Merge pull request !2776 from ZiruiWu/mastertags/v0.6.0-beta
| @@ -609,10 +609,23 @@ void bindTokenizerOps(py::module *m) { | |||
| *m, "UnicodeCharTokenizerOp", "Tokenize a scalar tensor of UTF-8 string to Unicode characters.") | |||
| .def(py::init<>()); | |||
| (void)py::class_<LookupOp, TensorOp, std::shared_ptr<LookupOp>>(*m, "LookupOp", | |||
| "Tensor operation to LookUp each word") | |||
| .def(py::init<std::shared_ptr<Vocab>, WordIdType>(), py::arg("vocab"), py::arg("unknown")) | |||
| .def(py::init<std::shared_ptr<Vocab>>(), py::arg("vocab")); | |||
| (void)py::class_<NgramOp, TensorOp, std::shared_ptr<NgramOp>>(*m, "NgramOp", "TensorOp performs ngram mapping") | |||
| "Tensor operation to LookUp each word.") | |||
| .def(py::init([](std::shared_ptr<Vocab> vocab, const py::object &py_word) { | |||
| if (vocab == nullptr) { | |||
| THROW_IF_ERROR(Status(StatusCode::kUnexpectedError, "vocab object type is incorrect or null.")); | |||
| } | |||
| if (py_word.is_none()) { | |||
| return std::make_shared<LookupOp>(vocab, Vocab::kNoTokenExists); | |||
| } | |||
| std::string word = py::reinterpret_borrow<py::str>(py_word); | |||
| WordIdType default_id = vocab->Lookup(word); | |||
| if (default_id == Vocab::kNoTokenExists) { | |||
| THROW_IF_ERROR( | |||
| Status(StatusCode::kUnexpectedError, "default unknown token:" + word + " doesn't exist in vocab.")); | |||
| } | |||
| return std::make_shared<LookupOp>(vocab, default_id); | |||
| })); | |||
| (void)py::class_<NgramOp, TensorOp, std::shared_ptr<NgramOp>>(*m, "NgramOp", "TensorOp performs ngram mapping.") | |||
| .def(py::init<const std::vector<int32_t> &, int32_t, int32_t, const std::string &, const std::string &, | |||
| const std::string &>(), | |||
| py::arg("ngrams"), py::arg("l_pad_len"), py::arg("r_pad_len"), py::arg("l_pad_token"), py::arg("r_pad_token"), | |||
| @@ -26,11 +26,15 @@ LookupOp::LookupOp(std::shared_ptr<Vocab> vocab, WordIdType default_id) | |||
| Status LookupOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | |||
| IO_CHECK(input, output); | |||
| RETURN_UNEXPECTED_IF_NULL(vocab_); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(input->type() == DataType::DE_STRING, "None String Tensor"); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(input->type() == DataType::DE_STRING, "None String Tensor."); | |||
| std::vector<WordIdType> word_ids; | |||
| word_ids.reserve(input->Size()); | |||
| for (auto itr = input->begin<std::string_view>(); itr != input->end<std::string_view>(); itr++) { | |||
| word_ids.push_back(vocab_->Lookup(std::string(*itr), default_id_)); | |||
| WordIdType word_id = vocab_->Lookup(std::string(*itr)); | |||
| word_ids.emplace_back(word_id == Vocab::kNoTokenExists ? default_id_ : word_id); | |||
| CHECK_FAIL_RETURN_UNEXPECTED( | |||
| word_ids.back() != Vocab::kNoTokenExists, | |||
| "Lookup Error: token" + std::string(*itr) + "doesn't exist in vocab and no unknown token is specified."); | |||
| } | |||
| RETURN_IF_NOT_OK(Tensor::CreateTensor(output, TensorImpl::kFlexible, input->shape(), type_, | |||
| @@ -43,8 +43,7 @@ Status WordpieceTokenizerOp::LookupWord(const std::string &input_token, const Ru | |||
| if (start > 0) { | |||
| word = suffix_indicator_ + word; | |||
| } | |||
| WordIdType default_id = -1; | |||
| if (vocab_->Lookup(word, default_id) != default_id) { | |||
| if (vocab_->Lookup(word) != Vocab::kNoTokenExists) { | |||
| *out_found = true; | |||
| break; | |||
| } | |||
| @@ -24,9 +24,9 @@ namespace mindspore { | |||
| namespace dataset { | |||
| Vocab::Vocab(std::unordered_map<WordType, WordIdType> word2id) { word2id_ = std::move(word2id); } | |||
| WordIdType Vocab::Lookup(const WordType &word, WordIdType default_id) const { | |||
| WordIdType Vocab::Lookup(const WordType &word) const { | |||
| auto itr = word2id_.find(word); | |||
| return itr == word2id_.end() ? default_id : itr->second; | |||
| return itr == word2id_.end() ? kNoTokenExists : itr->second; | |||
| } | |||
| Status Vocab::BuildFromPyList(const py::list &words, const py::list &special_tokens, bool prepend_special, | |||
| @@ -100,5 +100,8 @@ void Vocab::append_word(const std::string &word) { | |||
| word2id_[word] = word2id_.size(); | |||
| } | |||
| } | |||
| const WordIdType Vocab::kNoTokenExists = -1; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -61,12 +61,7 @@ class Vocab { | |||
| // @param const WordType word - word to look up | |||
| // @param WordIdType default_id - word id to return to user when its not in the vocab | |||
| // @return WordIdType, word_id | |||
| WordIdType Lookup(const WordType &word, WordIdType default_id) const; | |||
| // reverse lookup, lookup the word based on its id | |||
| // @param WordIdType id - word id to lookup to | |||
| // @return WordType the word | |||
| WordType Lookup(WordIdType id); | |||
| WordIdType Lookup(const WordType &word) const; | |||
| // constructor, shouldn't be called directly, can't be private due to std::make_unique() | |||
| // @param std::unordered_map<WordType, WordIdType> map - sanitized word2id map | |||
| @@ -81,6 +76,8 @@ class Vocab { | |||
| // destructor | |||
| ~Vocab() = default; | |||
| static const WordIdType kNoTokenExists; | |||
| private: | |||
| std::unordered_map<WordType, WordIdType> word2id_; | |||
| }; | |||
| @@ -63,17 +63,13 @@ class Lookup(cde.LookupOp): | |||
| Args: | |||
| vocab(Vocab): a Vocab object. | |||
| unknown(int, optional): default id to lookup a word that is out of vocab. If no argument is passed, 1 will be | |||
| used to be the default id which is the convention for unknown_token <unk>. Otherwise, user is strongly | |||
| encouraged to pass in the id for <unk> (default=None). | |||
| unknown_token(str, optional): word to use for lookup if the word being looked up is out of Vocabulary (oov). | |||
| If unknown_token is oov, runtime error will be thrown (default=None). | |||
| """ | |||
| @check_lookup | |||
| def __init__(self, vocab, unknown=None): | |||
| if unknown is None: | |||
| super().__init__(vocab) | |||
| else: | |||
| super().__init__(vocab, unknown) | |||
| def __init__(self, vocab, unknown_token=None): | |||
| super().__init__(vocab, unknown_token) | |||
| class Ngram(cde.NgramOp): | |||
| @@ -22,7 +22,7 @@ import mindspore.common.dtype as mstype | |||
| import mindspore._c_dataengine as cde | |||
| from mindspore._c_expression import typing | |||
| from ..core.validator_helpers import parse_user_args, type_check, type_check_list, check_uint32, check_positive, \ | |||
| from ..core.validator_helpers import parse_user_args, type_check, type_check_list, check_uint32, \ | |||
| INT32_MAX, check_value | |||
| @@ -44,11 +44,11 @@ def check_lookup(method): | |||
| @wraps(method) | |||
| def new_method(self, *args, **kwargs): | |||
| [vocab, unknown], _ = parse_user_args(method, *args, **kwargs) | |||
| [vocab, unknown_token], _ = parse_user_args(method, *args, **kwargs) | |||
| if unknown_token is not None: | |||
| type_check(unknown_token, (str,), "unknown_token") | |||
| if unknown is not None: | |||
| type_check(unknown, (int,), "unknown") | |||
| check_positive(unknown) | |||
| type_check(vocab, (cde.Vocab,), "vocab is not an instance of cde.Vocab.") | |||
| return method(self, *args, **kwargs) | |||
| @@ -197,7 +197,7 @@ class PadEnd(cde.PadEndOp): | |||
| class Concatenate(cde.ConcatenateOp): | |||
| """ | |||
| Tensor operation to prepend and append to a tensor. | |||
| Tensor operation that concatenates all columns into a single tensor. | |||
| Args: | |||
| axis (int, optional): axis to concatenate the tensors along (Default=0). | |||
| @@ -26,7 +26,7 @@ def test_demo_basic_from_dataset(): | |||
| vocab = text.Vocab.from_dataset(data, "text", freq_range=None, top_k=None, | |||
| special_tokens=["<pad>", "<unk>"], | |||
| special_first=True) | |||
| data = data.map(input_columns=["text"], operations=text.Lookup(vocab)) | |||
| data = data.map(input_columns=["text"], operations=text.Lookup(vocab, "<unk>")) | |||
| res = [] | |||
| for d in data.create_dict_iterator(): | |||
| res.append(d["text"].item()) | |||
| @@ -39,7 +39,7 @@ def test_demo_basic_from_dataset_with_tokenizer(): | |||
| data = data.map(input_columns=["text"], operations=text.UnicodeCharTokenizer()) | |||
| vocab = text.Vocab.from_dataset(data, None, freq_range=None, top_k=None, special_tokens=["<pad>", "<unk>"], | |||
| special_first=True) | |||
| data = data.map(input_columns=["text"], operations=text.Lookup(vocab)) | |||
| data = data.map(input_columns=["text"], operations=text.Lookup(vocab, "<unk>")) | |||
| res = [] | |||
| for d in data.create_dict_iterator(): | |||
| res.append(list(d["text"])) | |||
| @@ -60,7 +60,7 @@ def test_from_dataset(): | |||
| corpus_dataset = ds.GeneratorDataset(gen_corpus, column_names=["text"]) | |||
| vocab = text.Vocab.from_dataset(corpus_dataset, None, freq_range, top_k, special_tokens=["<pad>", "<unk>"], | |||
| special_first=True) | |||
| corpus_dataset = corpus_dataset.map(input_columns="text", operations=text.Lookup(vocab)) | |||
| corpus_dataset = corpus_dataset.map(input_columns="text", operations=text.Lookup(vocab, "<unk>")) | |||
| res = [] | |||
| for d in corpus_dataset.create_dict_iterator(): | |||
| res.append(list(d["text"])) | |||
| @@ -108,7 +108,7 @@ def test_from_dataset_special_token(): | |||
| corpus_dataset = ds.GeneratorDataset(gen_corpus, column_names=["text"]) | |||
| vocab = text.Vocab.from_dataset(corpus_dataset, None, None, top_k, special_tokens, special_first) | |||
| data = ds.GeneratorDataset(gen_input(texts), column_names=["text"]) | |||
| data = data.map(input_columns="text", operations=text.Lookup(vocab)) | |||
| data = data.map(input_columns="text", operations=text.Lookup(vocab, "<unk>")) | |||
| res = [] | |||
| for d in data.create_dict_iterator(): | |||
| res.append(d["text"].item()) | |||
| @@ -34,7 +34,7 @@ def test_on_tokenized_line(): | |||
| jieba_op.add_word(word) | |||
| data = data.map(input_columns=["text"], operations=jieba_op) | |||
| vocab = text.Vocab.from_file(VOCAB_FILE, ",", special_tokens=["<pad>", "<unk>"]) | |||
| lookup = text.Lookup(vocab) | |||
| lookup = text.Lookup(vocab, "<unk>") | |||
| data = data.map(input_columns=["text"], operations=lookup) | |||
| res = np.array([[10, 1, 11, 1, 12, 1, 15, 1, 13, 1, 14], | |||
| [11, 1, 12, 1, 10, 1, 14, 1, 13, 1, 15]], dtype=np.int32) | |||
| @@ -26,7 +26,7 @@ SIMPLE_VOCAB_FILE = "../data/dataset/testVocab/simple_vocab_list.txt" | |||
| def test_from_list_tutorial(): | |||
| vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", "<unk>"], True) | |||
| lookup = text.Lookup(vocab) | |||
| lookup = text.Lookup(vocab, "<unk>") | |||
| data = ds.TextFileDataset(DATA_FILE, shuffle=False) | |||
| data = data.map(input_columns=["text"], operations=lookup) | |||
| ind = 0 | |||
| @@ -50,7 +50,7 @@ def test_from_file_tutorial(): | |||
| def test_from_dict_tutorial(): | |||
| vocab = text.Vocab.from_dict({"home": 3, "behind": 2, "the": 4, "world": 5, "<unk>": 6}) | |||
| lookup = text.Lookup(vocab, 6) # default value is -1 | |||
| lookup = text.Lookup(vocab, "<unk>") # any unknown token will be mapped to the id of <unk> | |||
| data = ds.TextFileDataset(DATA_FILE, shuffle=False) | |||
| data = data.map(input_columns=["text"], operations=lookup) | |||
| res = [3, 6, 2, 4, 5, 6] | |||
| @@ -65,28 +65,39 @@ def test_from_list(): | |||
| for word in texts.split(" "): | |||
| yield (np.array(word, dtype='S'),) | |||
| def test_config(lookup_str, vocab_input, special_tokens, special_first): | |||
| def test_config(lookup_str, vocab_input, special_tokens, special_first, unknown_token): | |||
| try: | |||
| vocab = text.Vocab.from_list(vocab_input, special_tokens, special_first) | |||
| data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"]) | |||
| data = data.map(input_columns=["text"], operations=text.Lookup(vocab)) | |||
| data = data.map(input_columns=["text"], operations=text.Lookup(vocab, unknown_token)) | |||
| res = [] | |||
| for d in data.create_dict_iterator(): | |||
| res.append(d["text"].item()) | |||
| return res | |||
| except ValueError as e: | |||
| return str(e) | |||
| except RuntimeError as e: | |||
| return str(e) | |||
| except TypeError as e: | |||
| return str(e) | |||
| # test normal operations | |||
| assert test_config("w1 w2 w3 s1 s2", ["w1", "w2", "w3"], ["s1", "s2"], True) == [2, 3, 4, 0, 1] | |||
| assert test_config("w1 w2 w3 s1 s2", ["w1", "w2", "w3"], ["s1", "s2"], False) == [0, 1, 2, 3, 4] | |||
| assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, True) == [2, 1, 0] | |||
| assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, False) == [2, 1, 0] | |||
| assert test_config("w1 w2 w3 s1 s2 ephemeral", ["w1", "w2", "w3"], ["s1", "s2"], True, "s2") == [2, 3, 4, 0, 1, 1] | |||
| assert test_config("w1 w2 w3 s1 s2", ["w1", "w2", "w3"], ["s1", "s2"], False, "s2") == [0, 1, 2, 3, 4] | |||
| assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, True, "w1") == [2, 1, 0] | |||
| assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, False, "w1") == [2, 1, 0] | |||
| # test unknown token lookup | |||
| assert test_config("w1 un1 w3 un2", ["w1", "w2", "w3"], ["<pad>", "<unk>"], True, "<unk>") == [2, 1, 4, 1] | |||
| assert test_config("w1 un1 w3 un2", ["w1", "w2", "w3"], ["<pad>", "<unk>"], False, "<unk>") == [0, 4, 2, 4] | |||
| # test exceptions | |||
| assert "word_list contains duplicate" in test_config("w1", ["w1", "w1"], [], True) | |||
| assert "special_tokens contains duplicate" in test_config("w1", ["w1", "w2"], ["s1", "s1"], True) | |||
| assert "special_tokens and word_list contain duplicate" in test_config("w1", ["w1", "w2"], ["s1", "w1"], True) | |||
| assert "doesn't exist in vocab." in test_config("un1", ["w1"], [], False, "unk") | |||
| assert "doesn't exist in vocab and no unknown token is specified." in test_config("un1", ["w1"], [], False, None) | |||
| assert "doesn't exist in vocab" in test_config("un1", ["w1"], [], False, None) | |||
| assert "word_list contains duplicate" in test_config("w1", ["w1", "w1"], [], True, "w1") | |||
| assert "special_tokens contains duplicate" in test_config("w1", ["w1", "w2"], ["s1", "s1"], True, "w1") | |||
| assert "special_tokens and word_list contain duplicate" in test_config("w1", ["w1", "w2"], ["s1", "w1"], True, "w1") | |||
| assert "is not of type" in test_config("w1", ["w1", "w2"], ["s1"], True, 123) | |||
| def test_from_file(): | |||
| @@ -99,7 +110,7 @@ def test_from_file(): | |||
| vocab = text.Vocab.from_file(SIMPLE_VOCAB_FILE, vocab_size=vocab_size, special_tokens=special_tokens, | |||
| special_first=special_first) | |||
| data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"]) | |||
| data = data.map(input_columns=["text"], operations=text.Lookup(vocab)) | |||
| data = data.map(input_columns=["text"], operations=text.Lookup(vocab, "s2")) | |||
| res = [] | |||
| for d in data.create_dict_iterator(): | |||
| res.append(d["text"].item()) | |||