Merge pull request !217 from zhangbuxue/support_pow_operatortags/v0.2.0-alpha
| @@ -83,9 +83,9 @@ convert_object_map = { | |||
| T.mul: multitype_ops.mul, | |||
| T.truediv: multitype_ops.div, | |||
| T.getitem: multitype_ops.getitem, | |||
| T.floordiv: NO_IMPLEMENT, | |||
| T.mod: F.scalar_mod, | |||
| T.pow: F.scalar_pow, | |||
| T.floordiv: multitype_ops.floordiv, | |||
| T.mod: multitype_ops.mod, | |||
| T.pow: multitype_ops.pow_, | |||
| T.matmul: F.dot, | |||
| T.lshift: NO_IMPLEMENT, | |||
| T.rshift: NO_IMPLEMENT, | |||
| @@ -104,8 +104,8 @@ convert_object_map = { | |||
| T.ge: multitype_ops.greater_equal, | |||
| T.is_: F.is_, | |||
| T.is_not: F.is_not, | |||
| T.contains: NO_IMPLEMENT, | |||
| T.not_contains: NO_IMPLEMENT, | |||
| T.contains: F.in_dict, | |||
| T.not_contains: F.not_in_dict, | |||
| # system function | |||
| T.len: M.ms_len, | |||
| @@ -103,7 +103,7 @@ T InnerScalarMul(T x, T y) { | |||
| } | |||
| template <typename T> | |||
| T InnerScalarDiv(T x, T y) { | |||
| float InnerScalarDiv(T x, T y) { | |||
| if (y == 0) { | |||
| MS_LOG(EXCEPTION) << "Divisor could not be zero"; | |||
| } | |||
| @@ -111,23 +111,41 @@ T InnerScalarDiv(T x, T y) { | |||
| MS_LOG(EXCEPTION) << "Overflow of the div of two signed number x: " << std::to_string(x) | |||
| << ", y: " << std::to_string(y) << "."; | |||
| } | |||
| return x / y; | |||
| return static_cast<float>(x) / static_cast<float>(y); | |||
| } | |||
| int32_t InnerScalarMod(int32_t x, int32_t y) { | |||
| template <typename T> | |||
| T InnerScalarFloordiv(T x, T y) { | |||
| auto ret = std::floor(InnerScalarDiv(x, y)); | |||
| if (std::is_integral<T>::value) { | |||
| return static_cast<int>(ret); | |||
| } | |||
| return ret; | |||
| } | |||
| template <typename T> | |||
| T InnerScalarMod(T x, T y) { | |||
| if (y == 0) { | |||
| MS_LOG(EXCEPTION) << "Could not mod to zero."; | |||
| } | |||
| if (IsSignedIntOverflow(x, y, OpType::MOD)) { | |||
| if (std::is_integral<T>::value && std::is_signed<T>::value && IsSignedIntOverflow(x, y, OpType::MOD)) { | |||
| MS_LOG(EXCEPTION) << "Overflow of the mod of two signed number x: " << std::to_string(x) | |||
| << ", y: " << std::to_string(y) << "."; | |||
| } | |||
| return x % y; | |||
| if (std::is_integral<T>::value) { | |||
| return static_cast<int>(x) % static_cast<int>(y); | |||
| } | |||
| float x_int = std::floor(x); | |||
| float y_int = std::ceil(y); | |||
| float max = x_int / y_int; | |||
| float ret = x - y * max; | |||
| return ret; | |||
| } | |||
| float InnerScalarMod(float, float) { MS_LOG(EXCEPTION) << "Float does not support mod operator."; } | |||
| double InnerScalarMod(double, double) { MS_LOG(EXCEPTION) << "Double does not support mod operator."; } | |||
| template <typename T, typename U> | |||
| T InnerScalarPow(T x, U y) { | |||
| return std::pow(x, y); | |||
| } | |||
| template <typename T, typename U> | |||
| bool InnerScalarEq(T x, U y) { | |||
| @@ -193,6 +211,8 @@ SCALAR_OP(Sub) | |||
| SCALAR_OP(Mul) | |||
| SCALAR_OP(Div) | |||
| SCALAR_OP(Mod) | |||
| SCALAR_OP(Pow) | |||
| SCALAR_OP(Floordiv) | |||
| #define LOGIC_OP(op_t) \ | |||
| ValuePtr Scalar##op_t(const ValuePtrList& list) { \ | |||
| @@ -227,6 +247,10 @@ SCALAR_OP(Mod) | |||
| bool sum = InnerScalar##op_t(GetValue<float>(x), GetValue<int>(y)); \ | |||
| return MakeValue(sum); \ | |||
| } \ | |||
| if (x->isa<Int32Imm>() && y->isa<FP32Imm>()) { \ | |||
| bool sum = InnerScalar##op_t(GetValue<int>(x), GetValue<float>(y)); \ | |||
| return MakeValue(sum); \ | |||
| } \ | |||
| if (x->isa<Int64Imm>() && y->isa<Int32Imm>()) { \ | |||
| bool sum = InnerScalar##op_t(GetValue<int64_t>(x), GetValue<int>(y)); \ | |||
| return MakeValue(sum); \ | |||
| @@ -37,9 +37,10 @@ ValuePtr ScalarSub(const ValuePtrList& list); | |||
| ValuePtr ScalarMul(const ValuePtrList& list); | |||
| ValuePtr ScalarDiv(const ValuePtrList& list); | |||
| ValuePtr ScalarMod(const ValuePtrList& list); | |||
| ValuePtr ScalarPow(const ValuePtrList& list); | |||
| ValuePtr ScalarFloordiv(const ValuePtrList& list); | |||
| ValuePtr ScalarUAdd(const ValuePtrList& list); | |||
| ValuePtr ScalarUSub(const ValuePtrList& list); | |||
| ValuePtr ScalarUSub(const ValuePtrList& list); | |||
| ValuePtr ScalarLog(const ValuePtrList& list); | |||
| ValuePtr ScalarEq(const ValuePtrList& list); | |||
| ValuePtr ScalarLt(const ValuePtrList& list); | |||
| @@ -88,14 +88,17 @@ std::map<SignatureEnumDType, size_t> GetMaxDtypeIndex(const std::vector<Signatur | |||
| if (indexs.size() < 2) { | |||
| continue; | |||
| } | |||
| size_t m_index = indexs[0]; | |||
| for (size_t i = 1; i < indexs.size(); ++i) { | |||
| if (args_spec_list[indexs[i]]->isa<abstract::AbstractTensor>()) { | |||
| m_index = indexs[i]; | |||
| for (const auto& index : indexs) { | |||
| AbstractBasePtr arg_value = args_spec_list[index]; | |||
| if (arg_value->isa<abstract::AbstractRef>()) { | |||
| arg_value = arg_value->cast<abstract::AbstractRefPtr>()->ref(); | |||
| } | |||
| if (arg_value->isa<abstract::AbstractTensor>()) { | |||
| (void)dst_type.insert(std::make_pair(type, index)); | |||
| break; | |||
| } | |||
| } | |||
| if (args_spec_list[m_index]->isa<abstract::AbstractTensor>()) { | |||
| (void)dst_type.insert(std::make_pair(type, m_index)); | |||
| } | |||
| } | |||
| return dst_type; | |||
| @@ -119,15 +122,19 @@ void DoAutoCast(const std::vector<Signature>& signature, const abstract::Abstrac | |||
| (void)std::transform(signature.begin(), signature.end(), std::back_inserter(dtypes), | |||
| [](const Signature& sig) { return sig.dtype; }); | |||
| int empty_dtype_count = std::count(dtypes.begin(), dtypes.end(), SignatureEnumDType::kDTypeEmptyDefaultValue); | |||
| if (dtypes.size() == 0 || static_cast<int>(dtypes.size()) == empty_dtype_count) { | |||
| if (dtypes.empty() || static_cast<int>(dtypes.size()) == empty_dtype_count) { | |||
| return; | |||
| } | |||
| // Stat the index of the arguments with the largest type in the same SignatureEnumDType. | |||
| std::map<SignatureEnumDType, size_t> dst_type = GetMaxDtypeIndex(dtypes, args_spec_list); | |||
| // Identify which arg requires auto cast | |||
| for (size_t i = 0; i < args_spec_list.size(); ++i) { | |||
| AbstractBasePtr arg_value = args_spec_list[i]; | |||
| if (arg_value->isa<abstract::AbstractRef>()) { | |||
| arg_value = arg_value->cast<abstract::AbstractRefPtr>()->ref(); | |||
| } | |||
| auto it = dst_type.find(dtypes[i]); | |||
| if (it == dst_type.end() || it->second == i || !args_spec_list[i]->isa<abstract::AbstractScalar>()) { | |||
| if (it == dst_type.end() || it->second == i || !arg_value->isa<abstract::AbstractScalar>()) { | |||
| continue; | |||
| } | |||
| // get source node for cast | |||
| @@ -28,6 +28,7 @@ const PrimitivePtr kPrimScalarAdd = std::make_shared<Primitive>("scalar_add"); | |||
| const PrimitivePtr kPrimScalarSub = std::make_shared<Primitive>("scalar_sub"); | |||
| const PrimitivePtr kPrimScalarMul = std::make_shared<Primitive>("scalar_mul"); | |||
| const PrimitivePtr kPrimScalarDiv = std::make_shared<Primitive>("scalar_div"); | |||
| const PrimitivePtr kPrimScalarFloordiv = std::make_shared<Primitive>("scalar_floordiv"); | |||
| const PrimitivePtr kPrimScalarMod = std::make_shared<Primitive>("scalar_mod"); | |||
| const PrimitivePtr kPrimScalarPow = std::make_shared<Primitive>("scalar_pow"); | |||
| const PrimitivePtr kPrimScalarTrunc = std::make_shared<Primitive>("scalar_trunc"); | |||
| @@ -78,6 +79,7 @@ const PrimitivePtr kPrimCreateInstance = std::make_shared<Primitive>("create_ins | |||
| // Structure | |||
| const PrimitivePtr kPrimStringEqual = std::make_shared<Primitive>("string_equal"); | |||
| const PrimitivePtr kPrimStringConcat = std::make_shared<Primitive>("string_concat"); | |||
| const PrimitivePtr kPrimMakeTuple = std::make_shared<Primitive>("make_tuple"); | |||
| const PrimitivePtr kPrimMakeList = std::make_shared<Primitive>("make_list"); | |||
| const PrimitivePtr kPrimMakeDict = std::make_shared<Primitive>("make_dict"); | |||
| @@ -221,6 +223,8 @@ const PrimitivePtr kPrimBroadcastGradientArgs = std::make_shared<Primitive>("Bro | |||
| const PrimitivePtr kPrimControlDepend = std::make_shared<Primitive>("ControlDepend"); | |||
| const PrimitivePtr kPrimIs_ = std::make_shared<Primitive>("is_"); | |||
| const PrimitivePtr kPrimIsNot = std::make_shared<Primitive>("is_not"); | |||
| const PrimitivePtr kPrimInDict = std::make_shared<Primitive>("in_dict"); | |||
| const PrimitivePtr kPrimNotInDict = std::make_shared<Primitive>("not_in_dict"); | |||
| // Comm ops | |||
| const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator"); | |||
| @@ -34,6 +34,7 @@ extern const PrimitivePtr kPrimScalarAdd; | |||
| extern const PrimitivePtr kPrimScalarSub; | |||
| extern const PrimitivePtr kPrimScalarMul; | |||
| extern const PrimitivePtr kPrimScalarDiv; | |||
| extern const PrimitivePtr kPrimScalarFloordiv; | |||
| extern const PrimitivePtr kPrimScalarMod; | |||
| extern const PrimitivePtr kPrimScalarPow; | |||
| extern const PrimitivePtr kPrimScalarTrunc; | |||
| @@ -84,6 +85,7 @@ extern const PrimitivePtr kPrimCreateInstance; | |||
| // Structure | |||
| extern const PrimitivePtr kPrimStringEqual; | |||
| extern const PrimitivePtr kPrimStringConcat; | |||
| extern const PrimitivePtr kPrimMakeTuple; | |||
| extern const PrimitivePtr kPrimMakeList; | |||
| extern const PrimitivePtr kPrimMakeDict; | |||
| @@ -227,8 +229,8 @@ extern const PrimitivePtr kPrimBroadcastGradientArgs; | |||
| extern const PrimitivePtr kPrimControlDepend; | |||
| extern const PrimitivePtr kPrimIs_; | |||
| extern const PrimitivePtr kPrimIsNot; | |||
| extern const PrimitivePtr kPrimMinimumGrad; | |||
| extern const PrimitivePtr kPrimMaximumGrad; | |||
| extern const PrimitivePtr kPrimInDict; | |||
| extern const PrimitivePtr kPrimNotInDict; | |||
| // Comm ops | |||
| extern const PrimitivePtr kPrimMirror; | |||
| @@ -114,12 +114,12 @@ void FusedBatchNormCheckDim(const PrimitivePtr &primitive, const AbstractBasePtr | |||
| AbstractTensorPtr arg = CheckArg<AbstractTensor>(op_name, args_spec_list, i); | |||
| ShapePtr arg_shape = dyn_cast<Shape>(arg->GetShapeTrack()); | |||
| if (arg_shape == nullptr) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " type of args[" << i << "] should be Shape, but " << arg->ToString(); | |||
| MS_LOG(EXCEPTION) << op_name << " type of args[" << i << "] should be Shape, but " << arg->ToString(); | |||
| } | |||
| if (i == 0) { | |||
| if (arg_shape->shape().size() < 2) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " shape of args[" << i | |||
| MS_LOG(EXCEPTION) << op_name << " shape of args[" << i | |||
| << "] should be TensorShape with dimension greater than 1, but shape: " | |||
| << arg_shape->ToString(); | |||
| } | |||
| @@ -127,7 +127,7 @@ void FusedBatchNormCheckDim(const PrimitivePtr &primitive, const AbstractBasePtr | |||
| } | |||
| if (arg_shape->shape().size() != 1) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " shape of args[" << i | |||
| MS_LOG(EXCEPTION) << op_name << " shape of args[" << i | |||
| << "] should be TensorShape with dimension: 1, but shape: " << arg_shape->ToString(); | |||
| } | |||
| } | |||
| @@ -159,7 +159,7 @@ AbstractBasePtr InferImplFusedBatchNorm(const AnalysisEnginePtr &, const Primiti | |||
| MS_LOG(EXCEPTION) << "Arg shape size should >= 1."; | |||
| } | |||
| if (arg_shape_list[0] != input_shape_list[1]) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " size of tensor param[" << i << "](which is " << arg_shape_list[0] | |||
| MS_LOG(EXCEPTION) << op_name << " size of tensor param[" << i << "](which is " << arg_shape_list[0] | |||
| << ") should match the second dimension of tensor" | |||
| " param[0](which is " | |||
| << input_shape_list[1] << ")."; | |||
| @@ -378,7 +378,7 @@ AbstractBasePtr InferImplDropoutGenMask(const AnalysisEnginePtr &, const Primiti | |||
| TypePtr prob_type = keep_prob->element()->BuildType(); | |||
| if ((prob_type->type_id() != kNumberTypeFloat16) && (prob_type->type_id() != kNumberTypeFloat32)) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " keep_prob type should be float16 or float32, but " << prob_type->ToString() | |||
| MS_LOG(EXCEPTION) << op_name << " keep_prob type should be float16 or float32, but " << prob_type->ToString() | |||
| << "."; | |||
| } | |||
| @@ -169,5 +169,36 @@ AbstractBasePtr InferImplIsNot(const AnalysisEnginePtr &, const PrimitivePtr &pr | |||
| return std::make_shared<AbstractScalar>(!(*t == *x)); | |||
| } | |||
| bool IsInDict(const PrimitivePtr &primitive, const AbstractBasePtrList &args_spec_list) { | |||
| const std::string op_name = primitive->name(); | |||
| CheckArgsSize(op_name, args_spec_list, 2); | |||
| auto key = CheckArg<AbstractScalar>(op_name, args_spec_list, 0); | |||
| auto dict = CheckArg<AbstractDictionary>(op_name, args_spec_list, 1); | |||
| ValuePtr key_value = key->BuildValue(); | |||
| if (!key_value->isa<StringImm>()) { | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator key should be string, but got " << key_value->ToString(); | |||
| } | |||
| auto key_str = GetValue<std::string>(key_value); | |||
| std::vector<AbstractAttribute> dict_elems = dict->elements(); | |||
| auto it = std::find_if(dict_elems.begin(), dict_elems.end(), | |||
| [key_str](const AbstractAttribute &item) { return item.first == key_str; }); | |||
| return it != dict_elems.end(); | |||
| } | |||
| AbstractBasePtr InferImplInDict(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list) { | |||
| // statement: x in t | |||
| // Inputs: x, t | |||
| return std::make_shared<AbstractScalar>(IsInDict(primitive, args_spec_list)); | |||
| } | |||
| AbstractBasePtr InferImplNotInDict(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list) { | |||
| // statement: x not in t | |||
| // Inputs: x, t | |||
| return std::make_shared<AbstractScalar>(!IsInDict(primitive, args_spec_list)); | |||
| } | |||
| } // namespace abstract | |||
| } // namespace mindspore | |||
| @@ -36,7 +36,7 @@ AbstractBasePtr InferImplStringEqual(const AnalysisEnginePtr &, const PrimitiveP | |||
| ValuePtr value_x = scalar_x->BuildValue(); | |||
| ValuePtr value_y = scalar_y->BuildValue(); | |||
| if (!value_x->isa<StringImm>() || !value_y->isa<StringImm>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " requires 2 parameters are string, but got param0: " << value_x->ToString() | |||
| MS_LOG(EXCEPTION) << op_name << " requires 2 parameters are string, but got param0: " << value_x->ToString() | |||
| << ", param1: " << value_y->ToString(); | |||
| } | |||
| @@ -44,6 +44,25 @@ AbstractBasePtr InferImplStringEqual(const AnalysisEnginePtr &, const PrimitiveP | |||
| return std::make_shared<AbstractScalar>(ret); | |||
| } | |||
| AbstractBasePtr InferImplStringConcat(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list) { | |||
| // Inputs: two scalars whose value is a string. | |||
| const std::string op_name = primitive->name(); | |||
| CheckArgsSize(op_name, args_spec_list, 2); | |||
| AbstractScalarPtr scalar_x = CheckArg<AbstractScalar>(op_name, args_spec_list, 0); | |||
| AbstractScalarPtr scalar_y = CheckArg<AbstractScalar>(op_name, args_spec_list, 1); | |||
| ValuePtr value_x = scalar_x->BuildValue(); | |||
| ValuePtr value_y = scalar_y->BuildValue(); | |||
| if (!value_x->isa<StringImm>() || !value_y->isa<StringImm>()) { | |||
| MS_LOG(EXCEPTION) << op_name << " requires 2 parameters are string, but got param0: " << value_x->ToString() | |||
| << ", param1: " << value_y->ToString(); | |||
| } | |||
| std::string ret = (value_x->cast<StringImmPtr>()->value() + value_y->cast<StringImmPtr>()->value()); | |||
| return std::make_shared<AbstractScalar>(ret); | |||
| } | |||
| AbstractBasePtr InferImplMakeTuple(const AnalysisEnginePtr &, const PrimitivePtr &, | |||
| const AbstractBasePtrList &args_spec_list) { | |||
| return std::make_shared<AbstractTuple>(args_spec_list); | |||
| @@ -64,7 +83,7 @@ AbstractBasePtr InferImplMakeDict(const AnalysisEnginePtr &, const PrimitivePtr | |||
| size_t keys_size = keys->size(); | |||
| if (values->size() != keys_size) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator keys' size is not equal with values' size"; | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator keys' size is not equal with values' size"; | |||
| } | |||
| std::vector<AbstractAttribute> key_value; | |||
| @@ -76,7 +95,7 @@ AbstractBasePtr InferImplMakeDict(const AnalysisEnginePtr &, const PrimitivePtr | |||
| ValuePtr keyPtr = key->BuildValue(); | |||
| MS_EXCEPTION_IF_NULL(keyPtr); | |||
| if (!keyPtr->isa<StringImm>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator keys should be string, but got " << keyPtr->ToString(); | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator keys should be string, but got " << keyPtr->ToString(); | |||
| } | |||
| std::string key_string = GetValue<std::string>(keyPtr); | |||
| key_value.emplace_back(key_string, value_list[index]); | |||
| @@ -93,7 +112,7 @@ AbstractBasePtr InferImplMakeKwarg(const AnalysisEnginePtr &, const PrimitivePtr | |||
| ValuePtr keyPtr = key->BuildValue(); | |||
| if (!keyPtr->isa<StringImm>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator key should be string, but got " << keyPtr->ToString(); | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator key should be string, but got " << keyPtr->ToString(); | |||
| } | |||
| std::string key_string = GetValue<std::string>(keyPtr); | |||
| return std::make_shared<AbstractKeywordArg>(key_string, args_spec_list[1]); | |||
| @@ -109,14 +128,13 @@ AbstractBasePtr InferImplExtractKwarg(const AnalysisEnginePtr &, const Primitive | |||
| ValuePtr key_value = key->BuildValue(); | |||
| if (!key_value->isa<StringImm>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator key should be string, but got " << key_value->ToString(); | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator key should be string, but got " << key_value->ToString(); | |||
| } | |||
| std::string key_input = GetValue<std::string>(key_value); | |||
| std::string key_actual = kwarg->get_key(); | |||
| if (key_actual != key_input) { | |||
| MS_LOG(EXCEPTION) << "" << op_name | |||
| << " evaluator input key should be same as AbstractKeywordArg' key, but input is " << key_input | |||
| << ", AbstractKeywordArg' key is " << key_actual; | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator input key should be same as AbstractKeywordArg' key, but input is " | |||
| << key_input << ", AbstractKeywordArg' key is " << key_actual; | |||
| } | |||
| return kwarg->get_arg(); | |||
| } | |||
| @@ -187,13 +205,12 @@ AbstractBasePtr InferTupleOrListGetItem(const std::string &op_name, const Abstra | |||
| ValuePtr index_value = index->BuildValue(); | |||
| if (!index_value->isa<Int32Imm>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator index should be an int32 number, but got " | |||
| << index_value->ToString(); | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator index should be an int32 number, but got " << index_value->ToString(); | |||
| } | |||
| int idx_v = GetValue<int>(index_value); | |||
| std::size_t nelems = queue->elements().size(); | |||
| if (idx_v >= SizeToInt(nelems) || idx_v < -SizeToInt(nelems)) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator index should be in range[-" << SizeToInt(nelems) << ", " | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator index should be in range[-" << SizeToInt(nelems) << ", " | |||
| << SizeToInt(nelems) << "), but got " << idx_v << "."; | |||
| } | |||
| @@ -215,8 +232,7 @@ AbstractBasePtr InferTupleOrListSetItem(const std::string &op_name, const Abstra | |||
| ValuePtr index_value = index->BuildValue(); | |||
| if (!index_value->isa<Int32Imm>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator index should be an int32 number, but got " | |||
| << index_value->ToString(); | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator index should be an int32 number, but got " << index_value->ToString(); | |||
| } | |||
| int idx_v = GetValue<int>(index_value); | |||
| if (idx_v < 0) { | |||
| @@ -227,8 +243,7 @@ AbstractBasePtr InferTupleOrListSetItem(const std::string &op_name, const Abstra | |||
| AbstractBasePtrList elements = queue->elements(); | |||
| std::size_t nelems = elements.size(); | |||
| if (uidx_v >= nelems) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator the index: " << uidx_v << " to set out of range: " << nelems - 1 | |||
| << "."; | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator the index: " << uidx_v << " to set out of range: " << nelems - 1 << "."; | |||
| } | |||
| elements[uidx_v] = args_spec_list[2]; | |||
| return std::make_shared<T>(elements); | |||
| @@ -264,12 +279,12 @@ AbstractBasePtr InferImplDictGetItem(const AnalysisEnginePtr &, const PrimitiveP | |||
| ValuePtr key_value = key->BuildValue(); | |||
| if (!key_value->isa<StringImm>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator key should be string, but got " << key_value->ToString(); | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator key should be string, but got " << key_value->ToString(); | |||
| } | |||
| std::string key_str = GetValue<std::string>(key_value); | |||
| auto key_str = GetValue<std::string>(key_value); | |||
| std::vector<AbstractAttribute> dict_elems = dict->elements(); | |||
| auto it = std::find_if(dict_elems.begin(), dict_elems.end(), | |||
| [key_str](AbstractAttribute &item) { return item.first == key_str; }); | |||
| [key_str](const AbstractAttribute &item) { return item.first == key_str; }); | |||
| if (it == dict_elems.end()) { | |||
| MS_LOG(EXCEPTION) << "The key " << key_str << " does not exist in the dict:" << args_spec_list[0]->ToString(); | |||
| @@ -287,7 +302,7 @@ AbstractBasePtr InferImplDictSetItem(const AnalysisEnginePtr &, const PrimitiveP | |||
| ValuePtr key_value = key->BuildValue(); | |||
| if (!key_value->isa<StringImm>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator key should be string, but got " << key_value->ToString(); | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator key should be string, but got " << key_value->ToString(); | |||
| } | |||
| std::string key_str = GetValue<std::string>(key_value); | |||
| std::vector<AbstractAttribute> dict_elems = dict->elements(); | |||
| @@ -446,27 +461,27 @@ AbstractBasePtr InferImplReduceShape(const AnalysisEnginePtr &, const PrimitiveP | |||
| auto x_shp_value = shape_x->BuildValue(); | |||
| if (x_shp_value->isa<AnyValue>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name | |||
| MS_LOG(EXCEPTION) << op_name | |||
| << " evaluator shape's data field can't be anything: " << args_spec_list[1]->ToString(); | |||
| } | |||
| // Axis can be scalar, tuple or None | |||
| AbstractTuplePtr axis = nullptr; | |||
| if (args_spec_list[1]->isa<AbstractScalar>()) { | |||
| MS_LOG(DEBUG) << "" << op_name << " evaluator second parameter is scalar"; | |||
| MS_LOG(DEBUG) << op_name << " evaluator second parameter is scalar"; | |||
| AbstractBasePtrList axis_list = {dyn_cast<AbstractScalar>(args_spec_list[1])}; | |||
| axis = std::make_shared<AbstractTuple>(axis_list); | |||
| } else if (args_spec_list[1]->isa<AbstractTuple>()) { | |||
| MS_LOG(DEBUG) << "" << op_name << " evaluator second parameter is tuple"; | |||
| MS_LOG(DEBUG) << op_name << " evaluator second parameter is tuple"; | |||
| axis = args_spec_list[1]->cast<AbstractTuplePtr>(); | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "" << op_name << " evaluator second parameter should be a scalar or tuple, but got " | |||
| MS_LOG(EXCEPTION) << op_name << " evaluator second parameter should be a scalar or tuple, but got " | |||
| << args_spec_list[1]->ToString(); | |||
| } | |||
| auto axis_value = axis->BuildValue(); | |||
| if (axis_value->isa<AnyValue>()) { | |||
| MS_LOG(EXCEPTION) << "" << op_name | |||
| MS_LOG(EXCEPTION) << op_name | |||
| << " evaluator shape's data field can't be anything: " << args_spec_list[1]->ToString(); | |||
| } | |||
| auto axis_value_ptr = axis_value->cast<ValueTuplePtr>(); | |||
| @@ -24,36 +24,35 @@ namespace mindspore { | |||
| namespace prim { | |||
| PrimToFunction::PrimToFunction() | |||
| : prim_func_type_map_({ | |||
| // ONE_ARG prim | |||
| {"bool_not", kPrimTypeOneArg}, | |||
| {"scalar_cos", kPrimTypeOneArg}, | |||
| {"scalar_exp", kPrimTypeOneArg}, | |||
| {"scalar_floor", kPrimTypeOneArg}, | |||
| {"scalar_log", kPrimTypeOneArg}, | |||
| {"scalar_sin", kPrimTypeOneArg}, | |||
| {"scalar_tan", kPrimTypeOneArg}, | |||
| {"scalar_trunc", kPrimTypeOneArg}, | |||
| {"typeof", kPrimTypeOneArg}, | |||
| {"scalar_uadd", kPrimTypeOneArg}, | |||
| {"scalar_usub", kPrimTypeOneArg}, | |||
| // TWO_ARGS prim | |||
| {"scalar_add", kPrimTypeTwoArgs}, | |||
| {"bool_and", kPrimTypeTwoArgs}, | |||
| {"bool_eq", kPrimTypeTwoArgs}, | |||
| {"bool_or", kPrimTypeTwoArgs}, | |||
| {"scalar_div", kPrimTypeTwoArgs}, | |||
| {"scalar_eq", kPrimTypeTwoArgs}, | |||
| {"scalar_ge", kPrimTypeTwoArgs}, | |||
| {"scalar_gt", kPrimTypeTwoArgs}, | |||
| {"scalar_le", kPrimTypeTwoArgs}, | |||
| {"scalar_lt", kPrimTypeTwoArgs}, | |||
| {"scalar_ne", kPrimTypeTwoArgs}, | |||
| {"scalar_mod", kPrimTypeTwoArgs}, | |||
| {"scalar_mul", kPrimTypeTwoArgs}, | |||
| {"scalar_pow", kPrimTypeTwoArgs}, | |||
| {"scalar_sub", kPrimTypeTwoArgs}, | |||
| }) {} | |||
| : prim_func_type_map_({// ONE_ARG prim | |||
| {"bool_not", kPrimTypeOneArg}, | |||
| {"scalar_cos", kPrimTypeOneArg}, | |||
| {"scalar_exp", kPrimTypeOneArg}, | |||
| {"scalar_floor", kPrimTypeOneArg}, | |||
| {"scalar_log", kPrimTypeOneArg}, | |||
| {"scalar_sin", kPrimTypeOneArg}, | |||
| {"scalar_tan", kPrimTypeOneArg}, | |||
| {"scalar_trunc", kPrimTypeOneArg}, | |||
| {"typeof", kPrimTypeOneArg}, | |||
| {"scalar_uadd", kPrimTypeOneArg}, | |||
| {"scalar_usub", kPrimTypeOneArg}, | |||
| // TWO_ARGS prim | |||
| {"scalar_add", kPrimTypeTwoArgs}, | |||
| {"bool_and", kPrimTypeTwoArgs}, | |||
| {"bool_eq", kPrimTypeTwoArgs}, | |||
| {"bool_or", kPrimTypeTwoArgs}, | |||
| {"scalar_div", kPrimTypeTwoArgs}, | |||
| {"scalar_eq", kPrimTypeTwoArgs}, | |||
| {"scalar_ge", kPrimTypeTwoArgs}, | |||
| {"scalar_gt", kPrimTypeTwoArgs}, | |||
| {"scalar_le", kPrimTypeTwoArgs}, | |||
| {"scalar_lt", kPrimTypeTwoArgs}, | |||
| {"scalar_ne", kPrimTypeTwoArgs}, | |||
| {"scalar_mod", kPrimTypeTwoArgs}, | |||
| {"scalar_mul", kPrimTypeTwoArgs}, | |||
| {"scalar_pow", kPrimTypeTwoArgs}, | |||
| {"scalar_sub", kPrimTypeTwoArgs}, | |||
| {"scalar_floordiv", kPrimTypeTwoArgs}}) {} | |||
| bool PrimToFunction::GetFunction(const PrimitivePtr& prim, FunctionPtr* const func) const { | |||
| bool result = false; | |||
| @@ -52,6 +52,8 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() { | |||
| {prim::kPrimSwitch, {InferImplSwitch, true}}, | |||
| {prim::kPrimIs_, {InferImplIs_, true}}, | |||
| {prim::kPrimIsNot, {InferImplIsNot, true}}, | |||
| {prim::kPrimInDict, {InferImplInDict, true}}, | |||
| {prim::kPrimNotInDict, {InferImplNotInDict, true}}, | |||
| // Maths | |||
| {prim::kPrimMaximumGrad, {InferImplMinOrMaxGrad, true}}, | |||
| {prim::kPrimMinimumGrad, {InferImplMinOrMaxGrad, true}}, | |||
| @@ -91,6 +93,7 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() { | |||
| {prim::kPrimMakeRange, {InferImplMakeRange, false}}, | |||
| {prim::kPrimStopGradient, {InferImplStopGradient, false}}, | |||
| {prim::kPrimStringEqual, {InferImplStringEqual, false}}, | |||
| {prim::kPrimStringConcat, {InferImplStringConcat, false}}, | |||
| {prim::kPrimDictLen, {InferImplDictLen, false}}, | |||
| // NN | |||
| {prim::kPrimPooling, {InferImplPooling, true}}, | |||
| @@ -988,6 +991,8 @@ PrimitiveToImplMap &GetUniformPrimitiveToImplMap() { | |||
| {prim::kPrimScalarMul, {prim::ScalarMul, true, nullptr, true}}, | |||
| {prim::kPrimScalarDiv, {prim::ScalarDiv, true, nullptr, true}}, | |||
| {prim::kPrimScalarMod, {prim::ScalarMod, true, nullptr, true}}, | |||
| {prim::kPrimScalarPow, {prim::ScalarPow, true, nullptr, true}}, | |||
| {prim::kPrimScalarFloordiv, {prim::ScalarFloordiv, true, nullptr, true}}, | |||
| {prim::kPrimScalarUadd, {prim::ScalarUAdd, true, nullptr, true}}, | |||
| {prim::kPrimScalarUsub, {prim::ScalarUSub, true, nullptr, true}}, | |||
| {prim::kPrimScalarLog, {prim::ScalarLog, true, nullptr, true}}, | |||
| @@ -178,6 +178,10 @@ AbstractBasePtr InferImplIs_(const AnalysisEnginePtr &, const PrimitivePtr &, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplIsNot(const AnalysisEnginePtr &, const PrimitivePtr &, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplInDict(const AnalysisEnginePtr &, const PrimitivePtr &, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplNotInDict(const AnalysisEnginePtr &, const PrimitivePtr &, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplPooling(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplPoolingGrad(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| @@ -287,6 +291,8 @@ AbstractBasePtr InferImplStopGradient(const AnalysisEnginePtr &, const Primitive | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplStringEqual(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplStringConcat(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplDictLen(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| @@ -19,6 +19,9 @@ from .add_impl import add | |||
| from .sub_impl import sub | |||
| from .mul_impl import mul | |||
| from .div_impl import div | |||
| from .pow_impl import pow_ | |||
| from .floordiv_impl import floordiv | |||
| from .mod_impl import mod | |||
| from .getitem_impl import getitem | |||
| from .zeros_like_impl import zeros_like | |||
| from .ones_like_impl import ones_like | |||
| @@ -38,6 +41,9 @@ __all__ = [ | |||
| 'sub', | |||
| 'mul', | |||
| 'div', | |||
| 'pow_', | |||
| 'floordiv', | |||
| 'mod', | |||
| 'uadd', | |||
| 'zeros_like', | |||
| 'ones_like', | |||
| @@ -69,6 +69,21 @@ def _scalar_add_scalar(x, y): | |||
| return F.scalar_add(x, y) | |||
| @add.register("String", "String") | |||
| def _string_concat_string(x, y): | |||
| """ | |||
| Concatenate the string y to the string x. | |||
| Args: | |||
| x (str): The first input string. | |||
| y (str): the second input string. | |||
| Returns: | |||
| str, concatenate the y to the x. | |||
| """ | |||
| return F.string_concat(x, y) | |||
| @add.register("Number", "Tensor") | |||
| def _scalar_add_tensor(x, y): | |||
| """ | |||
| @@ -81,8 +96,7 @@ def _scalar_add_tensor(x, y): | |||
| Returns: | |||
| Tensor, has the same dtype as x. | |||
| """ | |||
| z = F.scalar_to_tensor(x, F.dtype(y)) | |||
| return F.tensor_add(z, y) | |||
| return F.tensor_add(x, y) | |||
| @add.register("Tensor", "Number") | |||
| @@ -97,8 +111,7 @@ def _tensor_add_scalar(x, y): | |||
| Returns: | |||
| Tensor, has the same dtype as x. | |||
| """ | |||
| z = F.scalar_to_tensor(y, F.dtype(x)) | |||
| return F.tensor_add(x, z) | |||
| return F.tensor_add(x, y) | |||
| @add.register("Tensor", "Tensor") | |||
| @@ -68,8 +68,7 @@ def _scalar_div_tensor(x, y): | |||
| Returns: | |||
| Tensor, has the same dtype as x. | |||
| """ | |||
| z = F.scalar_to_tensor(x, F.dtype(y)) | |||
| return F.tensor_div(z, y) | |||
| return F.tensor_div(x, y) | |||
| @div.register("Tensor", "Number") | |||
| @@ -84,5 +83,4 @@ def _tensor_div_scalar(x, y): | |||
| Returns: | |||
| Tensor, has the same dtype as x. | |||
| """ | |||
| z = F.scalar_to_tensor(y, F.dtype(x)) | |||
| return F.tensor_div(x, z) | |||
| return F.tensor_div(x, y) | |||
| @@ -0,0 +1,50 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Implementation for internal polymorphism `floordiv` operations.""" | |||
| from ...composite import base | |||
| from ... import functional as F | |||
| floordiv = base.MultitypeFuncGraph("floordiv") | |||
| """ | |||
| `floordiv` is a metafuncgraph object which will compute the floordiv of two objects | |||
| using ".register" decorator. | |||
| """ | |||
| @floordiv.register("Number", "Number") | |||
| def _floordiv_scalar(x, y): | |||
| """Returns x // y where x and y are all scalars.""" | |||
| return F.scalar_floordiv(x, y) | |||
| @floordiv.register("Tensor", "Tensor") | |||
| def _floordiv_tensor(x, y): | |||
| """Returns x // y where x and y are all tensors and have save dtype.""" | |||
| return F.tensor_floordiv(x, y) | |||
| @floordiv.register("Tensor", "Number") | |||
| def _tensor_floordiv_scalar(x, y): | |||
| """Returns x // y where x is a tensor and y is a scalar. x and y should have same dtype.""" | |||
| return F.tensor_floordiv(x, y) | |||
| @floordiv.register("Number", "Tensor") | |||
| def _scalar_floordiv_tensor(x, y): | |||
| """Returns x // y where x is a scalar and y is a tensor. x and y should have same dtype.""" | |||
| return F.tensor_floordiv(x, y) | |||
| @@ -0,0 +1,50 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Implementation for internal polymorphism `mod` operations.""" | |||
| from ...composite import base | |||
| from ... import functional as F | |||
| mod = base.MultitypeFuncGraph("mod") | |||
| """ | |||
| `mod` is a metafuncgraph object which will compute the mod of two objects | |||
| using ".register" decorator. | |||
| """ | |||
| @mod.register("Number", "Number") | |||
| def _mod_scalar(x, y): | |||
| """Returns x % y where x and y are all scalars.""" | |||
| return F.scalar_mod(x, y) | |||
| @mod.register("Tensor", "Tensor") | |||
| def _mod_tensor(x, y): | |||
| """Returns x % y where x and y are all tensors and have save dtype.""" | |||
| return F.tensor_mod(x, y) | |||
| @mod.register("Tensor", "Number") | |||
| def _tensor_mod_scalar(x, y): | |||
| """Returns x % y where x is a tensor and y is a scalar. x and y should have same dtype.""" | |||
| return F.tensor_mod(x, y) | |||
| @mod.register("Number", "Tensor") | |||
| def _scalar_mod_tensor(x, y): | |||
| """Returns x % y where x is a scalar and y is a tensor. x and y should have same dtype.""" | |||
| return F.tensor_mod(x, y) | |||
| @@ -56,8 +56,7 @@ def _scalar_mul_tensor(x, y): | |||
| Outputs: | |||
| Tensor, has the same dtype as x. | |||
| """ | |||
| z = F.scalar_to_tensor(x, F.dtype(y)) | |||
| return F.tensor_mul(z, y) | |||
| return F.tensor_mul(x, y) | |||
| @mul.register("Tensor", "Number") | |||
| @@ -68,5 +67,4 @@ def _tensor_mul_scalar(x, y): | |||
| Outputs: | |||
| Tensor, has the same dtype as x. | |||
| """ | |||
| z = F.scalar_to_tensor(y, F.dtype(x)) | |||
| return F.tensor_mul(x, z) | |||
| return F.tensor_mul(x, y) | |||
| @@ -0,0 +1,50 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Implementation for internal polymorphism `pow` operations.""" | |||
| from ...composite import base | |||
| from ... import functional as F | |||
| pow_ = base.MultitypeFuncGraph("pow") | |||
| """ | |||
| `pow` is a metafuncgraph object which will compute the pow of two objects | |||
| using ".register" decorator. | |||
| """ | |||
| @pow_.register("Number", "Number") | |||
| def _pow_scalar(x, y): | |||
| """Returns x ** y where x and y are all scalars.""" | |||
| return F.scalar_pow(x, y) | |||
| @pow_.register("Tensor", "Tensor") | |||
| def _pow_tensor(x, y): | |||
| """Returns x ** y where x and y are all tensors and have save dtype.""" | |||
| return F.tensor_pow(x, y) | |||
| @pow_.register("Tensor", "Number") | |||
| def _tensor_pow_scalar(x, y): | |||
| """Returns x ** y where x is a tensor and y is a scalar. x and y should have same dtype.""" | |||
| return F.tensor_pow(x, y) | |||
| @pow_.register("Number", "Tensor") | |||
| def _scalar_pow_tensor(x, y): | |||
| """Returns x ** y where x is a scalar and y is a tensor. x and y should have same dtype.""" | |||
| return F.tensor_pow(x, y) | |||
| @@ -41,12 +41,10 @@ def _sub_tensor(x, y): | |||
| @sub.register("Number", "Tensor") | |||
| def _scalar_sub_tensor(x, y): | |||
| """Returns x - y where x is a scalar and y is a tensor. x and y should have same dtype.""" | |||
| z = F.scalar_to_tensor(x, F.dtype(y)) | |||
| return F.tensor_sub(z, y) | |||
| return F.tensor_sub(x, y) | |||
| @sub.register("Tensor", "Number") | |||
| def _tensor_sub_scalar(x, y): | |||
| """Returns x - y where x is a tensor and y is a scalar. x and y should have same dtype.""" | |||
| z = F.scalar_to_tensor(y, F.dtype(x)) | |||
| return F.tensor_sub(x, z) | |||
| return F.tensor_sub(x, y) | |||
| @@ -48,6 +48,9 @@ tensor_ge = P.GreaterEqual() | |||
| tensor_sub = P.Sub() | |||
| tensor_mul = P.Mul() | |||
| tensor_div = P.RealDiv() | |||
| tensor_floordiv = P.FloorDiv() | |||
| tensor_pow = P.Pow() | |||
| tensor_mod = P.FloorMod() | |||
| strided_slice = P.StridedSlice() | |||
| same_type_shape = P.SameTypeShape() | |||
| equal = P.Equal() | |||
| @@ -83,6 +86,7 @@ scalar_add = Primitive('scalar_add') | |||
| scalar_mul = Primitive('scalar_mul') | |||
| scalar_sub = Primitive('scalar_sub') | |||
| scalar_div = Primitive('scalar_div') | |||
| scalar_floordiv = Primitive('scalar_floordiv') | |||
| scalar_log = Primitive('scalar_log') | |||
| scalar_pow = Primitive('scalar_pow') | |||
| scalar_gt = Primitive('scalar_gt') | |||
| @@ -95,6 +99,7 @@ scalar_uadd = Primitive('scalar_uadd') | |||
| scalar_usub = Primitive('scalar_usub') | |||
| scalar_mod = Primitive('scalar_mod') | |||
| string_eq = Primitive('string_equal') | |||
| string_concat = Primitive('string_concat') | |||
| bool_not = Primitive("bool_not") | |||
| bool_or = Primitive("bool_or") | |||
| bool_and = Primitive("bool_and") | |||
| @@ -104,7 +109,8 @@ logical_not = P.LogicalNot() | |||
| array_to_scalar = Primitive('array_to_scalar') | |||
| is_ = Primitive("is_") | |||
| is_not = Primitive("is_not") | |||
| in_dict = Primitive("in_dict") | |||
| not_in_dict = Primitive("not_in_dict") | |||
| broadcast_gradient_args = Primitive('BroadcastGradientArgs') | |||
| dot = Primitive('dot') | |||
| array_reduce = Primitive('array_reduce') | |||
| @@ -667,8 +667,8 @@ class AddN(PrimitiveWithInfer): | |||
| >>> return self.addN(z) | |||
| >>> | |||
| >>> net = NetAddN() | |||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) | |||
| >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32) | |||
| >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) | |||
| >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.float32) | |||
| >>> net(input_x, input_y, input_x, input_y) | |||
| Tensor([10, 14, 18], shape=(3,), dtype=mindspore.int32) | |||
| """ | |||
| @@ -131,3 +131,72 @@ def test_ME_arithmetic_operator_0070(): | |||
| def test_ME_logical_operator_0020(): | |||
| """ test_ME_logical_operator_0020 """ | |||
| logical_operator_base('or') | |||
| def test_ops(): | |||
| class OpsNet(Cell): | |||
| """ OpsNet definition """ | |||
| def __init__(self, x, y): | |||
| super(OpsNet, self).__init__() | |||
| self.x = x | |||
| self.y = y | |||
| self.int = 4 | |||
| self.float = 3.2 | |||
| self.str_a = "hello" | |||
| self.str_b = "world" | |||
| def construct(self, x, y): | |||
| h = x // y | |||
| m = x ** y | |||
| n = x % y | |||
| r = self.x // self.y | |||
| s = self.x ** self.y | |||
| t = self.x % self.y | |||
| p = h + m + n | |||
| q = r + s + t | |||
| ret_pow = p ** q + q ** p | |||
| ret_mod = p % q + q % p | |||
| ret_floor = p // q + q // p | |||
| ret = ret_pow + ret_mod + ret_floor | |||
| if self.int > self.float: | |||
| if self.str_a + self.str_b == "helloworld": | |||
| return ret | |||
| return x | |||
| net = OpsNet(9, 2) | |||
| x = Tensor(np.random.randint(low=1, high=10, size=(2, 3, 4), dtype=np.int32)) | |||
| y = Tensor(np.random.randint(low=10, high=20, size=(2, 3, 4), dtype=np.int32)) | |||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||
| net(x, y) | |||
| def test_in_dict(): | |||
| class InDictNet(Cell): | |||
| """ InDictNet definition """ | |||
| def __init__(self, key_in, key_not_in): | |||
| super(InDictNet, self).__init__() | |||
| self.key_in = key_in | |||
| self.key_not_in = key_not_in | |||
| def construct(self, x, y, z): | |||
| d = {"a": x, "b": y} | |||
| ret_in = 1 | |||
| ret_not_in = 2 | |||
| if self.key_in in d: | |||
| ret_in = d[self.key_in] | |||
| if self.key_not_in not in d: | |||
| ret_not_in = z | |||
| ret = ret_in + ret_not_in | |||
| return ret | |||
| net = InDictNet("a", "c") | |||
| x = Tensor(np.random.randint(low=1, high=10, size=(2, 3, 4), dtype=np.int32)) | |||
| y = Tensor(np.random.randint(low=10, high=20, size=(2, 3, 4), dtype=np.int32)) | |||
| z = Tensor(np.random.randint(low=20, high=30, size=(2, 3, 4), dtype=np.int32)) | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| net(x, y, z) | |||