| @@ -481,28 +481,32 @@ class OneHot(Cell): | |||
| """ | |||
| Returns a one-hot tensor. | |||
| The locations represented by indices in argument 'indices' take value on_value, | |||
| The locations represented by indices in argument `indices` take value on_value, | |||
| while all other locations take value off_value. | |||
| Note: | |||
| If the input indices is rank :math:`N`, the output will have rank :math:`N+1`. The new | |||
| axis is created at dimension `axis`. | |||
| If :math:`indices` is a scalar, the output shape will be a vector of length :math:`depth`. | |||
| If `indices` is a scalar, the output shape will be a vector of length `depth`. | |||
| If :math:`indices` is a vector of length :math:`features`, the output shape will be: | |||
| If `indices` is a vector of length `features`, the output shape will be: | |||
| :math:`features * depth if axis == -1` | |||
| .. code-block:: | |||
| :math:`depth * features if axis == 0` | |||
| features * depth if axis == -1 | |||
| If :math:`indices` is a matrix with shape :math:`[batch, features]`, the output shape will be: | |||
| depth * features if axis == 0 | |||
| :math:`batch * features * depth if axis == -1` | |||
| If `indices` is a matrix with shape `[batch, features]`, the output shape will be: | |||
| :math:`batch * depth * features if axis == 1` | |||
| .. code-block:: | |||
| :math:`depth * batch * features if axis == 0` | |||
| batch * features * depth if axis == -1 | |||
| batch * depth * features if axis == 1 | |||
| depth * batch * features if axis == 0 | |||
| Args: | |||
| axis (int): Features x depth if axis is -1, depth x features | |||
| @@ -519,7 +523,7 @@ class OneHot(Cell): | |||
| - **indices** (Tensor) - A tensor of indices of data type mindspore.int32 and arbitrary shape. | |||
| Outputs: | |||
| Tensor, the one-hot tensor of data type 'dtype' with dimension at 'axis' expanded to 'depth' and filled with | |||
| Tensor, the one-hot tensor of data type `dtype` with dimension at `axis` expanded to `depth` and filled with | |||
| on_value and off_value. | |||
| Supported Platforms: | |||
| @@ -563,7 +567,9 @@ class Pad(Cell): | |||
| be extended behind of the `D` th dimension of the input tensor. The padded size of each dimension D of the | |||
| output is: | |||
| :math:`paddings[D, 0]` + input_x.dim_size(D) + paddings[D, 1]`. | |||
| .. code-block:: | |||
| paddings[D, 0] + input_x.dim_size(D) + paddings[D, 1] | |||
| mode (str): Specifies padding mode. The optional values are "CONSTANT", "REFLECT", "SYMMETRIC". | |||
| Default: "CONSTANT". | |||
| @@ -723,9 +729,14 @@ class Unfold(Cell): | |||
| Outputs: | |||
| Tensor, a 4-D tensor whose data type is same as `input_x`, | |||
| and the shape is [out_batch, out_depth, out_row, out_col] where `out_batch` is the same as the `in_batch`. | |||
| :math:`out_depth = ksize_row * ksize_col * in_depth`, | |||
| :math:`out_row = (in_row - (ksize_row + (ksize_row - 1) * (rate_row - 1))) // stride_row + 1`, | |||
| :math:`out_col = (in_col - (ksize_col + (ksize_col - 1) * (rate_col - 1))) // stride_col + 1`. | |||
| .. code-block:: | |||
| out_depth = ksize_row * ksize_col * in_depth | |||
| out_row = (in_row - (ksize_row + (ksize_row - 1) * (rate_row - 1))) // stride_row + 1 | |||
| out_col = (in_col - (ksize_col + (ksize_col - 1) * (rate_col - 1))) // stride_col + 1 | |||
| Supported Platforms: | |||
| ``Ascend`` | |||
| @@ -867,13 +878,15 @@ def _get_matrix_diag_part_assist(x_shape, x_dtype): | |||
| class MatrixDiag(Cell): | |||
| """ | |||
| r""" | |||
| Returns a batched diagonal tensor with a given batched diagonal values. | |||
| Assume :math:`x` has :math:`k` dimensions :math:`[I, J, K, ..., N]`, then the output is a tensor of rank | |||
| :math:`k+1` with dimensions :math:`[I, J, K, ..., N, N]` where: | |||
| :math:`output[i, j, k, ..., m, n] = 1{m=n} * x[i, j, k, ..., n]`. | |||
| .. code-block:: | |||
| output[i, j, k, ..., m, n] = 1{m=n} * x[i, j, k, ..., n] | |||
| Inputs: | |||
| - **x** (Tensor) - The diagonal values. It can be one of the following data types: | |||
| @@ -911,10 +924,12 @@ class MatrixDiagPart(Cell): | |||
| r""" | |||
| Returns the batched diagonal part of a batched tensor. | |||
| Assume :math:`x` has :math:`k` dimensions :math:`[I, J, K, ..., M, N]`, then the output is a tensor of rank | |||
| Assume `x` has :math:`k` dimensions :math:`[I, J, K, ..., M, N]`, then the output is a tensor of rank | |||
| :math:`k-1` with dimensions :math:`[I, J, K, ..., min(M, N]` where: | |||
| :math:`output[i, j, k, ..., n] = x[i, j, k, ..., n, n]`. | |||
| .. code-block:: | |||
| output[i, j, k, ..., n] = x[i, j, k, ..., n, n] | |||
| Inputs: | |||
| - **x** (Tensor) - The batched tensor. It can be one of the following data types: | |||
| @@ -953,13 +968,15 @@ class MatrixSetDiag(Cell): | |||
| r""" | |||
| Modifies the batched diagonal part of a batched tensor. | |||
| Assume :math:`x` has :math:`k+1` dimensions :math:`[I, J, K, ..., M, N]` and :math:`diagonal` has :math:`k` | |||
| Assume `x` has :math:`k+1` dimensions :math:`[I, J, K, ..., M, N]` and `diagonal` has :math:`k` | |||
| dimensions :math:`[I, J, K, ..., min(M, N)]`. Then the output is a tensor of rank :math:`k+1` with dimensions | |||
| :math:`[I, J, K, ..., M, N]` where: | |||
| :math:`output[i, j, k, ..., m, n] = diagnoal[i, j, k, ..., n]` for :math:`m == n`. | |||
| .. code-block:: | |||
| output[i, j, k, ..., m, n] = diagnoal[i, j, k, ..., n] for m == n | |||
| :math:`output[i, j, k, ..., m, n] = x[i, j, k, ..., m, n]` for :math:`m != n`. | |||
| output[i, j, k, ..., m, n] = x[i, j, k, ..., m, n] for m != n | |||
| Inputs: | |||
| - **x** (Tensor) - The batched tensor. Rank k+1, where k >= 1. It can be one of the following data types: | |||
| @@ -105,7 +105,7 @@ class Range(Cell): | |||
| r""" | |||
| Creates a sequence of numbers in range [start, limit) with step size delta. | |||
| The size of output is \left \lfloor \frac{limit-start}{delta} \right \rfloor + 1 and `delta` is the gap | |||
| The size of output is :math:`\left \lfloor \frac{limit-start}{delta} \right \rfloor + 1` and `delta` is the gap | |||
| between two values in the tensor. | |||
| .. math:: | |||
| @@ -827,7 +827,7 @@ def matmul_op_select(x1_shape, x2_shape, transpose_x1, transpose_x2): | |||
| class MatMul(Cell): | |||
| """ | |||
| r""" | |||
| Multiplies matrix `x1` by matrix `x2`. | |||
| - If both x1 and x2 are 1-dimensional, the dot product is returned. | |||
| @@ -212,26 +212,26 @@ class FakeQuantWithMinMaxObserver(UniformQuantObserver): | |||
| r""" | |||
| Quantization aware operation which provides the fake quantization observer function on data with min and max. | |||
| The running min/max :math:`x_\text{min}` and :math:`x_\text{max}` are computed as: | |||
| The running min/max :math:`x_{min}` and :math:`x_{max}` are computed as: | |||
| .. math:: | |||
| \begin{array}{ll} \\ | |||
| x_\text{min} = | |||
| \begin{cases} | |||
| \min(\min(X), 0) | |||
| & \text{ if } ema = \text{False} \\ | |||
| \min((1 - c) \min(X) + \text{c } x_\text{min}, 0) | |||
| & \text{ if } \text{otherwise} | |||
| \end{cases}\\ | |||
| x_\text{max} = | |||
| \begin{cases} | |||
| \max(\max(X), 0) | |||
| & \text{ if } ema = \text{False} \\ | |||
| \max((1 - c) \max(X) + \text{c } x_\text{max}, 0) | |||
| & \text{ if } \text{otherwise} | |||
| \end{cases} | |||
| \end{array} | |||
| \begin{array}{ll} \\ | |||
| x_{min} = | |||
| \begin{cases} | |||
| \min(\min(X), 0) | |||
| & \text{ if } ema = \text{False} \\ | |||
| \min((1 - c) \min(X) + \text{c } x_{min}, 0) | |||
| & \text{ if } \text{otherwise} | |||
| \end{cases}\\ | |||
| x_{max} = | |||
| \begin{cases} | |||
| \max(\max(X), 0) | |||
| & \text{ if } ema = \text{False} \\ | |||
| \max((1 - c) \max(X) + \text{c } x_{max}, 0) | |||
| & \text{ if } \text{otherwise} | |||
| \end{cases} | |||
| \end{array} | |||
| where X is the input tensor, and :math:`c` is the `ema_decay`. | |||
| @@ -239,32 +239,32 @@ class FakeQuantWithMinMaxObserver(UniformQuantObserver): | |||
| .. math:: | |||
| \begin{array}{ll} \\ | |||
| s = | |||
| \begin{cases} | |||
| \frac{x_\text{max} - x_\text{min}}{Q_\text{max} - Q_\text{min}} | |||
| & \text{ if } symmetric = \text{False} \\ | |||
| \frac{2\max(x_\text{max}, \left | x_\text{min} \right |) }{Q_\text{max} - Q_\text{min}} | |||
| & \text{ if } \text{otherwise} | |||
| \end{cases}\\ | |||
| zp\_min = Q_\text{min} - \frac{x_\text{min}}{scale} \\ | |||
| zp = \left \lfloor \min(Q_\text{max}, \max(Q_\text{min}, zp\_min)) + 0.5 \right \rfloor | |||
| \end{array} | |||
| where :math:`Q_\text{max}` and :math:`Q_\text{min}` is decided by quant_dtype, for example, if quant_dtype=INT8, | |||
| then :math:`Q_\text{max}`=127 and :math:`Q_\text{min}`=-128. | |||
| \begin{array}{ll} \\ | |||
| s = | |||
| \begin{cases} | |||
| \frac{x_{max} - x_{min}}{Q_{max} - Q_{min}} | |||
| & \text{ if } symmetric = \text{False} \\ | |||
| \frac{2\max(x_{max}, \left | x_{min} \right |) }{Q_{max} - Q_{min}} | |||
| & \text{ if } \text{otherwise} | |||
| \end{cases}\\ | |||
| zp\_min = Q_{min} - \frac{x_{min}}{scale} \\ | |||
| zp = \left \lfloor \min(Q_{max}, \max(Q_{min}, zp\_min)) + 0.5 \right \rfloor | |||
| \end{array} | |||
| where :math:`Q_{max}` and :math:`Q_{min}` is decided by quant_dtype, for example, if quant_dtype=INT8, | |||
| then :math:`Q_{max} = 127` and :math:`Q_{min} = -128`. | |||
| The fake quant output is computed as: | |||
| .. math:: | |||
| \begin{array}{ll} \\ | |||
| u_\text{min} = (Q_\text{min} - zp) * scale \\ | |||
| u_\text{max} = (Q_\text{max} - zp) * scale \\ | |||
| u_X = \left \lfloor \frac{\min(u_\text{max}, \max(u_\text{min}, X)) - u_\text{min}}{scale} | |||
| + 0.5 \right \rfloor \\ | |||
| output = u_X * scale + u_\text{min} | |||
| \end{array} | |||
| \begin{array}{ll} \\ | |||
| u_{min} = (Q_{min} - zp) * scale \\ | |||
| u_{max} = (Q_{max} - zp) * scale \\ | |||
| u_X = \left \lfloor \frac{\min(u_{max}, \max(u_{min}, X)) - u_{min}}{scale} | |||
| + 0.5 \right \rfloor \\ | |||
| output = u_X * scale + u_{min} | |||
| \end{array} | |||
| Args: | |||
| @@ -393,7 +393,7 @@ class Conv2dBnFoldQuantOneConv(Cell): | |||
| 2D convolution which use the convolution layer statistics once to calculate BatchNormal operation folded construct. | |||
| This part is a more detailed overview of Conv2d operation. For more detials about Quantilization, | |||
| please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| Args: | |||
| in_channels (int): The number of input channel :math:`C_{in}`. | |||
| @@ -594,7 +594,7 @@ class Conv2dBnFoldQuant(Cell): | |||
| 2D convolution with BatchNormal operation folded construct. | |||
| This part is a more detailed overview of Conv2d operation. For more detials about Quantilization, | |||
| please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| Args: | |||
| in_channels (int): The number of input channel :math:`C_{in}`. | |||
| @@ -783,7 +783,7 @@ class Conv2dBnWithoutFoldQuant(Cell): | |||
| 2D convolution and batchnorm without fold with fake quantized construct. | |||
| This part is a more detailed overview of Conv2d operation. For more detials about Quantilization, | |||
| please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| Args: | |||
| in_channels (int): The number of input channel :math:`C_{in}`. | |||
| @@ -899,7 +899,7 @@ class Conv2dQuant(Cell): | |||
| 2D convolution with fake quantized operation layer. | |||
| This part is a more detailed overview of Conv2d operation. For more detials about Quantilization, | |||
| please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| Args: | |||
| in_channels (int): The number of input channel :math:`C_{in}`. | |||
| @@ -1010,7 +1010,7 @@ class DenseQuant(Cell): | |||
| The fully connected layer with fake quantized operation. | |||
| This part is a more detailed overview of Dense operation. For more detials about Quantilization, | |||
| please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| Args: | |||
| in_channels (int): The dimension of the input space. | |||
| @@ -1127,7 +1127,7 @@ class ActQuant(_QuantActivation): | |||
| Add the fake quantized operation to the end of activation operation, by which the output of activation operation | |||
| will be truncated. For more detials about Quantilization, | |||
| please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| Args: | |||
| activation (Cell): Activation cell. | |||
| @@ -1196,7 +1196,7 @@ class TensorAddQuant(Cell): | |||
| Add fake quantized operation after TensorAdd operation. | |||
| This part is a more detailed overview of TensorAdd operation. For more detials about Quantilization, | |||
| please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| Args: | |||
| ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. | |||
| @@ -1249,7 +1249,7 @@ class MulQuant(Cell): | |||
| Add fake quantized operation after `Mul` operation. | |||
| This part is a more detailed overview of `Mul` operation. For more detials about Quantilization, | |||
| please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. | |||
| Args: | |||
| ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999. | |||
| @@ -79,7 +79,7 @@ class ExponentialDecayLR(LearningRateSchedule): | |||
| Inputs: | |||
| Tensor. The current step number. | |||
| Returns: | |||
| Outputs: | |||
| Tensor. The learning rate value for the current step. | |||
| Examples: | |||
| @@ -137,7 +137,7 @@ class NaturalExpDecayLR(LearningRateSchedule): | |||
| Inputs: | |||
| Tensor. The current step number. | |||
| Returns: | |||
| Outputs: | |||
| Tensor. The learning rate value for the current step. | |||
| Examples: | |||
| @@ -196,7 +196,7 @@ class InverseDecayLR(LearningRateSchedule): | |||
| Inputs: | |||
| Tensor. The current step number. | |||
| Returns: | |||
| Outputs: | |||
| Tensor. The learning rate value for the current step. | |||
| Examples: | |||
| @@ -244,7 +244,7 @@ class CosineDecayLR(LearningRateSchedule): | |||
| Inputs: | |||
| Tensor. The current step number. | |||
| Returns: | |||
| Outputs: | |||
| Tensor. The learning rate value for the current step. | |||
| Examples: | |||
| @@ -311,7 +311,7 @@ class PolynomialDecayLR(LearningRateSchedule): | |||
| Inputs: | |||
| Tensor. The current step number. | |||
| Returns: | |||
| Outputs: | |||
| Tensor. The learning rate value for the current step. | |||
| Examples: | |||
| @@ -381,7 +381,7 @@ class WarmUpLR(LearningRateSchedule): | |||
| Inputs: | |||
| Tensor. The current step number. | |||
| Returns: | |||
| Outputs: | |||
| Tensor. The learning rate value for the current step. | |||
| Examples: | |||
| @@ -85,17 +85,17 @@ class FTRL(Optimizer): | |||
| .. math:: | |||
| \begin{array}{ll} \\ | |||
| m_{t+1} = m_{t} + g^2 \\ | |||
| u_{t+1} = u_{t} + g - \frac{m_{t+1}^\text{-p} - m_{t}^\text{-p}}{\alpha } * \omega_{t} \\ | |||
| \omega_{t+1} = | |||
| \begin{cases} | |||
| \frac{(sign(u_{t+1}) * l1 - u_{t+1})}{\frac{m_{t+1}^\text{-p}}{\alpha } + 2 * l2 } | |||
| & \text{ if } |u_{t+1}| > l1 \\ | |||
| 0.0 | |||
| & \text{ otherwise } | |||
| \end{cases}\\ | |||
| \end{array} | |||
| \begin{array}{ll} \\ | |||
| m_{t+1} = m_{t} + g^2 \\ | |||
| u_{t+1} = u_{t} + g - \frac{m_{t+1}^\text{-p} - m_{t}^\text{-p}}{\alpha } * \omega_{t} \\ | |||
| \omega_{t+1} = | |||
| \begin{cases} | |||
| \frac{(sign(u_{t+1}) * l1 - u_{t+1})}{\frac{m_{t+1}^\text{-p}}{\alpha } + 2 * l2 } | |||
| & \text{ if } |u_{t+1}| > l1 \\ | |||
| 0.0 | |||
| & \text{ otherwise } | |||
| \end{cases}\\ | |||
| \end{array} | |||
| :math:`m` represents `accum`, :math:`g` represents `grads`, :math:`t` represents updateing step, | |||
| :math:`u` represents `linear`, :math:`p` represents `lr_power`, :math:`\alpha` represents `learning_rate`, | |||
| @@ -57,17 +57,17 @@ class LARS(Optimizer): | |||
| .. math:: | |||
| \begin{array}\\ | |||
| \lambda = \frac{\theta \text{ * } || \omega || }{|| g_{t} || \text{ + } \delta \text{ * } || \omega || } \\ | |||
| \lambda = | |||
| \begin{cases} | |||
| \min(\frac{\lambda}{\alpha }, 1) | |||
| & \text{ if } clip = True \\ | |||
| \lambda | |||
| & \text{ otherwise } | |||
| \end{cases}\\ | |||
| g_{t+1} = \lambda * (g_{t} + \delta * \omega) | |||
| \end{array} | |||
| \begin{array}{ll} \\ | |||
| \lambda = \frac{\theta \text{ * } || \omega || }{|| g_{t} || \text{ + } \delta \text{ * } || \omega || } \\ | |||
| \lambda = | |||
| \begin{cases} | |||
| \min(\frac{\lambda}{\alpha }, 1) | |||
| & \text{ if } clip = True \\ | |||
| \lambda | |||
| & \text{ otherwise } | |||
| \end{cases}\\ | |||
| g_{t+1} = \lambda * (g_{t} + \delta * \omega) | |||
| \end{array} | |||
| :math:`\theta` represents `coefficient`, :math:`\omega` represents `parameters`, :math:`g` represents `gradients`, | |||
| :math:`t` represents updateing step, :math:`\delta` represents `weight_decay`, | |||