diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index 9fccff0622..53ee6738cf 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -319,7 +319,7 @@ class ReduceMean(_Reduce): Tensor, has the same dtype as the 'input_x'. - If axis is (), and keep_dims is false, - the output is a 0-D tensor representing the sum of all elements in the input tensor. + the output is a 0-D tensor representing the mean of all elements in the input tensor. - If axis is int, set as 2, and keep_dims is false, the shape of output is :math:`(x_1, x_3, ..., x_R)`. - If axis is tuple(int), set as (2, 3), and keep_dims is false, diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index d2b6f9a397..f1b9100c16 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -233,7 +233,7 @@ class Softsign(PrimitiveWithInfer): The function is shown as follows: .. math:: - \text{output} = \frac{\text{input_x}}{1 + \abs{\text{input_x}}}, + \text{output} = \frac{\text{input_x}}{1 + \left| \text{input_x} \right|}, Inputs: - **input_x** (Tensor) - The input tensor whose data type should be float16 or float32.