Browse Source

updating notes for remaining classes's examples

tags/v1.1.0
zhangz0911gm 5 years ago
parent
commit
311d94e266
1 changed files with 10 additions and 5 deletions
  1. +10
    -5
      mindspore/ops/composite/base.py

+ 10
- 5
mindspore/ops/composite/base.py View File

@@ -205,7 +205,8 @@ class GradOperation(GradOperation_):
>>>
>>> x = Tensor([[0.5, 0.6, 0.4], [1.2, 1.3, 1.1]], dtype=mstype.float32)
>>> y = Tensor([[0.01, 0.3, 1.1], [0.1, 0.2, 1.3], [2.1, 1.2, 3.3]], dtype=mstype.float32)
>>> GradNetWrtX(Net())(x, y)
>>> output = GradNetWrtX(Net())(x, y)
>>> print(output)
Tensor(shape=[2, 3], dtype=Float32,
[[1.4100001 1.5999999 6.6 ]
[1.4100001 1.5999999 6.6 ]])
@@ -221,7 +222,8 @@ class GradOperation(GradOperation_):
>>>
>>> x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32)
>>> y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32)
>>> GradNetWrtXY(Net())(x, y)
>>> output = GradNetWrtXY(Net())(x, y)
>>> print(output)
(Tensor(shape=[2, 3], dtype=Float32,
[[4.5099998 2.7 3.6000001]
[4.5099998 2.7 3.6000001]]), Tensor(shape=[3, 3], dtype=Float32,
@@ -241,7 +243,8 @@ class GradOperation(GradOperation_):
>>>
>>> x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32)
>>> y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32)
>>> GradNetWrtXYWithSensParam(Net())(x, y)
>>> output = GradNetWrtXYWithSensParam(Net())(x, y)
>>> print(output)
(Tensor(shape=[2, 3], dtype=Float32,
[[2.211 0.51 1.4900001]
[5.588 2.68 4.07 ]]), Tensor(shape=[3, 3], dtype=Float32,
@@ -261,7 +264,8 @@ class GradOperation(GradOperation_):
>>>
>>> x = Tensor([[0.8, 0.6, 0.2], [1.8, 1.3, 1.1]], dtype=mstype.float32)
>>> y = Tensor([[0.11, 3.3, 1.1], [1.1, 0.2, 1.4], [1.1, 2.2, 0.3]], dtype=mstype.float32)
>>> GradNetWithWrtParams(Net())(x, y)
>>> output = GradNetWithWrtParams(Net())(x, y)
>>> print(output)
(Tensor(shape=[1], dtype=Float32, [21.536]),)
>>>
>>> class GradNetWrtInputsAndParams(nn.Cell):
@@ -276,7 +280,8 @@ class GradOperation(GradOperation_):
>>>
>>> x = Tensor([[0.1, 0.6, 1.2], [0.5, 1.3, 0.1]], dtype=mstype.float32)
>>> y = Tensor([[0.12, 2.3, 1.1], [1.3, 0.2, 2.4], [0.1, 2.2, 0.3]], dtype=mstype.float32)
>>> GradNetWrtInputsAndParams(Net())(x, y)
>>> output = GradNetWrtInputsAndParams(Net())(x, y)
>>> print(output)
((Tensor(shape=[2, 3], dtype=Float32,
[[3.52 3.9 2.6 ]
[3.52 3.9 2.6 ]]), Tensor(shape=[3, 3], dtype=Float32,


Loading…
Cancel
Save