| @@ -0,0 +1,31 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| network config setting, will be used in main.py | |||||
| """ | |||||
| from easydict import EasyDict as edict | |||||
| cifar_cfg = edict({ | |||||
| 'num_classes': 10, | |||||
| 'lr_init': 0.05, | |||||
| 'batch_size': 64, | |||||
| 'epoch_size': 70, | |||||
| 'momentum': 0.9, | |||||
| 'weight_decay': 5e-4, | |||||
| 'buffer_size': 10, | |||||
| 'image_height': 224, | |||||
| 'image_width': 224, | |||||
| 'keep_checkpoint_max': 10 | |||||
| }) | |||||
| @@ -0,0 +1,65 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| Data operations, will be used in train.py and eval.py | |||||
| """ | |||||
| import os | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| import mindspore.dataset.transforms.vision.c_transforms as vision | |||||
| import mindspore.common.dtype as mstype | |||||
| from config import cifar_cfg as cfg | |||||
| def create_dataset(data_home, repeat_num=1, training=True): | |||||
| """Data operations.""" | |||||
| ds.config.set_seed(1) | |||||
| data_dir = os.path.join(data_home, "cifar-10-batches-bin") | |||||
| if not training: | |||||
| data_dir = os.path.join(data_home, "cifar-10-verify-bin") | |||||
| data_set = ds.Cifar10Dataset(data_dir) | |||||
| resize_height = cfg.image_height | |||||
| resize_width = cfg.image_width | |||||
| rescale = 1.0 / 255.0 | |||||
| shift = 0.0 | |||||
| # define map operations | |||||
| random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT | |||||
| random_horizontal_op = vision.RandomHorizontalFlip() | |||||
| resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR | |||||
| rescale_op = vision.Rescale(rescale, shift) | |||||
| normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023)) | |||||
| changeswap_op = vision.HWC2CHW() | |||||
| type_cast_op = C.TypeCast(mstype.int32) | |||||
| c_trans = [] | |||||
| if training: | |||||
| c_trans = [random_crop_op, random_horizontal_op] | |||||
| c_trans += [resize_op, rescale_op, normalize_op, | |||||
| changeswap_op] | |||||
| # apply map operations on images | |||||
| data_set = data_set.map(input_columns="label", operations=type_cast_op) | |||||
| data_set = data_set.map(input_columns="image", operations=c_trans) | |||||
| # apply repeat operations | |||||
| data_set = data_set.repeat(repeat_num) | |||||
| # apply shuffle operations | |||||
| data_set = data_set.shuffle(buffer_size=10) | |||||
| # apply batch operations | |||||
| data_set = data_set.batch(batch_size=cfg.batch_size, drop_remainder=True) | |||||
| return data_set | |||||
| @@ -0,0 +1,53 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ##############test vgg16 example on cifar10################# | |||||
| python eval.py --data_path=$DATA_HOME --device_id=$DEVICE_ID | |||||
| """ | |||||
| import argparse | |||||
| import mindspore.nn as nn | |||||
| from mindspore.nn.optim.momentum import Momentum | |||||
| from mindspore.train.model import Model | |||||
| from mindspore import context | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.model_zoo.vgg import vgg16 | |||||
| from config import cifar_cfg as cfg | |||||
| import dataset | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='Cifar10 classification') | |||||
| parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'], | |||||
| help='device where the code will be implemented. (Default: Ascend)') | |||||
| parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved') | |||||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='checkpoint file path.') | |||||
| parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)') | |||||
| args_opt = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target) | |||||
| context.set_context(device_id=args_opt.device_id) | |||||
| context.set_context(enable_mem_reuse=True, enable_hccl=False) | |||||
| net = vgg16(batch_size=cfg.batch_size, num_classes=cfg.num_classes) | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum, | |||||
| weight_decay=cfg.weight_decay) | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False) | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| dataset = dataset.create_dataset(args_opt.data_path, 1, False) | |||||
| res = model.eval(dataset) | |||||
| print("result: ", res) | |||||
| @@ -0,0 +1,78 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| #################train vgg16 example on cifar10######################## | |||||
| python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID | |||||
| """ | |||||
| import argparse | |||||
| import random | |||||
| import numpy as np | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.nn.optim.momentum import Momentum | |||||
| from mindspore.train.model import Model | |||||
| from mindspore import context | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor | |||||
| from mindspore.model_zoo.vgg import vgg16 | |||||
| import dataset | |||||
| from config import cifar_cfg as cfg | |||||
| random.seed(1) | |||||
| np.random.seed(1) | |||||
| def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None): | |||||
| """Set learning rate.""" | |||||
| lr_each_step = [] | |||||
| total_steps = steps_per_epoch * total_epochs | |||||
| decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps] | |||||
| for i in range(total_steps): | |||||
| if i < decay_epoch_index[0]: | |||||
| lr_each_step.append(lr_max) | |||||
| elif i < decay_epoch_index[1]: | |||||
| lr_each_step.append(lr_max * 0.1) | |||||
| elif i < decay_epoch_index[2]: | |||||
| lr_each_step.append(lr_max * 0.01) | |||||
| else: | |||||
| lr_each_step.append(lr_max * 0.001) | |||||
| current_step = global_step | |||||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||||
| learning_rate = lr_each_step[current_step:] | |||||
| return learning_rate | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='Cifar10 classification') | |||||
| parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'], | |||||
| help='device where the code will be implemented. (Default: Ascend)') | |||||
| parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved') | |||||
| parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)') | |||||
| args_opt = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target) | |||||
| context.set_context(device_id=args_opt.device_id) | |||||
| context.set_context(enable_mem_reuse=True, enable_hccl=False) | |||||
| net = vgg16(batch_size=cfg.batch_size, num_classes=cfg.num_classes) | |||||
| lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=50000 // cfg.batch_size) | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum, weight_decay=cfg.weight_decay) | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False) | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) | |||||
| dataset = dataset.create_dataset(args_opt.data_path, cfg.epoch_size) | |||||
| batch_num = dataset.get_dataset_size() | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=cfg.keep_checkpoint_max) | |||||
| ckpoint_cb = ModelCheckpoint(prefix="train_vgg_cifar10", directory="./", config=config_ck) | |||||
| loss_cb = LossMonitor() | |||||
| model.train(cfg.epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb]) | |||||
| @@ -15,7 +15,8 @@ | |||||
| """VGG.""" | """VGG.""" | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.common.initializer import initializer | |||||
| import mindspore.common.dtype as mstype | |||||
| def _make_layer(base, batch_norm): | def _make_layer(base, batch_norm): | ||||
| """Make stage network of VGG.""" | """Make stage network of VGG.""" | ||||
| @@ -25,11 +26,14 @@ def _make_layer(base, batch_norm): | |||||
| if v == 'M': | if v == 'M': | ||||
| layers += [nn.MaxPool2d(kernel_size=2, stride=2)] | layers += [nn.MaxPool2d(kernel_size=2, stride=2)] | ||||
| else: | else: | ||||
| weight_shape = (v, in_channels, 3, 3) | |||||
| weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32) | |||||
| conv2d = nn.Conv2d(in_channels=in_channels, | conv2d = nn.Conv2d(in_channels=in_channels, | ||||
| out_channels=v, | out_channels=v, | ||||
| kernel_size=3, | kernel_size=3, | ||||
| padding=1, | |||||
| pad_mode='pad') | |||||
| padding=0, | |||||
| pad_mode='same', | |||||
| weight_init=weight) | |||||
| if batch_norm: | if batch_norm: | ||||
| layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()] | layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()] | ||||
| else: | else: | ||||
| @@ -52,13 +56,13 @@ class Vgg(nn.Cell): | |||||
| Tensor, infer output tensor. | Tensor, infer output tensor. | ||||
| Examples: | Examples: | ||||
| >>> VGG([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], | |||||
| >>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], | |||||
| >>> num_classes=1000, batch_norm=False, batch_size=1) | >>> num_classes=1000, batch_norm=False, batch_size=1) | ||||
| """ | """ | ||||
| def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1): | def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1): | ||||
| super(Vgg, self).__init__() | super(Vgg, self).__init__() | ||||
| self.layers = _make_layer(base, batch_norm=batch_norm) | self.layers = _make_layer(base, batch_norm=batch_norm) | ||||
| self.avgpool = nn.AvgPool2d(7) | |||||
| self.reshape = P.Reshape() | self.reshape = P.Reshape() | ||||
| self.shp = (batch_size, -1) | self.shp = (batch_size, -1) | ||||
| self.classifier = nn.SequentialCell([ | self.classifier = nn.SequentialCell([ | ||||
| @@ -70,7 +74,6 @@ class Vgg(nn.Cell): | |||||
| def construct(self, x): | def construct(self, x): | ||||
| x = self.layers(x) | x = self.layers(x) | ||||
| x = self.avgpool(x) | |||||
| x = self.reshape(x, self.shp) | x = self.reshape(x, self.shp) | ||||
| x = self.classifier(x) | x = self.classifier(x) | ||||
| return x | return x | ||||
| @@ -84,15 +87,20 @@ cfg = { | |||||
| } | } | ||||
| def vgg16(): | |||||
| def vgg16(batch_size=1, num_classes=1000): | |||||
| """ | """ | ||||
| Get VGG16 neural network. | |||||
| Get Vgg16 neural network with batch normalization. | |||||
| Args: | |||||
| batch_size (int): Batch size. Default: 1. | |||||
| num_classes (int): Class numbers. Default: 1000. | |||||
| Returns: | Returns: | ||||
| Cell, cell instance of VGG16 neural network. | |||||
| Cell, cell instance of Vgg16 neural network with batch normalization. | |||||
| Examples: | Examples: | ||||
| >>> vgg16() | |||||
| >>> vgg16(batch_size=1, num_classes=1000) | |||||
| """ | """ | ||||
| net = Vgg(cfg['16'], num_classes=1000, batch_norm=False, batch_size=1) | |||||
| net = Vgg(cfg['16'], num_classes=num_classes, batch_norm=True, batch_size=batch_size) | |||||
| return net | return net | ||||