|
|
|
@@ -215,8 +215,8 @@ class SoftmaxCrossEntropyWithLogits(_Loss): |
|
|
|
Args: |
|
|
|
is_grad (bool): Specifies whether calculate grad only. Default: True. |
|
|
|
sparse (bool): Specifies whether labels use sparse format or not. Default: False. |
|
|
|
reduction (Union[str, None]): Type of reduction to be applied to loss. Support 'sum' and 'mean'. If None, |
|
|
|
do not perform reduction. Default: None. |
|
|
|
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none". |
|
|
|
If "none", do not perform reduction. Default: "none". |
|
|
|
smooth_factor (float): Label smoothing factor. It is a optional input which should be in range [0, 1]. |
|
|
|
Default: 0. |
|
|
|
num_classes (int): The number of classes in the task. It is a optional input Default: 2. |
|
|
|
@@ -240,7 +240,7 @@ class SoftmaxCrossEntropyWithLogits(_Loss): |
|
|
|
def __init__(self, |
|
|
|
is_grad=True, |
|
|
|
sparse=False, |
|
|
|
reduction=None, |
|
|
|
reduction='none', |
|
|
|
smooth_factor=0, |
|
|
|
num_classes=2): |
|
|
|
super(SoftmaxCrossEntropyWithLogits, self).__init__(reduction) |
|
|
|
|