| @@ -0,0 +1,155 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import pytest | |||
| import numpy as np | |||
| import time, math | |||
| import mindspore.nn as nn | |||
| from mindspore import context, Tensor, ParameterTuple | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.initializer import TruncatedNormal | |||
| from mindspore.ops import functional as F | |||
| from mindspore.ops import composite as C | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.nn.wrap.cell_wrapper import WithLossCell | |||
| from mindspore.nn.optim import Momentum | |||
| np.random.seed(1) | |||
| def weight_variable(): | |||
| """weight initial""" | |||
| return TruncatedNormal(0.02) | |||
| def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): | |||
| """weight initial for conv layer""" | |||
| weight = weight_variable() | |||
| return nn.Conv2d(in_channels, out_channels, | |||
| kernel_size=kernel_size, stride=stride, padding=padding, | |||
| weight_init=weight, has_bias=False, pad_mode="valid") | |||
| def fc_with_initialize(input_channels, out_channels): | |||
| """weight initial for fc layer""" | |||
| weight = weight_variable() | |||
| bias = weight_variable() | |||
| return nn.Dense(input_channels, out_channels, weight, bias) | |||
| class LeNet(nn.Cell): | |||
| """ | |||
| Lenet network | |||
| Args: | |||
| num_class (int): Num classes, Default: 10. | |||
| Returns: | |||
| Tensor, output tensor | |||
| Examples: | |||
| >>> LeNet(num_class=10) | |||
| """ | |||
| def __init__(self, num_class=10): | |||
| super(LeNet, self).__init__() | |||
| self.num_class = num_class | |||
| self.batch_size = 32 | |||
| self.conv1 = conv(1, 6, 5) | |||
| self.conv2 = conv(6, 16, 5) | |||
| self.fc1 = fc_with_initialize(16 * 5 * 5, 120) | |||
| self.fc2 = fc_with_initialize(120, 84) | |||
| self.fc3 = fc_with_initialize(84, self.num_class) | |||
| self.relu = nn.ReLU() | |||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||
| self.reshape = P.Reshape() | |||
| def construct(self, x): | |||
| x = self.conv1(x) | |||
| x = self.relu(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.conv2(x) | |||
| x = self.relu(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.reshape(x, (self.batch_size, -1)) | |||
| x = self.fc1(x) | |||
| x = self.relu(x) | |||
| x = self.fc2(x) | |||
| x = self.relu(x) | |||
| x = self.fc3(x) | |||
| return x | |||
| class CrossEntropyLoss(nn.Cell): | |||
| """ | |||
| Define loss for network | |||
| """ | |||
| def __init__(self): | |||
| super(CrossEntropyLoss, self).__init__() | |||
| self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() | |||
| self.mean = P.ReduceMean() | |||
| self.one_hot = P.OneHot() | |||
| self.on_value = Tensor(1.0, mstype.float32) | |||
| self.off_value = Tensor(0.0, mstype.float32) | |||
| self.num = Tensor(32.0, mstype.float32) | |||
| def construct(self, logits, label): | |||
| label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value) | |||
| loss = self.cross_entropy(logits, label)[0] | |||
| loss = P.RealDiv()(P.ReduceSum()(loss, -1), self.num) | |||
| return loss | |||
| class GradWrap(nn.Cell): | |||
| """ | |||
| GradWrap definition | |||
| """ | |||
| def __init__(self, network): | |||
| super(GradWrap, self).__init__() | |||
| self.network = network | |||
| self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters())) | |||
| def construct(self, x, label): | |||
| weights = self.weights | |||
| return C.grad_by_list(self.network, weights)(x, label) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_single | |||
| def test_ascend_pynative_lenet(): | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | |||
| epoch_size = 20 | |||
| batch_size = 32 | |||
| inputs = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32)) | |||
| labels = Tensor(np.ones([batch_size]).astype(np.int32)) | |||
| net = LeNet() | |||
| criterion = CrossEntropyLoss() | |||
| optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9) | |||
| net_with_criterion = WithLossCell(net, criterion) | |||
| train_network = GradWrap(net_with_criterion) | |||
| train_network.set_train() | |||
| total_time = 0 | |||
| for epoch in range(0, epoch_size): | |||
| start_time = time.time() | |||
| fw_output = net(inputs) | |||
| loss_output = criterion(fw_output, labels) | |||
| grads = train_network(inputs, labels) | |||
| success = optimizer(grads) | |||
| end_time = time.time() | |||
| cost_time = end_time - start_time | |||
| total_time = total_time + cost_time | |||
| assert(total_time < 20.0) | |||
| assert(loss_output.asnumpy() < 0.01) | |||