| @@ -41,15 +41,3 @@ def test_net_1D(): | |||||
| tminval, tmaxval = Tensor(minval, mstype.int32), Tensor(maxval, mstype.int32) | tminval, tmaxval = Tensor(minval, mstype.int32), Tensor(maxval, mstype.int32) | ||||
| output = net(tminval, tmaxval) | output = net(tminval, tmaxval) | ||||
| assert output.shape == (3, 2, 4) | assert output.shape == (3, 2, 4) | ||||
| def test_net_ND(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 1) | |||||
| minval = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.int32) | |||||
| maxval = np.array([10]).astype(np.int32) | |||||
| net = Net(shape, seed) | |||||
| tminval, tmaxval = Tensor(minval), Tensor(maxval) | |||||
| output = net(tminval, tmaxval) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 2) | |||||
| @@ -36,15 +36,3 @@ def test_net(): | |||||
| net = Net(shape, seed=seed) | net = Net(shape, seed=seed) | ||||
| output = net() | output = net() | ||||
| assert output.shape == (3, 2, 4) | assert output.shape == (3, 2, 4) | ||||
| def test_net_ND(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 1) | |||||
| a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.float32) | |||||
| b = np.array([10]).astype(np.float32) | |||||
| net = Net(shape, seed) | |||||
| ta, tb = Tensor(a), Tensor(b) | |||||
| output = net(ta, tb) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 2) | |||||
| @@ -13,6 +13,7 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import pytest | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| @@ -31,7 +32,9 @@ class Net(nn.Cell): | |||||
| def construct(self): | def construct(self): | ||||
| return self.stdnormal(self.shape) | return self.stdnormal(self.shape) | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_net(): | def test_net(): | ||||
| seed = 10 | seed = 10 | ||||
| seed2 = 10 | seed2 = 10 | ||||
| @@ -0,0 +1,46 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.common import dtype as mstype | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, shape, seed=0, seed2=0): | |||||
| super(Net, self).__init__() | |||||
| self.uniformint = P.UniformInt(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self, a, b): | |||||
| return self.uniformint(self.shape, a, b) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_net_1D(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 4) | |||||
| a = 1 | |||||
| b = 5 | |||||
| net = Net(shape, seed=seed) | |||||
| ta, tb = Tensor(a, mstype.int32), Tensor(b, mstype.int32) | |||||
| output = net(ta, tb) | |||||
| assert output.shape == (3, 2, 4) | |||||
| @@ -12,32 +12,30 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import pytest | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.common import dtype as mstype | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| class Net(nn.Cell): | class Net(nn.Cell): | ||||
| def __init__(self, shape, seed=0): | |||||
| def __init__(self, shape, seed=0, seed2=0): | |||||
| super(Net, self).__init__() | super(Net, self).__init__() | ||||
| self.uniformreal = P.UniformReal(seed=seed) | self.uniformreal = P.UniformReal(seed=seed) | ||||
| self.shape = shape | self.shape = shape | ||||
| def construct(self, minval, maxval): | |||||
| return self.uniformreal(self.shape, minval, maxval) | |||||
| def construct(self): | |||||
| return self.uniformreal(self.shape) | |||||
| def test_net_1D(): | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_net(): | |||||
| seed = 10 | seed = 10 | ||||
| shape = (3, 2, 4) | shape = (3, 2, 4) | ||||
| minval = 0.0 | |||||
| maxval = 1.0 | |||||
| net = Net(shape, seed) | |||||
| tminval, tmaxval = Tensor(minval, mstype.float32), Tensor(maxval, mstype.float32) | |||||
| output = net(tminval, tmaxval) | |||||
| print(output.asnumpy()) | |||||
| net = Net(shape, seed=seed) | |||||
| output = net() | |||||
| assert output.shape == (3, 2, 4) | assert output.shape == (3, 2, 4) | ||||