|
|
|
@@ -0,0 +1,314 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
|
|
|
|
class SquaredDifference(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(SquaredDifference, self).__init__() |
|
|
|
self.squaredDiff = P.SquaredDifference() |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
return self.squaredDiff(x, y) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_nobroadcast_f16(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.uniform(10, 20, (3, 4, 5, 2)).astype(np.float16) |
|
|
|
input_y = np.random.uniform(40, 50, (3, 4, 5, 2)).astype(np.float16) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
assert np.all(output == expect) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_nobroadcast_f32(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(3, 4, 5, 2).astype(np.float32) |
|
|
|
input_y = np.random.rand(3, 4, 5, 2).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
assert np.all(output == expect) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_nobroadcast_int32(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(3, 4, 5, 2).astype(np.int32) |
|
|
|
input_y = np.random.rand(3, 4, 5, 2).astype(np.int32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
assert np.all(output == expect) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_int32(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.int32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
assert np.all(output == expect) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_f32(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.float32) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
assert np.all(output == expect) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_f16(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.float16) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float16) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
assert np.all(output == expect) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_bool(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.bool) |
|
|
|
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6 |
|
|
|
double_check = np.abs(output-expect)/expect |
|
|
|
assert np.all(double_check < error) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_nobroadcast_bool(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(3, 4, 5, 2).astype(np.bool) |
|
|
|
input_y = np.random.rand(3, 4, 5, 2).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6 |
|
|
|
double_check = np.abs(output-expect)/expect |
|
|
|
assert np.all(double_check < error) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_int32_f16(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32) |
|
|
|
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float16) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3 |
|
|
|
double_check = np.abs(output-expect)/expect |
|
|
|
assert np.all(double_check < error) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_int32_f32(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32) |
|
|
|
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6 |
|
|
|
double_check = np.abs(output-expect)/expect |
|
|
|
assert np.all(double_check < error) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_nobroadcast_int32_f16(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(2, 4, 3, 2).astype(np.int32) |
|
|
|
input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float16) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3 |
|
|
|
double_check = np.abs(output-expect)/expect |
|
|
|
assert np.all(double_check < error) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_nobroadcast_int32_f32(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(2, 4, 3, 2).astype(np.int32) |
|
|
|
input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6 |
|
|
|
double_check = np.abs(output-expect)/expect |
|
|
|
assert np.all(double_check < error) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_f32_scalar_tensor(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(2).astype(np.float32) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
assert np.all(output == expect) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_f32_tensor_tensor(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(1, 2).astype(np.float32) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
assert np.all(output == expect) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_f32_tensor_tensor_dim_over_7(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(1, 2).astype(np.float32) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2, 1).astype(np.float32) |
|
|
|
try: |
|
|
|
net(Tensor(input_x), Tensor(input_y)) |
|
|
|
except RuntimeError: |
|
|
|
assert True |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_f32_tensor_tensor_cannot_brocast(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.rand(5, 3).astype(np.float32) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2).astype(np.float32) |
|
|
|
try: |
|
|
|
net(Tensor(input_x), Tensor(input_y)) |
|
|
|
except ValueError: |
|
|
|
assert True |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_int_f32_precision(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.randint(20, 30, (1, 2)).astype(np.int32) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32) |
|
|
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy() |
|
|
|
diff = input_x-input_y |
|
|
|
expect = diff*diff |
|
|
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3 |
|
|
|
double_thousand = np.abs(output-expect)/expect |
|
|
|
assert np.all(double_thousand < error) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_broadcast_type_error(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
np.random.seed(42) |
|
|
|
net = SquaredDifference() |
|
|
|
input_x = np.random.randint(20, 30, (1, 2)).astype(np.bool) |
|
|
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.bool) |
|
|
|
try: |
|
|
|
net(Tensor(input_x), Tensor(input_y)) |
|
|
|
except TypeError: |
|
|
|
assert True |