|
|
|
@@ -2489,7 +2489,7 @@ class BatchToSpace(PrimitiveWithInfer): |
|
|
|
dimension and block_size with given amount to crop from dimension, respectively. |
|
|
|
|
|
|
|
Args: |
|
|
|
block_size (int): The block size of dividing block with value >= 1. |
|
|
|
block_size (int): The block size of dividing block with value >= 2. |
|
|
|
crops (list): The crop value for H and W dimension, containing 2 sub list, each containing 2 int value. |
|
|
|
All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to |
|
|
|
input dimension i+2. It is required that input_shape[i+2]*block_size >= crops[i][0]+crops[i][1]. |
|
|
|
@@ -2523,7 +2523,7 @@ class BatchToSpace(PrimitiveWithInfer): |
|
|
|
def __init__(self, block_size, crops): |
|
|
|
"""Init BatchToSpace""" |
|
|
|
validator.check_value_type('block_size', block_size, [int], self.name) |
|
|
|
validator.check('block_size', block_size, '', 1, Rel.GE, self.name) |
|
|
|
validator.check('block_size', block_size, '', 2, Rel.GE, self.name) |
|
|
|
self.block_size = block_size |
|
|
|
validator.check('crops shape', np.array(crops).shape, '', (2, 2)) |
|
|
|
for elem in itertools.chain(*crops): |
|
|
|
|