-check-certificate ${MINDSPORE_LITE_DOWNLOAD_URL} | |||
| fi | |||
| cd ${PROJECT_DIR} || exit 1 | |||
| tar xzvf ${BASEPATH}/build/${MINDSPORE_FILE} -C ${BASEPATH}/build/ || exit 1 | |||
| rm ${BASEPATH}/build/${MINDSPORE_FILE} || exit 1 | |||
| CODEGEN_PATH=${BASEPATH}/build/${MINDSPORE_FILE_NAME}/tools/codegen | |||
| HEADER_PATH=${BASEPATH}/build/${MINDSPORE_FILE_NAME}/inference | |||
| # 1. build static lib.a | |||
| echo -e "building static library" | |||
| mkdir -p src/build && cd src/build || exit 1 | |||
| OP_HEADER_PATH=${WORKSPACE}/operator_library/include | |||
| OP_LIB=${WORKSPACE}/operator_library/lib/x86/libops.a | |||
| mkdir -p ${BASEPATH}/build/src && cd ${BASEPATH}/build/src || exit 1 | |||
| OP_HEADER_PATH=${CODEGEN_PATH}/operator_library/include | |||
| OP_LIB=${CODEGEN_PATH}/operator_library/lib/libops.a | |||
| echo "Head Path: ${OP_HEADER_PATH}" | |||
| echo "Lib Path: ${OP_LIB}" | |||
| cmake -DCMAKE_BUILD_TYPE=Debug \ | |||
| -DOP_LIB=${OP_LIB} \ | |||
| -DOP_HEADER_PATH=${OP_HEADER_PATH} .. | |||
| make -j${THREAD_NUM} | |||
| echo "Header Path: ${HEADER_PATH}" | |||
| cmake -DCMAKE_BUILD_TYPE=Debug \ | |||
| -DOP_LIB=${OP_LIB} \ | |||
| -DOP_HEADER_PATH=${OP_HEADER_PATH} \ | |||
| -DHEADER_PATH=${HEADER_PATH} \ | |||
| ${BASEPATH}/src | |||
| make | |||
| # 2. build benchmark | |||
| cd ${PROJECT_DIR}/benchmark && mkdir -p build && cd build || exit 1 | |||
| cmake -DMODEL_LIB="${PROJECT_DIR}/src/build/libnet.a" .. | |||
| make -j${THREAD_NUM} | |||
| mkdir -p ${BASEPATH}/build/benchmark && cd ${BASEPATH}/build/benchmark || exit 1 | |||
| cmake -DMODEL_LIB="${BASEPATH}/build/src/libnet.a" \ | |||
| -DHEADER_PATH=${HEADER_PATH} \ | |||
| ${BASEPATH}/benchmark | |||
| make | |||
| echo "net file: ${PROJECT_DIR}/src/${MODULE_NAME}.net" | |||
| echo "net file: ${BASEPATH}/src/mnist.net" | |||
| # 3. run benchmark | |||
| ./benchmark ${CURRENT_DIR}/input_1_224_224_3_uint8.bin ${PROJECT_DIR}/src/${MODULE_NAME}.net | |||
| compare_output ${OUTPUT_IR} ${CALIB_OUT} | |||
| RET=$? | |||
| if [[ "${RET}" -eq 0 ]]; then | |||
| echo -e "run benchmark success: ${MODULE_NAME}" | |||
| else | |||
| echo -e "run benchmark failed: ${MODULE_NAME}" | |||
| exit 1 | |||
| fi | |||
| ./benchmark ${INPUT_BIN} ${BASEPATH}/src/net.net | |||
| @@ -0,0 +1,83 @@ | |||
| cmake_minimum_required(VERSION 3.14) | |||
| project(net) | |||
| if(NOT DEFINED OP_LIB) | |||
| message(FATAL_ERROR "OP_LIB not set") | |||
| endif() | |||
| if(NOT DEFINED OP_HEADER_PATH) | |||
| message(FATAL_ERROR "OP_HEADER_PATH not set") | |||
| endif() | |||
| get_filename_component(OP_LIB ${OP_LIB} ABSOLUTE BASE_DIR ${CMAKE_CURRENT_BINARY_DIR}) | |||
| get_filename_component(OP_HEADER_PATH ${OP_HEADER_PATH} ABSOLUTE BASE_DIR ${CMAKE_CURRENT_BINARY_DIR}) | |||
| message("operator lib path: ${OP_LIB}") | |||
| message("operator header path: ${OP_HEADER_PATH}") | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/../include) | |||
| include_directories(${OP_HEADER_PATH}) | |||
| include_directories(${HEADER_PATH}) | |||
| include(net.cmake) | |||
| option(MICRO_BUILD_ARM64 "build android arm64" OFF) | |||
| option(MICRO_BUILD_ARM32A "build android arm32" OFF) | |||
| if(MICRO_BUILD_ARM64 OR MICRO_BUILD_ARM32A) | |||
| add_compile_definitions(ENABLE_NEON) | |||
| add_compile_definitions(ENABLE_ARM) | |||
| endif() | |||
| if(MICRO_BUILD_ARM64) | |||
| add_compile_definitions(ENABLE_ARM64) | |||
| set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=armv8.2-a+dotprod") | |||
| endif() | |||
| if(MICRO_BUILD_ARM32A) | |||
| add_compile_definitions(ENABLE_ARM32) | |||
| add_definitions(-mfloat-abi=softfp -mfpu=neon) | |||
| endif() | |||
| set(CMAKE_C_FLAGS "${CMAKE_ENABLE_C99} ${CMAKE_C_FLAGS}") | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17") | |||
| if("${CMAKE_BUILD_TYPE}" STREQUAL "Debug") | |||
| set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -DDebug -g") | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DDebug -g") | |||
| set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fvisibility=default") | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fvisibility=default") | |||
| else() | |||
| set(CMAKE_C_FLAGS "-fPIC -fPIE -D_FORTIFY_SOURCE=2 -O2 -Wall -Werror -fstack-protector-strong -Wno-attributes \ | |||
| -Wno-deprecated-declarations -Wno-missing-braces ${CMAKE_C_FLAGS}") | |||
| set(CMAKE_CXX_FLAGS "-fPIC -fPIE -D_FORTIFY_SOURCE=2 -O2 -Wall -Werror -fstack-protector-strong -Wno-attributes \ | |||
| -Wno-deprecated-declarations -Wno-missing-braces -Wno-overloaded-virtual ${CMAKE_CXX_FLAGS}") | |||
| endif() | |||
| function(create_library) | |||
| add_custom_command(TARGET net | |||
| POST_BUILD | |||
| COMMAND rm -rf tmp | |||
| COMMAND mkdir tmp | |||
| COMMAND cd tmp && ar -x ${OP_LIB} | |||
| COMMAND echo "raw static library ${library_name} size:" | |||
| COMMAND ls -lh ${library_name} | |||
| COMMAND mv ${library_name} ./tmp && cd tmp && ar -x ${library_name} | |||
| COMMENT "unzip raw static library ${library_name}" | |||
| ) | |||
| foreach(object_file ${OP_SRC}) | |||
| add_custom_command(TARGET net POST_BUILD COMMAND mv ./tmp/${object_file} .) | |||
| endforeach() | |||
| add_custom_command(TARGET net | |||
| POST_BUILD | |||
| COMMAND ar cr ${library_name} *.o | |||
| COMMAND ranlib ${library_name} | |||
| COMMAND echo "new static library ${library_name} size:" | |||
| COMMAND ls -lh ${library_name} | |||
| COMMAND rm -rf tmp && rm -rf *.o | |||
| COMMENT "generate specified static library ${library_name}" | |||
| ) | |||
| endfunction(create_library) | |||
| string(CONCAT library_name "lib" net ".a") | |||
| create_library() | |||
| @@ -0,0 +1,88 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MSMICRO_TENSOR_H | |||
| #define MSMICRO_TENSOR_H | |||
| #include <stdlib.h> | |||
| #include <string.h> | |||
| #include <stdio.h> | |||
| #include <stdbool.h> | |||
| #include <stdint.h> | |||
| #define MICRO_INFO(content, args...) \ | |||
| { printf("[INFO] %s|%d: " #content "\r\n", __func__, __LINE__, ##args); } | |||
| #define MICRO_ERROR(content, args...) \ | |||
| { printf("[ERROR] %s|%d: " #content "\r\n", __func__, __LINE__, ##args); } | |||
| enum STATUS { | |||
| RET_OK = 0, | |||
| RET_ERROR = 1, | |||
| }; | |||
| enum DataType { | |||
| DataType_DT_FLOAT = 0, | |||
| DataType_DT_FLOAT16 = 1, | |||
| DataType_DT_INT8 = 2, | |||
| DataType_DT_INT32 = 3, | |||
| DataType_DT_UINT8 = 4, | |||
| DataType_DT_INT16 = 5, | |||
| DataType_DT_UINT32 = 8, | |||
| DataType_DT_INT64 = 9, | |||
| DataType_DT_UINT16 = 10, | |||
| DataType_DT_UNDEFINED = 16, | |||
| DataType_MIN = DataType_DT_FLOAT, | |||
| DataType_MAX = DataType_DT_UNDEFINED | |||
| }; | |||
| enum Format { | |||
| Format_NCHW = 0, | |||
| Format_NHWC = 1, | |||
| Format_HWKC = 2, | |||
| Format_HWCK = 3, | |||
| Format_KCHW = 4, | |||
| Format_CKHW = 5, | |||
| Format_KHWC = 6, | |||
| Format_CHWK = 7, | |||
| Format_NC4HW4 = 100, | |||
| Format_NUM_OF_FORMAT = 101, | |||
| Format_MIN = Format_NCHW, | |||
| Format_MAX = Format_NUM_OF_FORMAT | |||
| }; | |||
| typedef struct { | |||
| enum DataType type; | |||
| enum Format format; | |||
| int ndim; | |||
| int *dim; | |||
| void *data; | |||
| } MicroTensor; | |||
| typedef struct { | |||
| int num; | |||
| MicroTensor *tensor; | |||
| } MicroTensorList; | |||
| typedef struct { | |||
| float in_scale; | |||
| float out_scale; | |||
| int in_zero_point; | |||
| int out_zero_point; | |||
| } GraphQuantArgs; | |||
| #endif // MSMICRO_TENSOR_H | |||
| @@ -0,0 +1,184 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "microtensor.h" | |||
| #include "net_weight.h" | |||
| #include "net.h" | |||
| static const unsigned char *net_I0 = 0; | |||
| int net_SetInputs(const void **inputs, int num) { | |||
| if (inputs == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| if (num !=1) { | |||
| return RET_ERROR; | |||
| } | |||
| net_I0 = inputs[0]; | |||
| return RET_OK; | |||
| } | |||
| const MicroTensorList* net_GetOutputs() { | |||
| static MicroTensor net_O[1] ; | |||
| static int dim0[] = {1, 10, }; | |||
| net_O[0].ndim = 2; | |||
| net_O[0].dim = dim0; | |||
| net_O[0].type = DataType_DT_FLOAT; | |||
| net_O[0].format = Format_NHWC; | |||
| net_O[0].data =net_B+56; | |||
| static MicroTensorList net_TensorArray; | |||
| net_TensorArray.num = 1; | |||
| net_TensorArray.tensor = &net_O[0]; | |||
| return &net_TensorArray; | |||
| } | |||
| int CopyOutputsData(void **outputs, int num) { | |||
| if (outputs == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| if (num != 1) { | |||
| return RET_ERROR; | |||
| } | |||
| memcpy(outputs[0], net_B+56, 40); | |||
| outputs[0] = net_B; | |||
| return RET_OK; | |||
| } | |||
| int net_GetBufferSize() { | |||
| return 40032; | |||
| } | |||
| int net_SetBuffer( void *buffer) { | |||
| if (buffer == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| net_B = buffer; | |||
| return RET_OK; | |||
| } | |||
| void net_FreeResource() { | |||
| net_B= NULL; | |||
| net_I0 = NULL; | |||
| void *allocated[] = {net_W14, net_W15, net_W16, net_W17, net_W18, net_W19, }; | |||
| for (int i = 0; i < 6; ++i) { | |||
| free(allocated[i]); | |||
| allocated[i] = NULL; | |||
| } | |||
| } | |||
| void net_Inference() { | |||
| const int g_thread_num = 1; | |||
| { | |||
| DoQuantizeFp32ToInt8((float *)(net_I0), (int8_t *)(net_B+0), 0.007874015718698501587, 0, 784, false); | |||
| } | |||
| { | |||
| memset((int16_t *)(net_B+10928), 0, 2048); | |||
| memset((int16_t *)(net_B+12976), 0, 256); | |||
| memset((int *)(net_B+13232), 0, 6144); | |||
| memset((uint8_t *)(net_B+19376), 0, 8112); | |||
| memset((int16_t *)(net_B+27488), 0, 12544); | |||
| static QuantArg conv_param__quant_arg_in[1] = {{0.007874015718698501587, 0}}; | |||
| static QuantArg conv_param__quant_arg_w[12] = {{0.003238174133002758026, -6}, {0.003890725085511803627, -8}, {0.003394871251657605171, -7}, {0.001685356837697327137, -127}, {0.004322394262999296188, 1}, {0.002274985425174236298, -56}, {0.003617759561166167259, 17}, {0.004447745624929666519, 23}, {0.004683905746787786484, 26}, {0.004021023400127887726, 24}, {0.005650237202644348145, 11}, {0.001966834301128983498, -84}}; | |||
| static QuantArg conv_param__quant_arg_out[1] = {{0.01778890006244182587, 0}}; | |||
| static double conv_param__real_multiplier[12] = {0.001433333970799530351, 0.001722176774828924938, 0.00150269379968211614, 0.0007460003866156953226, 0.001913249346122961134, 0.001006991503636309139, 0.001601352314486244018, 0.001968734305210294733, 0.002073267527210802957, 0.00177985160945266568, 0.002501001060249878095, 0.0008705926067589928779}; | |||
| static int conv_param__left_shift[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |||
| static int conv_param__right_shift[12] = {-9, -9, -9, -10, -9, -9, -9, -8, -8, -9, -8, -10}; | |||
| static int conv_param__quant_multiplier[12] = {1575967367, 1893553389, 1652229306, 1640472199, 2103639903, 1107198867, 1760705490, 1082323130, 1139790877, 1956967540, 1374939873, 1914453388}; | |||
| static int conv_param__out_act_min[1] = {0}; | |||
| static int conv_param__out_act_max[1] = {127}; | |||
| const ConvQuantArg conv_param__conv_quant_arg = {(RoundingMode)(1), 2, conv_param__quant_arg_in, conv_param__quant_arg_w, conv_param__quant_arg_out, conv_param__real_multiplier, conv_param__left_shift, conv_param__right_shift, conv_param__quant_multiplier, conv_param__out_act_min, conv_param__out_act_max, 1, 12, 1, 2}; | |||
| int thread_num = MSMIN(g_thread_num, 26); | |||
| const ConvParameter conv_param_ = {{ "", 35, g_thread_num}, conv_param__conv_quant_arg, 3, 3, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 28, 28, 1, 1, 26, 26, 12, thread_num, 0, 0, (PadMode)(2), (ActType)(1), 0, 0, 0}; | |||
| PackInputToC8Int8((int8_t *)(net_B+0), (int16_t *)(net_B+27488), &conv_param_); | |||
| Conv3x3Int8((int16_t *)(net_B+27488), net_W10, net_W11, (int8_t *)(net_B+784), (int16_t *)(net_B+10928), (int16_t *)(net_B+12976), (int *)(net_B+13232), (uint8_t *)(net_B+19376), 0, &conv_param_); | |||
| PackNC4HW4ToNHWCInt8((uint8_t *)(net_B+19376), (int8_t *)(net_B+784), 1, 676, 12); | |||
| } | |||
| { | |||
| static QuantArg pooling_parameter_quant_in = {0.01778890006244182587, 0}; | |||
| static QuantArg pooling_parameter_quant_out = {0.01778890006244182587, 0}; | |||
| static QuantArg *pooling_parameter_quant[2] = { &pooling_parameter_quant_in, &pooling_parameter_quant_out}; | |||
| const PoolingParameter pooling_parameter = {{ "", 92, g_thread_num}, (PoolMode)(1), (RoundMode)(2), (PadMode)(2), (ActType)(0), 0, false, 2, 2, 2, 2, 26, 26, 1, 12, 13, 13, 1, 12, 0, 0, 0, 0, 0, pooling_parameter_quant, false}; | |||
| MaxPoolingInt8((int8_t *)(net_B+784), (int8_t *)(net_B+8896), (PoolingParameter *)&pooling_parameter, 0); | |||
| } | |||
| { | |||
| memset((int16_t *)(net_B+10928), 0, 4096); | |||
| memset((int16_t *)(net_B+15024), 0, 256); | |||
| memset((int *)(net_B+15280), 0, 6144); | |||
| memset((uint8_t *)(net_B+21424), 0, 1452); | |||
| memset((int16_t *)(net_B+22876), 0, 5408); | |||
| static QuantArg conv_param__quant_arg_in[1] = {{0.01778890006244182587, 0}}; | |||
| static QuantArg conv_param__quant_arg_w[12] = {{0.005374609492719173431, 33}, {0.005837683100253343582, 22}, {0.004709810949862003326, -15}, {0.003726204857230186462, 27}, {0.00318551529198884964, -8}, {0.003453079145401716232, 50}, {0.004045850131660699844, -9}, {0.003903790842741727829, 30}, {0.004003710579127073288, -10}, {0.00560879148542881012, 27}, {0.005486610345542430878, -23}, {0.003554018214344978333, 4}}; | |||
| static QuantArg conv_param__quant_arg_out[1] = {{0.07183934003114700317, 0}}; | |||
| static double conv_param__real_multiplier[12] = {0.001330863973520378732, 0.001445530533608141606, 0.001166246148374064893, 0.0009226850783705293785, 0.0007887991893445710223, 0.0008550534992628172192, 0.001001835847923064193, 0.0009666590447744700769, 0.0009914011740411567478, 0.001388852288199173826, 0.00135859773990280961, 0.0008800481219728497088}; | |||
| static int conv_param__left_shift[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |||
| static int conv_param__right_shift[12] = {-9, -9, -9, -10, -10, -10, -9, -10, -9, -9, -9, -10}; | |||
| static int conv_param__quant_multiplier[12] = {1463300414, 1589377630, 1282301201, 2029005945, 1734587761, 1880282530, 1101530164, 2125705720, 1090057119, 1527059240, 1493794012, 1935246286}; | |||
| static int conv_param__out_act_min[1] = {0}; | |||
| static int conv_param__out_act_max[1] = {127}; | |||
| const ConvQuantArg conv_param__conv_quant_arg = {(RoundingMode)(1), 2, conv_param__quant_arg_in, conv_param__quant_arg_w, conv_param__quant_arg_out, conv_param__real_multiplier, conv_param__left_shift, conv_param__right_shift, conv_param__quant_multiplier, conv_param__out_act_min, conv_param__out_act_max, 1, 12, 1, 2}; | |||
| int thread_num = MSMIN(g_thread_num, 11); | |||
| const ConvParameter conv_param_ = {{ "", 35, g_thread_num}, conv_param__conv_quant_arg, 3, 3, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 13, 13, 12, 1, 11, 11, 12, thread_num, 0, 0, (PadMode)(2), (ActType)(1), 0, 0, 0}; | |||
| PackInputToC8Int8((int8_t *)(net_B+8896), (int16_t *)(net_B+22876), &conv_param_); | |||
| Conv3x3Int8((int16_t *)(net_B+22876), net_W12, net_W13, (int8_t *)(net_B+0), (int16_t *)(net_B+10928), (int16_t *)(net_B+15024), (int *)(net_B+15280), (uint8_t *)(net_B+21424), 0, &conv_param_); | |||
| PackNC4HW4ToNHWCInt8((uint8_t *)(net_B+21424), (int8_t *)(net_B+0), 1, 121, 12); | |||
| } | |||
| { | |||
| static QuantArg pooling_parameter_quant_in = {0.07136065512895584106, 0}; | |||
| static QuantArg pooling_parameter_quant_out = {0.07136065512895584106, 0}; | |||
| static QuantArg *pooling_parameter_quant[2] = { &pooling_parameter_quant_in, &pooling_parameter_quant_out}; | |||
| const PoolingParameter pooling_parameter = {{ "", 92, g_thread_num}, (PoolMode)(1), (RoundMode)(2), (PadMode)(2), (ActType)(0), 0, false, 2, 2, 2, 2, 11, 11, 1, 12, 5, 5, 1, 12, 0, 0, 0, 0, 0, pooling_parameter_quant, false}; | |||
| MaxPoolingInt8((int8_t *)(net_B+0), (int8_t *)(net_B+1456), (PoolingParameter *)&pooling_parameter, 0); | |||
| } | |||
| { | |||
| const ReshapeQuantArg reshape_quant_arg = {{0.07136065512895584106, 0}, {0.07136065512895584106, 0}, -128, 127}; | |||
| Int8Reshape((int8_t *)(net_B+1456), (int8_t *)(net_B+0), 300, reshape_quant_arg); | |||
| } | |||
| { | |||
| int32_t tmp_weight_zp = 1; | |||
| RowMajor2Row16x4MajorInt8((int8_t *)(net_B+0)+0, (int8_t *)(net_B+10928), 1, 300); | |||
| CalcInputSums((int8_t *)(net_B+0)+0, 1, 300, tmp_weight_zp, (int *)(net_B+12144), RowMajor); | |||
| const float filter_scale[20] = {0.003479549195617437363, 0.004490676335990428925, 0.004529818892478942871, 0.002983231563121080399, 0.003455155529081821442, 0.003223794745281338692, 0.003272445406764745712, 0.003801185870543122292, 0.003679843153804540634, 0.003040234791114926338, 0.003704284550622105598, 0.003355232765898108482, 0.002904496388509869576, 0.003024494973942637444, 0.002794801956042647362, 0.004355110693722963333, 0.003499472280964255333, 0.004184196703135967255, 0.003057289868593215942, 0.003264668164774775505}; | |||
| const int filter_zp[20] = {1, 12, 3, 2, -10, -5, -11, 5, 12, 22, 16, 1, -5, 15, 13, 5, -10, -5, -6, 0}; | |||
| const int left_shift[20] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |||
| const int right_shift[20] = {-10, -9, -9, -10, -10, -10, -10, -9, -9, -10, -9, -10, -10, -10, -10, -9, -10, -9, -10, -10}; | |||
| const int multiplier[20] = {2108215049, 1360422072, 1372280070, 1807502393, 2093435146, 1953256619, 1982733521, 1151545365, 1114785262, 1842040025, 1122189669, 2032893316, 1759797843, 1832503464, 1693335354, 1319353429, 2120286176, 1267576078, 1852373503, 1978021333}; | |||
| const MatmulQuantParameter matmul_quant_parameter = {{0.07136065512895584106, 0}, {0, 0}, {0.258998185396194458, 0}, -128, 127, filter_scale, filter_zp, left_shift, right_shift, multiplier}; | |||
| int32_t *cur_left = matmul_quant_parameter.left_shift_ + 0; | |||
| int32_t *cur_right = matmul_quant_parameter.right_shift_ + 0; | |||
| int32_t *cur_mul = matmul_quant_parameter.quant_multiplier_ + 0; | |||
| int32_t *cur_zp = matmul_quant_parameter.filter_zp_ + 0; | |||
| MatmulInt8Opt((int8_t *)(net_B+10928), net_W15+0 + 0, (int8_t *)(net_B+304)+0+0, 1, 20, 304, (int *)(net_B+12144), net_W16+0, -128, 127, 0, cur_mul, cur_left, cur_right, 20, true, cur_zp); | |||
| } | |||
| { | |||
| int32_t tmp_weight_zp = 1; | |||
| RowMajor2Row16x4MajorInt8((int8_t *)(net_B+304)+0, (int8_t *)(net_B+10928), 1, 20); | |||
| CalcInputSums((int8_t *)(net_B+304)+0, 1, 20, tmp_weight_zp, (int *)(net_B+11056), RowMajor); | |||
| const float filter_scale[10] = {0.004678330849856138229, 0.005127115640789270401, 0.00471437256783246994, 0.004531511571258306503, 0.005476122256368398666, 0.004348111804574728012, 0.004803542047739028931, 0.006081215571612119675, 0.004532597027719020844, 0.004762654658406972885}; | |||
| const int filter_zp[10] = {7, -2, 9, 2, -6, 21, 16, 10, -19, 8}; | |||
| const int left_shift[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |||
| const int right_shift[10] = {-8, -8, -8, -8, -8, -8, -8, -8, -8, -8}; | |||
| const int multiplier[10] = {1242805482, 1362025788, 1252380041, 1203802750, 1454739904, 1155082292, 1276068015, 1615483838, 1204091115, 1265206260}; | |||
| const MatmulQuantParameter matmul_quant_parameter = {{0.258998185396194458, 0}, {0, 0}, {0.5359870791435241699, 0}, -128, 127, filter_scale, filter_zp, left_shift, right_shift, multiplier}; | |||
| int32_t *cur_left = matmul_quant_parameter.left_shift_ + 0; | |||
| int32_t *cur_right = matmul_quant_parameter.right_shift_ + 0; | |||
| int32_t *cur_mul = matmul_quant_parameter.quant_multiplier_ + 0; | |||
| int32_t *cur_zp = matmul_quant_parameter.filter_zp_ + 0; | |||
| MatmulInt8Opt((int8_t *)(net_B+10928), net_W18+0 + 0, (int8_t *)(net_B+0)+0+0, 1, 10, 32, (int *)(net_B+11056), net_W19+0, -128, 127, 0, cur_mul, cur_left, cur_right, 10, true, cur_zp); | |||
| } | |||
| { | |||
| DoDequantizeInt8ToFp32((int8_t *)(net_B+0), (float *)(net_B+16), 0.5359870791435241699, 0, 10); | |||
| } | |||
| { | |||
| const SoftmaxParameter softmax_parameter = {{ "", 138, g_thread_num}, 1, {1, 10}, 10, 2}; | |||
| memset((float *)(net_B+10928), 0, 4); | |||
| Softmax((float *)(net_B+16), (float *)(net_B+56), (float *)(net_B+10928), &softmax_parameter); | |||
| } | |||
| } | |||
| @@ -0,0 +1,25 @@ | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/../include/) | |||
| set(OP_SRC | |||
| common_func.c.o | |||
| common_func_int8.c.o | |||
| conv3x3_int8.c.o | |||
| conv_int8.c.o | |||
| exp_fp32.c.o | |||
| fixed_point.c.o | |||
| matmul_int8.c.o | |||
| matmul_int8_wrapper.c.o | |||
| pack_int8.c.o | |||
| pooling_int8.c.o | |||
| quant_dtype_cast_int8.c.o | |||
| reshape_int8.c.o | |||
| softmax_fp32.c.o | |||
| net_weight.c.o | |||
| net.c.o | |||
| session.cc.o | |||
| tensor.cc.o | |||
| ) | |||
| file(GLOB NET_SRC | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/*.cc | |||
| ${CMAKE_CURRENT_SOURCE_DIR}/*.c | |||
| ) | |||
| add_library(net STATIC ${NET_SRC}) | |||
| @@ -0,0 +1,67 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "microtensor.h" | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| /** | |||
| * set input tensors | |||
| * @param inputs, the input data ptr's array of the model, the tensors' count of input may be greater than one. | |||
| * @param num, the input data's number of the model. | |||
| **/ | |||
| int net_SetInputs(const void **inputs, int num); | |||
| /** | |||
| * get output tensor of the model | |||
| **/ | |||
| const MicroTensorList *net_GetOutputs(); | |||
| int CopyOutputsData(void **outputs, int num); | |||
| /** | |||
| * @param weight_buffer, the address of the weight binary file | |||
| * @param weight_size, the size of the model file in bytes | |||
| **/ | |||
| int net_Init(void *weight_buffer, int weight_size); | |||
| /** | |||
| * get the memory space size of the inference. | |||
| **/ | |||
| int net_GetBufferSize(); | |||
| /** | |||
| * set the memory space for the inference | |||
| **/ | |||
| int net_SetBuffer(void *buffer); | |||
| /** | |||
| * free the memory of packed weights, and set the membuf buffer and input address to NULL | |||
| **/ | |||
| void net_FreeResource(); | |||
| /** | |||
| * net inference function | |||
| **/ | |||
| void net_Inference(); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| @@ -0,0 +1,103 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "net_weight.h" | |||
| unsigned char * net_B = 0 ; | |||
| int16_t net_W10[1536]; | |||
| int32_t net_W11[12]; | |||
| int16_t net_W12[3072]; | |||
| int32_t net_W13[12]; | |||
| int32_t *net_W14 = NULL; | |||
| int8_t *net_W15 = NULL; | |||
| int32_t *net_W16 = NULL; | |||
| int32_t *net_W17 = NULL; | |||
| int8_t *net_W18 = NULL; | |||
| int32_t *net_W19 = NULL; | |||
| int net_Init(void *weight_buffer, int weight_size) { | |||
| if (weight_buffer == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| int g_thread_num = 1; | |||
| struct ModelParameter { | |||
| void *addr; | |||
| size_t size; | |||
| size_t offset; | |||
| }; | |||
| int8_t *net_W6 = (weight_buffer + 9312); | |||
| int32_t *net_W7 = (weight_buffer + 15312); | |||
| int8_t *net_W8 = (weight_buffer + 15392); | |||
| int32_t *net_W9 = (weight_buffer + 15592); | |||
| struct ModelParameter model_params[] = { | |||
| {net_W10, 3072, 0}, | |||
| {net_W11, 48, 3072}, | |||
| {net_W12, 6144, 3120}, | |||
| {net_W13, 48, 9264}, | |||
| }; | |||
| for(int i = 0; i < 4; ++i) { | |||
| if (model_params[i].offset + model_params[i].size > weight_size) { | |||
| return RET_ERROR; | |||
| } | |||
| memcpy(model_params[i].addr, (weight_buffer + model_params[i].offset), model_params[i].size); | |||
| } | |||
| { | |||
| net_W14 = malloc(80); | |||
| if (net_W14 == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| memset(net_W14, 0, 80); | |||
| memcpy(net_W14, net_W7, 80); | |||
| net_W16 = malloc(80); | |||
| if (net_W16 == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| memset(net_W16, 0, 80); | |||
| net_W15 = malloc(6080); | |||
| if (net_W15 == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| memset(net_W15, 0, 6080); | |||
| const int init_filter_zp[20] = {1, 12, 3, 2, -10, -5, -11, 5, 12, 22, 16, 1, -5, 15, 13, 5, -10, -5, -6, 0}; | |||
| InitInt8MatrixB(net_W6, net_W16, net_W15, 1, 300, 20, 20, 304, 0, init_filter_zp, net_W14, true, true); | |||
| } | |||
| { | |||
| net_W17 = malloc(48); | |||
| if (net_W17 == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| memset(net_W17, 0, 48); | |||
| memcpy(net_W17, net_W9, 48); | |||
| net_W19 = malloc(48); | |||
| if (net_W19 == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| memset(net_W19, 0, 48); | |||
| net_W18 = malloc(384); | |||
| if (net_W18 == NULL) { | |||
| return RET_ERROR; | |||
| } | |||
| memset(net_W18, 0, 384); | |||
| const int init_filter_zp[10] = {7, -2, 9, 2, -6, 21, 16, 10, -19, 8}; | |||
| InitInt8MatrixB(net_W8, net_W19, net_W18, 1, 20, 10, 12, 32, 0, init_filter_zp, net_W17, true, true); | |||
| } | |||
| return RET_OK; | |||
| } | |||
| @@ -0,0 +1,43 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "nnacl/common_func.h" | |||
| #include "nnacl/errorcode.h" | |||
| #include "nnacl/fp32/softmax_fp32.h" | |||
| #include "nnacl/int8/common_func_int8.h" | |||
| #include "nnacl/int8/conv3x3_int8.h" | |||
| #include "nnacl/int8/conv_int8.h" | |||
| #include "nnacl/int8/matmul_int8.h" | |||
| #include "nnacl/int8/pooling_int8.h" | |||
| #include "nnacl/int8/quant_dtype_cast_int8.h" | |||
| #include "nnacl/int8/reshape_int8.h" | |||
| #include "wrapper/int8/matmul_int8_wrapper.h" | |||
| #include <stdlib.h> | |||
| #include <string.h> | |||
| #include "microtensor.h" | |||
| extern unsigned char *net_B; | |||
| extern int16_t net_W10[]; | |||
| extern int32_t net_W11[]; | |||
| extern int16_t net_W12[]; | |||
| extern int32_t net_W13[]; | |||
| extern int32_t *net_W14; | |||
| extern int8_t *net_W15; | |||
| extern int32_t *net_W16; | |||
| extern int32_t *net_W17; | |||
| extern int8_t *net_W18; | |||
| extern int32_t *net_W19; | |||
| @@ -0,0 +1,157 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "session.h" | |||
| #include "net.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| int LiteSession::CompileGraph(lite::Model *model) { | |||
| inputs_.resize(1); | |||
| inputs_[0] = new (std::nothrow) MTensor("graph_input-0", kNumberTypeFloat32, {1, 28, 28, 1, }); | |||
| MS_ERROR_IF_NULL(inputs_[0]); | |||
| outputs_.resize(1); | |||
| outputs_[0] = new (std::nothrow) MTensor("Softmax-7", kNumberTypeFloat32, {1, 10, }); | |||
| MS_ERROR_IF_NULL(outputs_[0]); | |||
| for (const auto &output: outputs_) { | |||
| output_tensor_map_[output->tensor_name()] = output; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int LiteSession::RunGraph(const KernelCallBack &before, const KernelCallBack &after) { | |||
| const void *inputs_data[inputs_.size()]; | |||
| for (size_t i = 0; i < inputs_.size(); ++i) { | |||
| inputs_data[i] = inputs_[i]->MutableData(); | |||
| } | |||
| net_SetInputs(inputs_data, inputs_.size()); | |||
| net_Inference(); | |||
| void *outputs_data[outputs_.size()]; | |||
| for (size_t i = 0; i < outputs_.size(); ++i) { | |||
| outputs_data[i] = outputs_[i]->MutableData(); | |||
| } | |||
| CopyOutputsData(outputs_data, outputs_.size()); | |||
| return RET_OK; | |||
| } | |||
| LiteSession::~LiteSession() { | |||
| net_FreeResource(); | |||
| if (runtime_buffer_ != nullptr) { | |||
| free(runtime_buffer_); | |||
| runtime_buffer_ = nullptr; | |||
| } | |||
| for (auto &input : inputs_) { | |||
| if (input == nullptr) { | |||
| continue; | |||
| } | |||
| delete input; | |||
| input = nullptr; | |||
| } | |||
| for (auto &item : output_tensor_map_) { | |||
| auto output = item.second; | |||
| if (output == nullptr) { | |||
| continue; | |||
| } | |||
| delete output; | |||
| output = nullptr; | |||
| } | |||
| } | |||
| int LiteSession::InitRuntimeBuffer() { | |||
| int buffer_size = net_GetBufferSize(); | |||
| runtime_buffer_ = malloc(buffer_size); | |||
| if (runtime_buffer_ == nullptr) { | |||
| return RET_ERROR; | |||
| } | |||
| int ret = net_SetBuffer(runtime_buffer_); | |||
| if (ret != RET_OK) { | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| std::vector<tensor::MSTensor *> LiteSession::GetInputs() const { | |||
| std::vector<tensor::MSTensor *> inputs; | |||
| inputs.insert(inputs.begin(), inputs_.begin(), inputs_.end()); | |||
| return inputs; | |||
| } | |||
| std::vector<tensor::MSTensor *> LiteSession::GetOutputsByNodeName(const std::string &node_name) const { | |||
| auto iter = output_node_map_.find(node_name); | |||
| if (iter == output_node_map_.end()) { | |||
| std::vector<tensor::MSTensor *> empty; | |||
| return empty; | |||
| } | |||
| return iter->second; | |||
| } | |||
| std::unordered_map<std::string, mindspore::tensor::MSTensor *> LiteSession::GetOutputs() const { | |||
| return output_tensor_map_; | |||
| } | |||
| std::vector<std::string> LiteSession::GetOutputTensorNames() const { | |||
| std::vector<std::string> output_names; | |||
| for (const auto &item : output_node_map_) { | |||
| for (const auto &output : item.second) { | |||
| output_names.emplace_back(output->tensor_name()); | |||
| } | |||
| } | |||
| return output_names; | |||
| } | |||
| mindspore::tensor::MSTensor *LiteSession::GetOutputByTensorName(const std::string &tensor_name) const { | |||
| auto item = output_tensor_map_.find(tensor_name); | |||
| if (item == output_tensor_map_.end()) { | |||
| return nullptr; | |||
| } | |||
| return item->second; | |||
| } | |||
| int LiteSession::Resize(const std::vector<tensor::MSTensor *> &inputs, const std::vector<std::vector<int>> &dims) { | |||
| return RET_OK; | |||
| } | |||
| } // namespace lite | |||
| session::LiteSession *session::LiteSession::CreateSession(const lite::Context *context) { | |||
| auto *session = new (std::nothrow) lite::LiteSession(); | |||
| if (session == nullptr) { | |||
| return nullptr; | |||
| } | |||
| session->InitRuntimeBuffer(); | |||
| return session; | |||
| } | |||
| session::LiteSession *session::LiteSession::CreateSession(const char *net_buf, size_t size, | |||
| const lite::Context *context) { | |||
| session::LiteSession *session = CreateSession(context); | |||
| if (session == nullptr) { | |||
| return nullptr; | |||
| } | |||
| int ret = session->CompileGraph(nullptr); | |||
| if (ret != lite::RET_OK) { | |||
| return nullptr; | |||
| } | |||
| net_Init(const_cast<char *>(net_buf), size); | |||
| return session; | |||
| } | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,78 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_MICRO_LIBRARY_SOURCE_SESSION_H_ | |||
| #define MINDSPORE_LITE_MICRO_LIBRARY_SOURCE_SESSION_H_ | |||
| #include "include/errorcode.h" | |||
| #include "include/lite_session.h" | |||
| #include "tensor.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| #define MS_ERROR_IF_NULL(ptr) \ | |||
| do { \ | |||
| if ((ptr) == nullptr) { \ | |||
| return mindspore::lite::RET_ERROR; \ | |||
| } \ | |||
| } while (0) | |||
| class LiteSession : public session::LiteSession { | |||
| public: | |||
| LiteSession() = default; | |||
| ~LiteSession() override; | |||
| void BindThread(bool if_bind) override {} | |||
| int CompileGraph(lite::Model *model) override; | |||
| std::vector<tensor::MSTensor *> GetInputs() const override; | |||
| mindspore::tensor::MSTensor *GetInputsByTensorName(const std::string &tensor_name) const override { return nullptr; } | |||
| int RunGraph(const KernelCallBack &before = nullptr, const KernelCallBack &after = nullptr) override; | |||
| std::vector<tensor::MSTensor *> GetOutputsByNodeName(const std::string &node_name) const override; | |||
| std::unordered_map<std::string, mindspore::tensor::MSTensor *> GetOutputs() const override; | |||
| std::vector<std::string> GetOutputTensorNames() const override; | |||
| mindspore::tensor::MSTensor *GetOutputByTensorName(const std::string &tensor_name) const override; | |||
| int Resize(const std::vector<tensor::MSTensor *> &inputs, const std::vector<std::vector<int>> &dims) override; | |||
| int InitRuntimeBuffer(); | |||
| private: | |||
| int SetInputsData(const std::vector<MTensor *> &inputs) const; | |||
| std::vector<MTensor *> inputs_; | |||
| std::vector<MTensor *> outputs_; | |||
| std::unordered_map<std::string, mindspore::tensor::MSTensor *> output_tensor_map_; | |||
| std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>> output_node_map_; | |||
| void *runtime_buffer_; | |||
| }; | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_LITE_MICRO_LIBRARY_SOURCE_SESSION_H_ | |||
| @@ -0,0 +1,93 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "tensor.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| size_t DataTypeSize(const TypeId type) { | |||
| switch (type) { | |||
| case kNumberTypeFloat64: | |||
| return sizeof(double); | |||
| case kNumberTypeFloat: | |||
| case kNumberTypeFloat32: | |||
| return sizeof(float); | |||
| case kNumberTypeInt8: | |||
| return sizeof(int8_t); | |||
| case kNumberTypeUInt8: | |||
| return sizeof(uint8_t); | |||
| case kNumberTypeFloat16: | |||
| case kNumberTypeInt16: | |||
| return sizeof(int16_t); | |||
| case kNumberTypeInt32: | |||
| return sizeof(int32_t); | |||
| case kNumberTypeInt64: | |||
| return sizeof(int64_t); | |||
| case kNumberTypeUInt16: | |||
| return sizeof(uint16_t); | |||
| case kNumberTypeUInt32: | |||
| return sizeof(uint32_t); | |||
| case kNumberTypeUInt64: | |||
| return sizeof(uint64_t); | |||
| case kNumberTypeBool: | |||
| return sizeof(bool); | |||
| case kObjectTypeString: | |||
| return sizeof(char); | |||
| case kObjectTypeTensorType: | |||
| default: | |||
| return 0; | |||
| } | |||
| } | |||
| MTensor::~MTensor() { | |||
| if (data_ != nullptr) { | |||
| free(data_); | |||
| data_ = nullptr; | |||
| } | |||
| } | |||
| int MTensor::DimensionSize(const size_t index) const { | |||
| int dim_size = -1; | |||
| if (index < shape_.size()) { | |||
| dim_size = shape_[index]; | |||
| } | |||
| return dim_size; | |||
| } | |||
| int MTensor::ElementsNum() const { | |||
| int elements = 1; | |||
| for (int i : shape_) { | |||
| elements *= i; | |||
| } | |||
| return elements; | |||
| } | |||
| size_t MTensor::Size() const { | |||
| size_t element_size = DataTypeSize(data_type_); | |||
| return element_size * ElementsNum(); | |||
| } | |||
| void *MTensor::MutableData() { | |||
| if (data_ == nullptr) { | |||
| data_ = malloc(this->Size()); | |||
| } | |||
| return data_; | |||
| } | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,71 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_MICRO_LIBRARY_SOURCE_TENSOR_H_ | |||
| #define MINDSPORE_LITE_MICRO_LIBRARY_SOURCE_TENSOR_H_ | |||
| #include "include/ms_tensor.h" | |||
| #include <utility> | |||
| #include <vector> | |||
| namespace mindspore { | |||
| namespace lite { | |||
| struct QuantArg { | |||
| double scale; | |||
| int32_t zeroPoint; | |||
| float var_corr{1}; | |||
| float mean_corr{0}; | |||
| bool inited; | |||
| std::vector<float> clusters{}; | |||
| int bitNum; | |||
| int roundType; | |||
| int multiplier; | |||
| int dstDtype; | |||
| }; | |||
| class MTensor : public mindspore::tensor::MSTensor { | |||
| public: | |||
| MTensor() = default; | |||
| MTensor(std::string name, enum TypeId type, std::vector<int32_t> shape) | |||
| : tensor_name_(std::move(name)), data_type_(type), shape_(std::move(shape)) {} | |||
| ~MTensor() override; | |||
| TypeId data_type() const override { return data_type_; } | |||
| std::vector<int> shape() const override { return shape_; } | |||
| int DimensionSize(size_t index) const override; | |||
| int ElementsNum() const override; | |||
| size_t Size() const override; | |||
| void *MutableData() override; | |||
| std::string tensor_name() const override { return tensor_name_; } | |||
| void set_tensor_name(const std::string name) override { tensor_name_ = name; } | |||
| void set_data(void *data) override { data_ = data; } | |||
| private: | |||
| std::string tensor_name_; | |||
| TypeId data_type_; | |||
| std::vector<int> shape_; | |||
| void *data_ = nullptr; | |||
| std::vector<QuantArg> quant_params_; | |||
| }; | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_LITE_MICRO_LIBRARY_SOURCE_TENSOR_H_ | |||
| @@ -33,7 +33,7 @@ echo "SCRIPTS_PATH=$SCRIPTS_PATH" | |||
| # print usage message | |||
| function usage() | |||
| { | |||
| echo "Check whether the specified source files were well formated" | |||
| echo "Check whether the specified source files were well formatted" | |||
| echo "Usage:" | |||
| echo "bash $0 [-a] [-c] [-l] [-h]" | |||
| echo "e.g. $0 -a" | |||
| @@ -97,8 +97,11 @@ fi | |||
| CHECK_RESULT_FILE=__code_format_check_result__ | |||
| echo "0" > "$CHECK_RESULT_FILE" | |||
| # check format of files modified in the lastest commit | |||
| # check format of files modified in the latest commit | |||
| while read line; do | |||
| if [ ! -e ${line} ]; then | |||
| continue | |||
| fi | |||
| BASE_NAME=$(basename "${line}") | |||
| TEMP_FILE="__TEMP__${BASE_NAME}" | |||
| cp "${line}" "${TEMP_FILE}" | |||
| @@ -107,7 +110,7 @@ while read line; do | |||
| ret=$? | |||
| rm "${TEMP_FILE}" | |||
| if [[ "${ret}" -ne 0 ]]; then | |||
| echo "File ${line} is not formated, please format it." | |||
| echo "File ${line} is not formatted, please format it." | |||
| echo "1" > "${CHECK_RESULT_FILE}" | |||
| break | |||
| fi | |||
| @@ -118,6 +121,6 @@ rm "${CHECK_RESULT_FILE}" | |||
| rm "${CHECK_LIST_FILE}" | |||
| cd "${CURRENT_PATH}" || exit 1 | |||
| if [[ "X${result}" == "X0" ]]; then | |||
| echo "Check PASS: specified files are well formated!" | |||
| echo "Check PASS: specified files are well formatted!" | |||
| fi | |||
| exit "${result}" | |||