From: @peilin-wang Reviewed-by: @robingrosman Signed-off-by:tags/v1.1.0
| @@ -0,0 +1,66 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/other/gpu_convert_to_dynamic_shape_gpu_kernel.h" | |||
| #include <cstdint> | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool), | |||
| GpuConvertToDynamicShapeGpuKernel, bool) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| GpuConvertToDynamicShapeGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| GpuConvertToDynamicShapeGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), | |||
| GpuConvertToDynamicShapeGpuKernel, int8_t) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16), | |||
| GpuConvertToDynamicShapeGpuKernel, int16_t) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| GpuConvertToDynamicShapeGpuKernel, int32_t) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64), | |||
| GpuConvertToDynamicShapeGpuKernel, int64_t) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8), | |||
| GpuConvertToDynamicShapeGpuKernel, uint8_t) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16), | |||
| GpuConvertToDynamicShapeGpuKernel, uint16_t) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32), | |||
| GpuConvertToDynamicShapeGpuKernel, uint32_t) | |||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||
| KernelAttr().AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64), | |||
| GpuConvertToDynamicShapeGpuKernel, uint64_t) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,105 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_OTHER_GPU_CONVERT_TO_DYNAMIC_SHAPE_GPU_KERNEL_H | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_OTHER_GPU_CONVERT_TO_DYNAMIC_SHAPE_GPU_KERNEL_H | |||
| #include <vector> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class GpuConvertToDynamicShapeGpuKernel : public GpuKernel { | |||
| public: | |||
| GpuConvertToDynamicShapeGpuKernel() { ResetResource(); } | |||
| ~GpuConvertToDynamicShapeGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| VARIABLE_NOT_USED(workspace); | |||
| T *input_device_address = GetDeviceAddress<T>(inputs, 0); | |||
| T *output_device_address = GetDeviceAddress<T>(outputs, 0); | |||
| cuda_stream_ptr_ = stream_ptr; | |||
| CHECK_CUDA_RET_WITH_ERROR(cudaMemcpyAsync(output_device_address, input_device_address, input_size_ * sizeof(T), | |||
| cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||
| "Failed to copy gpu memory."); | |||
| return true; | |||
| } | |||
| void PostExecute() override { | |||
| CHECK_CUDA_RET_WITH_EXCEPT(cudaStreamSynchronize(reinterpret_cast<cudaStream_t>(cuda_stream_ptr_)), | |||
| "cudaStreamSynchronized failed"); | |||
| std::vector<TypeId> output_types = {AnfAlgo::GetOutputInferDataType(c_node_ptr_, 0)}; | |||
| std::vector<std::vector<size_t>> output_shapes = {input_shape_}; | |||
| AnfAlgo::SetOutputInferTypeAndShape(output_types, output_shapes, c_node_ptr_.get()); | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| size_t input_count = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_count != 1) { | |||
| MS_LOG(ERROR) << input_count << "inputs were provided, but GpuConvertToDynamicShapeGpuKernel exepects 1."; | |||
| return false; | |||
| } | |||
| input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (const size_t &e : input_shape_) { | |||
| input_size_ *= e; | |||
| } | |||
| c_node_ptr_ = kernel_node; | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| void ResetResource() noexcept override { | |||
| c_node_ptr_ = nullptr; | |||
| cuda_stream_ptr_ = nullptr; | |||
| input_shape_.clear(); | |||
| input_size_ = 1; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||
| } | |||
| private: | |||
| void *cuda_stream_ptr_; | |||
| CNodePtr c_node_ptr_; | |||
| std::vector<size_t> input_shape_; | |||
| size_t input_size_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_OTHER_GPU_CONVERT_TO_DYNAMIC_SHAPE_GPU_KERNEL_H | |||
| @@ -249,6 +249,9 @@ AbstractBasePtr InferImplDivNoNan(const AnalysisEnginePtr &, const PrimitivePtr | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplExpandDims(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| AbstractBasePtr InferImplGpuConvertToDynamicShape(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list); | |||
| template <typename T> | |||
| AbstractBasePtr InferTupleOrListOrDictLen(const std::string &op_name, const AbstractBasePtrList &args_spec_list) { | |||
| // Inputs: a tuple or list or dict. | |||
| @@ -526,5 +526,20 @@ AbstractBasePtr InferImplExpandDims(const AnalysisEnginePtr &, const PrimitivePt | |||
| return ret; | |||
| } | |||
| AbstractBasePtr InferImplGpuConvertToDynamicShape(const AnalysisEnginePtr &, const PrimitivePtr &primitive, | |||
| const AbstractBasePtrList &args_spec_list) { | |||
| const std::string &op_name = primitive->name(); | |||
| CheckArgsSize(op_name, args_spec_list, 1); | |||
| AbstractTensorPtr input = CheckArg<AbstractTensor>(op_name, args_spec_list, 0); | |||
| ShapeVector input_shape = input->shape()->shape(); | |||
| int32_t input_rank = input_shape.size(); | |||
| ShapeVector inferred_shape(input_rank, Shape::SHP_ANY); | |||
| ShapeVector min_shape = {1}; | |||
| ShapeVector max_shape = input_shape; | |||
| ShapePtr shape = std::make_shared<Shape>(inferred_shape, min_shape, max_shape); | |||
| return std::make_shared<AbstractTensor>(input->element(), shape); | |||
| } | |||
| } // namespace abstract | |||
| } // namespace mindspore | |||
| @@ -121,6 +121,8 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() { | |||
| {prim::kPrimControlDepend, {InferImplControlDepend, true}}, | |||
| // Debug | |||
| {prim::kPrimDebug, {InferImplDebug, true}}, | |||
| // Dynamic shape testing | |||
| {prim::kPrimGpuConvertToDynamicShape, {InferImplGpuConvertToDynamicShape, true}}, | |||
| // SparseTensor | |||
| {prim::kPrimMakeSparseTensor, {InferImplMakeSparseTensor, true}}, | |||
| {prim::kPrimSparseTensorGetValues, {InferImplSparseTensorGetValues, true}}, | |||
| @@ -271,6 +271,10 @@ inline const PrimitivePtr kPrimTensorSummary = std::make_shared<Primitive>("Tens | |||
| inline const PrimitivePtr kPrimHistogramSummary = std::make_shared<Primitive>("HistogramSummary"); | |||
| inline const PrimitivePtr kPrimDebug = std::make_shared<Primitive>("Debug"); | |||
| // Dynamic shape testing | |||
| inline const PrimitivePtr kPrimGpuConvertToDynamicShape = std::make_shared<Primitive>("GpuConvertToDynamicShape"); | |||
| inline const PrimitivePtr kPrimErrorOnDynamicShapeInput = std::make_shared<Primitive>("ErrorOnDynamicShapeInput"); | |||
| // Other miscellaneous | |||
| inline const PrimitivePtr kPrimDepend = std::make_shared<Primitive>("Depend"); | |||
| inline const PrimitivePtr kPrimPartial = std::make_shared<Primitive>("Partial"); | |||
| @@ -19,7 +19,7 @@ from ..._checkparam import Rel | |||
| from ..._checkparam import Validator as validator | |||
| from ... import context | |||
| from ...common import dtype as mstype | |||
| from ..primitive import PrimitiveWithInfer, prim_attr_register | |||
| from ..primitive import PrimitiveWithCheck, PrimitiveWithInfer, prim_attr_register | |||
| from ..operations.math_ops import _infer_shape_reduce | |||
| @@ -666,3 +666,99 @@ class ConfusionMulGrad(PrimitiveWithInfer): | |||
| validator.check_subclass("input1_dtype", input1_dtype, mstype.tensor, self.name) | |||
| validator.check_subclass("input2_dtype", input2_dtype, mstype.tensor, self.name) | |||
| return input0_dtype, input1_dtype | |||
| class GpuConvertToDynamicShape(PrimitiveWithCheck): | |||
| """ | |||
| This op is used for dynamic shape testing. Its inferred shape will be unknown | |||
| during compile time, so that its output will appear to be dynamically shaped. | |||
| The input will not be altered in any way. Put this operator before the operator | |||
| being tested for dynamic shape support. | |||
| Inputs: | |||
| - **input** (Tensor) - The tensor used for testing. | |||
| Outputs: | |||
| - **output** (Tensor) - Same shape, type and value as `input`. | |||
| Examples: | |||
| >>> # make a model, since dynamic shape operators must be in GRAPH_MODE | |||
| >>> class TestDynamicShapeReshapeNet(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(TestDynamicShapeReshapeNet, self).__init__() | |||
| >>> self.convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| >>> # suppose we are testing Reshape op | |||
| >>> self.reshape = P.Reshape() | |||
| >>> | |||
| >>> def construct(self, input, new_shape): | |||
| >>> dynamic_shape_input = self.convert_to_dynamic_shape(input) | |||
| >>> reshaped_input = self.reshape(input, new_shape) | |||
| >>> | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| >>> input = Tensor(np.array([0, 1, 2, 3]) | |||
| >>> new_shape = (2, 2) | |||
| >>> net = TestDynamicShapeReshapeNet() | |||
| >>> output = net(input, new_shape) | |||
| >>> print(output) | |||
| [[0, 1], [2, 3] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| self.init_prim_io_names(inputs=["input"], outputs=["output"]) | |||
| def check_shape(self, input_shape): | |||
| validator.check("input_shape rank", len(input_shape), "", 0, Rel.GT, self.name) | |||
| def check_dtype(self, input_dtype): | |||
| validator.check_subclass("input_dtype", input_dtype, mstype.tensor, self.name) | |||
| class ErrorOnDynamicShapeInput(PrimitiveWithInfer): | |||
| """ | |||
| This op is used for dynamic shape testing. The only purpose of this operator is | |||
| that it will throw a value error if the input is dynamically shaped. | |||
| Inputs: | |||
| - **input** (Tensor) - The tensor used for testing. | |||
| Outputs: | |||
| - **output** (Tensor) - Same shape, type and value as `input`. | |||
| Examples: | |||
| >>> # make a model, since dynamic shape operators must be in GRAPH_MODE | |||
| >>> class AssertDynamicShapeNet(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(AssertDynamicShapeNet, self).__init__() | |||
| >>> self.convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| >>> self.error_on_dynamic_shape_input = inner.ErrorOnDynamicShapeInput() | |||
| >>> | |||
| >>> def construct(self, input, new_shape): | |||
| >>> dynamic_shape_input = self.convert_to_dynamic_shape(input) | |||
| >>> self.error_on_dynamic_shape_input(dynamic_shape_input) | |||
| >>> | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| >>> input = Tensor(np.array([0]) | |||
| >>> net = TestDynamicShapeReshapeNet() | |||
| >>> output = net(input, new_shape) | |||
| ValueError: Input is dynamically shaped. | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| self.init_prim_io_names(inputs=["input"], outputs=["output"]) | |||
| def infer_shape(self, input_shape): | |||
| shape = list(input_shape) | |||
| for dim in shape: | |||
| if dim == -1: | |||
| raise ValueError("Input is dynamically shaped.") | |||
| return input_shape | |||
| def infer_type(self, input_dtype): | |||
| validator.check_subclass("input_dtype", input_dtype, mstype.tensor, self.name) | |||
| return input_dtype | |||
| def infer_value(self, input_tensor): | |||
| return input_tensor | |||
| @@ -0,0 +1,58 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import pytest | |||
| from mindspore.ops.operations import _inner_ops as inner | |||
| import mindspore.context as context | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_error_on_dynamic_shape_input_is_dynamic(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| error_on_dynamic_shape_input = inner.ErrorOnDynamicShapeInput() | |||
| with pytest.raises(ValueError) as info: | |||
| error_on_dynamic_shape_input.infer_shape([-1]) | |||
| assert "Input is dynamically shaped" in str(info.value) | |||
| with pytest.raises(ValueError) as info: | |||
| error_on_dynamic_shape_input.infer_shape([1, 1, -1]) | |||
| assert "Input is dynamically shaped" in str(info.value) | |||
| with pytest.raises(ValueError) as info: | |||
| error_on_dynamic_shape_input.infer_shape([-1, 1, 1]) | |||
| assert "Input is dynamically shaped" in str(info.value) | |||
| with pytest.raises(ValueError) as info: | |||
| error_on_dynamic_shape_input.infer_shape([1, -1, 1]) | |||
| assert "Input is dynamically shaped" in str(info.value) | |||
| with pytest.raises(ValueError) as info: | |||
| error_on_dynamic_shape_input.infer_shape([-1, -1, -1]) | |||
| assert "Input is dynamically shaped" in str(info.value) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_error_on_dynamic_shape_input_not_dynamic(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| error_on_dynamic_shape_input = inner.ErrorOnDynamicShapeInput() | |||
| error_on_dynamic_shape_input([1]) | |||
| error_on_dynamic_shape_input([1, 1]) | |||
| error_on_dynamic_shape_input([23, 12, 9712]) | |||
| @@ -0,0 +1,152 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| from mindspore import Tensor | |||
| from mindspore.ops.operations import _inner_ops as inner | |||
| import mindspore.nn as nn | |||
| import mindspore.context as context | |||
| # test to make sure this op actually generates a dynamically shaped output | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dyanamic_shape_confirm_dynamic(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| class AssertDynamicShapeNet(nn.Cell): | |||
| def __init__(self): | |||
| super(AssertDynamicShapeNet, self).__init__() | |||
| self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| self.error_on_dynamic_shape_input = inner.ErrorOnDynamicShapeInput() | |||
| def construct(self, x): | |||
| output = self.gpu_convert_to_dynamic_shape(x) | |||
| self.error_on_dynamic_shape_input(output) | |||
| return output | |||
| assert_dynamic_shape_net = AssertDynamicShapeNet() | |||
| x = Tensor(np.array([0, 0, 0, 0]).astype(np.float32)) | |||
| with pytest.raises(ValueError) as info: | |||
| assert_dynamic_shape_net(x) | |||
| assert "Input is dynamically shaped" in str(info.value) | |||
| def gpu_convert_to_dynamic_shape(x): | |||
| class GpuConvertToDynamicShapeNet(nn.Cell): | |||
| def __init__(self): | |||
| super(GpuConvertToDynamicShapeNet, self).__init__() | |||
| self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| def construct(self, x): | |||
| return self.gpu_convert_to_dynamic_shape(x) | |||
| gpu_convert_to_dynamic_shape_net = GpuConvertToDynamicShapeNet() | |||
| return gpu_convert_to_dynamic_shape_net(Tensor(x)).asnumpy() | |||
| def gpu_convert_to_dynamic_shape_float(dtype): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| np.random.seed(0) | |||
| finfo = np.finfo(dtype) | |||
| float_min = finfo.min | |||
| float_max = finfo.max | |||
| x = np.random.uniform(low=float_min, high=float_max, size=12).astype(dtype) | |||
| ms_out = gpu_convert_to_dynamic_shape(x) | |||
| np.testing.assert_array_equal(x, ms_out) | |||
| def gpu_convert_to_dynamic_shape_int(dtype): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| np.random.seed(0) | |||
| iinfo = np.iinfo(dtype) | |||
| int_min = iinfo.min | |||
| int_max = iinfo.max | |||
| x = np.random.uniform(low=int_min, high=int_max, size=12).astype(dtype) | |||
| ms_out = gpu_convert_to_dynamic_shape(x) | |||
| np.testing.assert_array_equal(x, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_bool(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| np.random.seed(0) | |||
| x = np.random.choice([False, True], 12) | |||
| ms_out = gpu_convert_to_dynamic_shape(x) | |||
| np.testing.assert_array_equal(x, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_float16(): | |||
| gpu_convert_to_dynamic_shape_float(np.float16) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_float32(): | |||
| gpu_convert_to_dynamic_shape_float(np.float32) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_int8(): | |||
| gpu_convert_to_dynamic_shape_int(np.int8) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_int16(): | |||
| gpu_convert_to_dynamic_shape_int(np.int16) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_int32(): | |||
| gpu_convert_to_dynamic_shape_int(np.int32) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_int64(): | |||
| gpu_convert_to_dynamic_shape_int(np.int64) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_uint8(): | |||
| gpu_convert_to_dynamic_shape_int(np.uint8) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_uint16(): | |||
| gpu_convert_to_dynamic_shape_int(np.uint16) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_uint32(): | |||
| gpu_convert_to_dynamic_shape_int(np.uint32) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_convert_to_dynamic_shape_uint64(): | |||
| gpu_convert_to_dynamic_shape_int(np.uint64) | |||