| @@ -29,66 +29,67 @@ using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_DepthwiseConv2D; | |||
| namespace mindspore::kernel { | |||
| ConvolutionDepthwiseFp16CPUKernel::~ConvolutionDepthwiseFp16CPUKernel() { FreeTmpBuffer(); } | |||
| void ConvolutionDepthwiseFp16CPUKernel::FreeTmpBuffer() { | |||
| ConvolutionDepthwiseFp16CPUKernel::~ConvolutionDepthwiseFp16CPUKernel() { | |||
| if (sliding_ != nullptr) { | |||
| delete sliding_; | |||
| sliding_ = nullptr; | |||
| } | |||
| if (packed_weight_ != nullptr) { | |||
| delete packed_weight_; | |||
| packed_weight_ = nullptr; | |||
| } | |||
| if (packed_input_ != nullptr) { | |||
| delete packed_input_; | |||
| packed_input_ = nullptr; | |||
| } | |||
| if (packed_output_ != nullptr) { | |||
| delete packed_output_; | |||
| packed_output_ = nullptr; | |||
| FreeTmpBuffer(); | |||
| } | |||
| void ConvolutionDepthwiseFp16CPUKernel::FreeTmpBuffer() { | |||
| if (need_align_) { | |||
| if (packed_input_ != nullptr) { | |||
| delete packed_input_; | |||
| packed_input_ = nullptr; | |||
| } | |||
| if (packed_output_ != nullptr) { | |||
| delete packed_output_; | |||
| packed_output_ = nullptr; | |||
| } | |||
| } | |||
| } | |||
| int ConvolutionDepthwiseFp16CPUKernel::InitBuffer() { | |||
| // malloc pack input buffer | |||
| int C8 = UP_DIV(conv_param_->input_channel_, C8NUM); | |||
| int pack_input_size = conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * C8NUM * C8; | |||
| packed_input_ = reinterpret_cast<float16_t *>(malloc(pack_input_size * sizeof(float16_t))); | |||
| if (packed_input_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_input_, 0, pack_input_size * sizeof(float16_t)); | |||
| if (conv_param_->input_channel_ % C4NUM != 0) { | |||
| need_align_ = true; | |||
| int C8 = UP_DIV(conv_param_->input_channel_, C8NUM); | |||
| int pack_input_size = conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * C8NUM * C8; | |||
| packed_input_ = reinterpret_cast<float16_t *>(malloc(pack_input_size * sizeof(float16_t))); | |||
| if (packed_input_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| // malloc pack output buffer | |||
| int pack_output_size = conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * C8NUM * C8; | |||
| packed_output_ = reinterpret_cast<float16_t *>(malloc(pack_output_size * sizeof(float16_t))); | |||
| if (packed_output_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| int pack_output_size = conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * C8NUM * C8; | |||
| packed_output_ = reinterpret_cast<float16_t *>(malloc(pack_output_size * sizeof(float16_t))); | |||
| if (packed_output_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int ConvolutionDepthwiseFp16CPUKernel::InitWeightBias() { | |||
| // init weight: o, h, w, i; o == group, i == 1 | |||
| int OC8 = UP_DIV(conv_param_->output_channel_, C8NUM); | |||
| auto weight_tensor = in_tensors_[kWeightIndex]; | |||
| int OC8 = UP_DIV(weight_tensor->Batch(), C8NUM); | |||
| auto origin_weight = reinterpret_cast<float *>(weight_tensor->Data()); | |||
| int pack_weight_size = C8NUM * OC8 * conv_param_->kernel_h_ * conv_param_->kernel_w_; | |||
| int pack_weight_size = C8NUM * OC8 * weight_tensor->Height() * weight_tensor->Width(); | |||
| packed_weight_ = reinterpret_cast<float16_t *>(malloc(pack_weight_size * sizeof(float16_t))); | |||
| if (packed_weight_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_weight_, 0, pack_weight_size * sizeof(float16_t)); | |||
| PackNCHWFp32ToNC8HW8Fp16(origin_weight, packed_weight_, 1, conv_param_->kernel_h_ * conv_param_->kernel_w_, | |||
| conv_param_->output_channel_); | |||
| PackNCHWFp32ToNC8HW8Fp16(origin_weight, packed_weight_, 1, weight_tensor->Height() * weight_tensor->Width(), | |||
| weight_tensor->Batch()); | |||
| // init bias | |||
| bias_data_ = reinterpret_cast<float16_t *>(malloc(C8NUM * OC8 * sizeof(float16_t))); | |||
| if (bias_data_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| @@ -97,8 +98,9 @@ int ConvolutionDepthwiseFp16CPUKernel::InitWeightBias() { | |||
| memset(bias_data_, 0, C8NUM * OC8 * sizeof(float16_t)); | |||
| auto bias_fp16 = reinterpret_cast<float16_t *>(bias_data_); | |||
| if (in_tensors_.size() == kInputSize2) { | |||
| auto ori_bias = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data()); | |||
| for (int i = 0; i < conv_param_->output_channel_; i++) { | |||
| auto bias_tensor = in_tensors_.at(kBiasIndex); | |||
| auto ori_bias = reinterpret_cast<float *>(bias_tensor->Data()); | |||
| for (int i = 0; i < bias_tensor->ElementsNum(); i++) { | |||
| bias_fp16[i] = (float16_t)ori_bias[i]; | |||
| } | |||
| } | |||
| @@ -108,6 +110,18 @@ int ConvolutionDepthwiseFp16CPUKernel::InitWeightBias() { | |||
| } | |||
| int ConvolutionDepthwiseFp16CPUKernel::Init() { | |||
| sliding_ = new (std::nothrow) SlidingWindowParam; | |||
| if (sliding_ == nullptr) { | |||
| MS_LOG(ERROR) << "new sliding window param failed."; | |||
| return RET_ERROR; | |||
| } | |||
| auto ret = InitWeightBias(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Convolution depthwise fp16 InitWeightBias failed."; | |||
| return RET_ERROR; | |||
| } | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| @@ -116,21 +130,12 @@ int ConvolutionDepthwiseFp16CPUKernel::Init() { | |||
| int ConvolutionDepthwiseFp16CPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| // conv base init | |||
| auto ret = ConvolutionBaseCPUKernel::Init(); | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| } | |||
| // init sliding_ window param | |||
| sliding_ = new SlidingWindowParam; | |||
| InitSlidingParamConvDw(sliding_, conv_param_, C8NUM); | |||
| ret = InitWeightBias(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Convolution depthwise fp16 InitWeightBias failed."; | |||
| return RET_ERROR; | |||
| } | |||
| ret = InitBuffer(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Convolution depthwise fp16 InitBuffer failed."; | |||
| @@ -171,19 +176,25 @@ int ConvolutionDepthwiseFp16CPUKernel::Run() { | |||
| MS_LOG(ERROR) << "Get Execute tensor failed."; | |||
| return ret; | |||
| } | |||
| // pack input: to nhwc8 | |||
| PackNHWCToNHWC8Fp16(execute_input_, packed_input_, conv_param_->input_batch_, | |||
| conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_); | |||
| if (need_align_) { | |||
| PackNHWCToNHWC8Fp16(execute_input_, packed_input_, conv_param_->input_batch_, | |||
| conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_); | |||
| } else { | |||
| packed_input_ = execute_input_; | |||
| } | |||
| if (!need_align_) { | |||
| packed_output_ = execute_output_; | |||
| } | |||
| ret = LiteBackendParallelLaunch(ConvDwFp16Run, this, conv_param_->thread_num_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "ConvDwFp16Run error: error_code[" << ret << "]"; | |||
| return RET_ERROR; | |||
| } | |||
| PackNHWC8ToNHWCFp16(packed_output_, execute_output_, conv_param_->output_batch_, | |||
| conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_); | |||
| if (need_align_) { | |||
| PackNHWC8ToNHWCFp16(packed_output_, execute_output_, conv_param_->output_batch_, | |||
| conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_); | |||
| } | |||
| ConvolutionBaseFP16CPUKernel::IfCastOutput(); | |||
| ConvolutionBaseFP16CPUKernel::FreeTmpBuffer(); | |||
| return RET_OK; | |||
| @@ -56,6 +56,7 @@ class ConvolutionDepthwiseFp16CPUKernel : public ConvolutionBaseFP16CPUKernel { | |||
| float16_t *packed_weight_ = nullptr; | |||
| float16_t *packed_input_ = nullptr; | |||
| float16_t *packed_output_ = nullptr; | |||
| bool need_align_ = false; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -28,25 +28,28 @@ using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_DeDepthwiseConv2D; | |||
| namespace mindspore::kernel { | |||
| DeconvolutionDepthwiseFp16CPUKernel::~DeconvolutionDepthwiseFp16CPUKernel() { FreeTmpBuffer(); } | |||
| void DeconvolutionDepthwiseFp16CPUKernel::FreeTmpBuffer() { | |||
| DeconvolutionDepthwiseFp16CPUKernel::~DeconvolutionDepthwiseFp16CPUKernel() { | |||
| if (sliding_ != nullptr) { | |||
| delete sliding_; | |||
| sliding_ = nullptr; | |||
| } | |||
| if (packed_weight_ != nullptr) { | |||
| delete packed_weight_; | |||
| packed_weight_ = nullptr; | |||
| } | |||
| if (packed_input_ != nullptr) { | |||
| delete packed_input_; | |||
| packed_input_ = nullptr; | |||
| } | |||
| if (packed_output_ != nullptr) { | |||
| delete packed_output_; | |||
| packed_output_ = nullptr; | |||
| FreeTmpBuffer(); | |||
| } | |||
| void DeconvolutionDepthwiseFp16CPUKernel::FreeTmpBuffer() { | |||
| if (need_align_) { | |||
| if (packed_input_ != nullptr) { | |||
| delete packed_input_; | |||
| packed_input_ = nullptr; | |||
| } | |||
| if (packed_output_ != nullptr) { | |||
| delete packed_output_; | |||
| packed_output_ = nullptr; | |||
| } | |||
| } | |||
| } | |||
| @@ -59,14 +62,11 @@ int DeconvolutionDepthwiseFp16CPUKernel::InitSlideParam() { | |||
| conv_param_->output_h_ = in_tensors_.front()->shape().at(kNHWC_H); | |||
| conv_param_->output_w_ = in_tensors_.front()->shape().at(kNHWC_W); | |||
| conv_param_->output_channel_ = in_tensors_.front()->shape().at(kNHWC_C); | |||
| // init sliding_ window param | |||
| InitSlidingParamConvDw(sliding_, conv_param_, C8NUM); | |||
| return RET_OK; | |||
| } | |||
| int DeconvolutionDepthwiseFp16CPUKernel::InitBuffer() { | |||
| // malloc pack input buffer | |||
| int C8 = UP_DIV(conv_param_->input_channel_, C8NUM); | |||
| int pack_input_size = conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * C8NUM * C8; | |||
| packed_input_ = reinterpret_cast<float16_t *>(malloc(pack_input_size * sizeof(float16_t))); | |||
| @@ -74,7 +74,6 @@ int DeconvolutionDepthwiseFp16CPUKernel::InitBuffer() { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_input_, 0, pack_input_size * sizeof(float16_t)); | |||
| int pack_output_size = conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * C8NUM * C8; | |||
| packed_output_ = reinterpret_cast<float16_t *>(malloc(pack_output_size * sizeof(float16_t))); | |||
| @@ -88,21 +87,19 @@ int DeconvolutionDepthwiseFp16CPUKernel::InitBuffer() { | |||
| int DeconvolutionDepthwiseFp16CPUKernel::InitWeightBias() { | |||
| // init weight: o, h, w, i; o == group, i == 1 | |||
| int OC8 = UP_DIV(conv_param_->output_channel_, C8NUM); | |||
| auto weight_tensor = in_tensors_[kWeightIndex]; | |||
| int OC8 = UP_DIV(weight_tensor->Batch(), C8NUM); | |||
| auto origin_weight = reinterpret_cast<float *>(weight_tensor->Data()); | |||
| int pack_weight_size = C8NUM * OC8 * conv_param_->kernel_h_ * conv_param_->kernel_w_; | |||
| int pack_weight_size = C8NUM * OC8 * weight_tensor->Height() * weight_tensor->Width(); | |||
| packed_weight_ = reinterpret_cast<float16_t *>(malloc(pack_weight_size * sizeof(float16_t))); | |||
| if (packed_weight_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_weight_, 0, pack_weight_size * sizeof(float16_t)); | |||
| PackNCHWFp32ToNC8HW8Fp16(origin_weight, packed_weight_, 1, conv_param_->kernel_h_ * conv_param_->kernel_w_, | |||
| conv_param_->output_channel_); | |||
| PackNCHWFp32ToNC8HW8Fp16(origin_weight, packed_weight_, 1, weight_tensor->Height() * weight_tensor->Width(), | |||
| weight_tensor->Batch()); | |||
| // init bias | |||
| bias_data_ = reinterpret_cast<float16_t *>(malloc(C8NUM * OC8 * sizeof(float16_t))); | |||
| if (bias_data_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| @@ -110,8 +107,9 @@ int DeconvolutionDepthwiseFp16CPUKernel::InitWeightBias() { | |||
| } | |||
| memset(bias_data_, 0, C8NUM * OC8 * sizeof(float16_t)); | |||
| if (in_tensors_.size() == kInputSize2) { | |||
| auto ori_bias = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data()); | |||
| for (int i = 0; i < conv_param_->output_channel_; i++) { | |||
| auto bias_tensor = in_tensors_.at(kBiasIndex); | |||
| auto ori_bias = reinterpret_cast<float *>(bias_tensor->Data()); | |||
| for (int i = 0; i < bias_tensor->ElementsNum(); i++) { | |||
| reinterpret_cast<float *>(bias_data_)[i] = (float16_t)ori_bias[i]; | |||
| } | |||
| } | |||
| @@ -121,6 +119,17 @@ int DeconvolutionDepthwiseFp16CPUKernel::InitWeightBias() { | |||
| } | |||
| int DeconvolutionDepthwiseFp16CPUKernel::Init() { | |||
| sliding_ = new (std::nothrow) SlidingWindowParam; | |||
| if (sliding_ == nullptr) { | |||
| MS_LOG(ERROR) << "new SlidingWindowParam fail!"; | |||
| return RET_ERROR; | |||
| } | |||
| auto ret = InitWeightBias(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Deconvolution depthwise fp16 InitWeightBias failed."; | |||
| return RET_ERROR; | |||
| } | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| @@ -129,25 +138,11 @@ int DeconvolutionDepthwiseFp16CPUKernel::Init() { | |||
| int DeconvolutionDepthwiseFp16CPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| sliding_ = new (std::nothrow) SlidingWindowParam; | |||
| if (sliding_ == nullptr) { | |||
| MS_LOG(ERROR) << "new SlidingWindowParam fail!"; | |||
| return RET_ERROR; | |||
| } | |||
| InitSlideParam(); | |||
| // conv base init | |||
| auto ret = ConvolutionBaseCPUKernel::Init(); | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| } | |||
| ret = InitWeightBias(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Deconvolution depthwise fp16 InitWeightBias failed."; | |||
| return RET_ERROR; | |||
| } | |||
| ret = InitBuffer(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Deconvolution depthwise fp16 InitBuffer failed."; | |||
| @@ -188,18 +183,26 @@ int DeconvolutionDepthwiseFp16CPUKernel::Run() { | |||
| MS_LOG(ERROR) << "Get Execute tensor failed."; | |||
| return ret; | |||
| } | |||
| // pack input: to nhwc8 | |||
| PackNHWCToNHWC8Fp16(execute_input_, packed_input_, conv_param_->input_batch_, | |||
| conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_); | |||
| if (need_align_) { | |||
| PackNHWCToNHWC8Fp16(execute_input_, packed_input_, conv_param_->input_batch_, | |||
| conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_); | |||
| } else { | |||
| packed_input_ = execute_input_; | |||
| } | |||
| if (!need_align_) { | |||
| packed_output_ = execute_output_; | |||
| } | |||
| ret = LiteBackendParallelLaunch(DeconvDwFp16Run, this, conv_param_->thread_num_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "DeconvDwFp16Run error: error_code[" << ret << "]"; | |||
| return RET_ERROR; | |||
| } | |||
| PackNHWC8ToNHWCFp16(packed_output_, execute_output_, conv_param_->output_batch_, | |||
| conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_); | |||
| if (need_align_) { | |||
| PackNHWC8ToNHWCFp16(packed_output_, execute_output_, conv_param_->output_batch_, | |||
| conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_); | |||
| } | |||
| ConvolutionBaseFP16CPUKernel::IfCastOutput(); | |||
| ConvolutionBaseFP16CPUKernel::FreeTmpBuffer(); | |||
| return RET_OK; | |||
| @@ -57,6 +57,7 @@ class DeconvolutionDepthwiseFp16CPUKernel : public ConvolutionBaseFP16CPUKernel | |||
| float16_t *packed_weight_ = nullptr; | |||
| float16_t *packed_input_ = nullptr; | |||
| float16_t *packed_output_ = nullptr; | |||
| bool need_align_ = false; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -29,18 +29,19 @@ using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_DepthwiseConv2D; | |||
| namespace mindspore::kernel { | |||
| ConvolutionDepthwiseCPUKernel::~ConvolutionDepthwiseCPUKernel() { FreeTmpBuffer(); } | |||
| void ConvolutionDepthwiseCPUKernel::FreeTmpBuffer() { | |||
| ConvolutionDepthwiseCPUKernel::~ConvolutionDepthwiseCPUKernel() { | |||
| if (sliding_ != nullptr) { | |||
| delete sliding_; | |||
| sliding_ = nullptr; | |||
| } | |||
| if (packed_weight_ != nullptr) { | |||
| delete packed_weight_; | |||
| packed_weight_ = nullptr; | |||
| } | |||
| FreeTmpBuffer(); | |||
| } | |||
| void ConvolutionDepthwiseCPUKernel::FreeTmpBuffer() { | |||
| if (need_align_) { | |||
| if (packed_input_ != nullptr) { | |||
| delete packed_input_; | |||
| @@ -57,19 +58,17 @@ int ConvolutionDepthwiseCPUKernel::InitWeightBias() { | |||
| // init weight: o, h, w, i; o == group, i == 1 | |||
| auto weight_tensor = in_tensors_[kWeightIndex]; | |||
| auto origin_weight = reinterpret_cast<float *>(weight_tensor->Data()); | |||
| int OC4 = UP_DIV(conv_param_->output_channel_, C4NUM); | |||
| int pack_weight_size = C4NUM * OC4 * conv_param_->kernel_h_ * conv_param_->kernel_w_; | |||
| int OC4 = UP_DIV(weight_tensor->Batch(), C4NUM); | |||
| int pack_weight_size = C4NUM * OC4 * weight_tensor->Height() * weight_tensor->Width(); | |||
| packed_weight_ = reinterpret_cast<float *>(malloc(pack_weight_size * sizeof(float))); | |||
| if (packed_weight_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_weight_, 0, pack_weight_size * sizeof(float)); | |||
| PackNCHWToNC4HW4Fp32(origin_weight, packed_weight_, 1, conv_param_->kernel_h_ * conv_param_->kernel_w_, | |||
| conv_param_->output_channel_); | |||
| PackNCHWToNC4HW4Fp32(origin_weight, packed_weight_, 1, weight_tensor->Height() * weight_tensor->Width(), | |||
| weight_tensor->Batch()); | |||
| // init bias | |||
| bias_data_ = reinterpret_cast<float *>(malloc(C4NUM * OC4 * sizeof(float))); | |||
| if (bias_data_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| @@ -78,16 +77,14 @@ int ConvolutionDepthwiseCPUKernel::InitWeightBias() { | |||
| memset(bias_data_, 0, C4NUM * OC4 * sizeof(float)); | |||
| if (in_tensors_.size() == kInputSize2) { | |||
| auto ori_bias = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data()); | |||
| memcpy(bias_data_, ori_bias, conv_param_->output_channel_ * sizeof(float)); | |||
| memcpy(bias_data_, ori_bias, in_tensors_.at(kBiasIndex)->ElementsNum() * sizeof(float)); | |||
| } | |||
| // init threadNum; | |||
| conv_param_->thread_num_ = MSMIN(thread_count_, OC4); | |||
| return RET_OK; | |||
| } | |||
| int ConvolutionDepthwiseCPUKernel::InitBuffer() { | |||
| // malloc pack input and output buffer | |||
| if (conv_param_->input_channel_ % C4NUM != 0) { | |||
| need_align_ = true; | |||
| int IC4 = UP_DIV(conv_param_->input_channel_, C4NUM); | |||
| @@ -97,7 +94,6 @@ int ConvolutionDepthwiseCPUKernel::InitBuffer() { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_input_, 0, pack_input_size * sizeof(float)); | |||
| int OC4 = UP_DIV(conv_param_->output_channel_, C4NUM); | |||
| int pack_output_size = conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * C4NUM * OC4; | |||
| @@ -111,32 +107,29 @@ int ConvolutionDepthwiseCPUKernel::InitBuffer() { | |||
| } | |||
| int ConvolutionDepthwiseCPUKernel::Init() { | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| return ReSize(); | |||
| } | |||
| int ConvolutionDepthwiseCPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| // conv base init | |||
| ConvolutionBaseCPUKernel::Init(); | |||
| // init sliding window param | |||
| sliding_ = new (std::nothrow) SlidingWindowParam; | |||
| if (sliding_ == nullptr) { | |||
| MS_LOG(ERROR) << "new sliding window param failed."; | |||
| return RET_ERROR; | |||
| } | |||
| InitSlidingParamConvDw(sliding_, conv_param_, C4NUM); | |||
| auto ret = InitWeightBias(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Convolution depthwise fp32 InitWeightBias failed."; | |||
| return RET_ERROR; | |||
| } | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| return ReSize(); | |||
| } | |||
| int ConvolutionDepthwiseCPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| ConvolutionBaseCPUKernel::Init(); | |||
| InitSlidingParamConvDw(sliding_, conv_param_, C4NUM); | |||
| ret = InitBuffer(); | |||
| auto ret = InitBuffer(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Convolution depthwise fp32 InitBuffer failed."; | |||
| return RET_ERROR; | |||
| @@ -173,7 +166,6 @@ int ConvolutionDepthwiseCPUKernel::Run() { | |||
| auto input_tensor = in_tensors_.at(kInputIndex); | |||
| auto input_addr = reinterpret_cast<float *>(input_tensor->Data()); | |||
| // pack input: to nhwc4 | |||
| if (need_align_) { | |||
| PackNHWCToNHWC4Fp32(input_addr, packed_input_, conv_param_->input_batch_, | |||
| conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_); | |||
| @@ -27,12 +27,41 @@ using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_DepthwiseConv2D; | |||
| namespace mindspore::kernel { | |||
| ConvolutionDepthwise3x3CPUKernel::~ConvolutionDepthwise3x3CPUKernel() { | |||
| FreeTmpBufer(); | |||
| if (block_buffer_ != nullptr) { | |||
| free(block_buffer_); | |||
| block_buffer_ = nullptr; | |||
| } | |||
| if (packed_weight_ != nullptr) { | |||
| free(packed_weight_); | |||
| packed_weight_ = nullptr; | |||
| } | |||
| } | |||
| void ConvolutionDepthwise3x3CPUKernel::FreeTmpBufer() { | |||
| if (need_align_) { | |||
| if (packed_input_ != nullptr) { | |||
| free(packed_input_); | |||
| packed_input_ = nullptr; | |||
| } | |||
| if (packed_output_ != nullptr) { | |||
| free(packed_output_); | |||
| packed_output_ = nullptr; | |||
| } | |||
| } | |||
| if (trans_buffer_ != nullptr) { | |||
| free(trans_buffer_); | |||
| trans_buffer_ = nullptr; | |||
| } | |||
| } | |||
| int ConvolutionDepthwise3x3CPUKernel::InitWeightBias() { | |||
| // init weight: o, h, w, i; o == group, i == 1 | |||
| auto weight_tensor = in_tensors_[kWeightIndex]; | |||
| auto origin_weight = reinterpret_cast<float *>(weight_tensor->Data()); | |||
| // o h w 1 -> o/4 h w 1 4 | |||
| int OC4 = UP_DIV(conv_param_->output_channel_, C4NUM); | |||
| int OC4 = UP_DIV(weight_tensor->Batch(), C4NUM); | |||
| int weight_c4_size = OC4 * C4NUM * 9; | |||
| auto tmp_weight = reinterpret_cast<float *>(malloc(weight_c4_size * sizeof(float))); | |||
| if (tmp_weight == nullptr) { | |||
| @@ -40,8 +69,8 @@ int ConvolutionDepthwise3x3CPUKernel::InitWeightBias() { | |||
| return RET_ERROR; | |||
| } | |||
| memset(tmp_weight, 0, weight_c4_size * sizeof(float)); | |||
| PackNCHWToNC4HW4Fp32(origin_weight, tmp_weight, 1, conv_param_->kernel_h_ * conv_param_->kernel_w_, | |||
| conv_param_->output_channel_); | |||
| PackNCHWToNC4HW4Fp32(origin_weight, tmp_weight, 1, weight_tensor->Height() * weight_tensor->Width(), | |||
| weight_tensor->Batch()); | |||
| // weight transform | |||
| int packed_weight_size = OC4 * C4NUM * 16; | |||
| @@ -62,8 +91,9 @@ int ConvolutionDepthwise3x3CPUKernel::InitWeightBias() { | |||
| memset(bias_data_, 0, C4NUM * OC4 * sizeof(float)); | |||
| if (in_tensors_.size() == kInputSize2) { | |||
| auto ori_bias = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data()); | |||
| memcpy(bias_data_, ori_bias, conv_param_->output_channel_ * sizeof(float)); | |||
| memcpy(bias_data_, ori_bias, in_tensors_.at(kBiasIndex)->ElementsNum() * sizeof(float)); | |||
| } | |||
| conv_param_->thread_num_ = MSMIN(thread_count_, OC4); | |||
| return RET_OK; | |||
| } | |||
| @@ -106,48 +136,22 @@ int ConvolutionDepthwise3x3CPUKernel::Init() { | |||
| MS_LOG(ERROR) << "malloc block buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| auto ret = InitWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Depthwise3x3 fp32 initWeightBias error!ret: " << ret; | |||
| return ret; | |||
| } | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| return ReSize(); | |||
| } | |||
| void ConvolutionDepthwise3x3CPUKernel::FreeTmpBufer() { | |||
| if (need_align_) { | |||
| if (packed_input_ != nullptr) { | |||
| free(packed_input_); | |||
| packed_input_ = nullptr; | |||
| } | |||
| if (packed_output_ != nullptr) { | |||
| free(packed_output_); | |||
| packed_output_ = nullptr; | |||
| } | |||
| } | |||
| if (trans_buffer_ != nullptr) { | |||
| free(trans_buffer_); | |||
| trans_buffer_ = nullptr; | |||
| } | |||
| if (packed_weight_ != nullptr) { | |||
| free(packed_weight_); | |||
| packed_weight_ = nullptr; | |||
| } | |||
| } | |||
| int ConvolutionDepthwise3x3CPUKernel::ReSize() { | |||
| FreeTmpBufer(); | |||
| // conv base init | |||
| ConvolutionBaseCPUKernel::Init(); | |||
| auto ret = InitWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Depthwise3x3 fp32 initWeightBias error!ret: " << ret; | |||
| return ret; | |||
| } | |||
| // init threadNum; | |||
| conv_param_->thread_num_ = MSMIN(thread_count_, UP_DIV(conv_param_->output_channel_, C4NUM)); | |||
| ret = InitBuffer(); | |||
| auto ret = InitBuffer(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Depthwise3x3 fp32 initBuffer error!ret: " << ret; | |||
| return ret; | |||
| @@ -30,13 +30,7 @@ class ConvolutionDepthwise3x3CPUKernel : public ConvolutionBaseCPUKernel { | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {} | |||
| ~ConvolutionDepthwise3x3CPUKernel() override { | |||
| FreeTmpBufer(); | |||
| if (block_buffer_ != nullptr) { | |||
| free(block_buffer_); | |||
| block_buffer_ = nullptr; | |||
| } | |||
| }; | |||
| ~ConvolutionDepthwise3x3CPUKernel() override; | |||
| int Init() override; | |||
| int ReSize() override; | |||
| @@ -27,18 +27,19 @@ using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_DeDepthwiseConv2D; | |||
| namespace mindspore::kernel { | |||
| DeconvolutionDepthwiseCPUKernel::~DeconvolutionDepthwiseCPUKernel() { FreeTmpBuffer(); } | |||
| void DeconvolutionDepthwiseCPUKernel::FreeTmpBuffer() { | |||
| DeconvolutionDepthwiseCPUKernel::~DeconvolutionDepthwiseCPUKernel() { | |||
| if (sliding_ != nullptr) { | |||
| delete sliding_; | |||
| sliding_ = nullptr; | |||
| } | |||
| if (packed_weight_ != nullptr) { | |||
| delete packed_weight_; | |||
| packed_weight_ = nullptr; | |||
| } | |||
| FreeTmpBuffer(); | |||
| } | |||
| void DeconvolutionDepthwiseCPUKernel::FreeTmpBuffer() { | |||
| if (need_align_) { | |||
| if (packed_input_ != nullptr) { | |||
| delete packed_input_; | |||
| @@ -60,9 +61,6 @@ int DeconvolutionDepthwiseCPUKernel::InitSlideParam() { | |||
| conv_param_->output_h_ = in_tensors_.front()->shape().at(kNHWC_H); | |||
| conv_param_->output_w_ = in_tensors_.front()->shape().at(kNHWC_W); | |||
| conv_param_->output_channel_ = in_tensors_.front()->shape().at(kNHWC_C); | |||
| // init sliding window param | |||
| sliding_ = new SlidingWindowParam; | |||
| InitSlidingParamConvDw(sliding_, conv_param_, C4NUM); | |||
| return RET_OK; | |||
| } | |||
| @@ -71,19 +69,17 @@ int DeconvolutionDepthwiseCPUKernel::InitWeightBias() { | |||
| // init weight: o, h, w, i; o == group, i == 1 | |||
| auto weight_tensor = in_tensors_[kWeightIndex]; | |||
| auto origin_weight = reinterpret_cast<float *>(weight_tensor->Data()); | |||
| int OC4 = UP_DIV(conv_param_->output_channel_, C4NUM); | |||
| int pack_weight_size = C4NUM * OC4 * conv_param_->kernel_h_ * conv_param_->kernel_w_; | |||
| int OC4 = UP_DIV(weight_tensor->Batch(), C4NUM); | |||
| int pack_weight_size = C4NUM * OC4 * weight_tensor->Height() * weight_tensor->Width(); | |||
| packed_weight_ = reinterpret_cast<float *>(malloc(pack_weight_size * sizeof(float))); | |||
| if (packed_weight_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_weight_, 0, pack_weight_size * sizeof(float)); | |||
| PackNCHWToNC4HW4Fp32(origin_weight, packed_weight_, 1, conv_param_->kernel_h_ * conv_param_->kernel_w_, | |||
| conv_param_->output_channel_); | |||
| PackNCHWToNC4HW4Fp32(origin_weight, packed_weight_, 1, weight_tensor->Height() * weight_tensor->Width(), | |||
| weight_tensor->Batch()); | |||
| // init bias | |||
| bias_data_ = reinterpret_cast<float *>(malloc(C4NUM * OC4 * sizeof(float))); | |||
| if (bias_data_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| @@ -92,16 +88,14 @@ int DeconvolutionDepthwiseCPUKernel::InitWeightBias() { | |||
| memset(bias_data_, 0, C4NUM * OC4 * sizeof(float)); | |||
| if (in_tensors_.size() == kInputSize2) { | |||
| auto ori_bias = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data()); | |||
| memcpy(bias_data_, ori_bias, conv_param_->output_channel_ * sizeof(float)); | |||
| memcpy(bias_data_, ori_bias, in_tensors_.at(kBiasIndex)->ElementsNum() * sizeof(float)); | |||
| } | |||
| // init threadNum; | |||
| conv_param_->thread_num_ = MSMIN(conv_param_->thread_num_, OC4); | |||
| conv_param_->thread_num_ = MSMIN(thread_count_, OC4); | |||
| return RET_OK; | |||
| } | |||
| int DeconvolutionDepthwiseCPUKernel::InitBuffer() { | |||
| // malloc pack input and output buffer | |||
| if (conv_param_->input_channel_ % C4NUM != 0) { | |||
| need_align_ = true; | |||
| int IC4 = UP_DIV(conv_param_->input_channel_, C4NUM); | |||
| @@ -111,7 +105,6 @@ int DeconvolutionDepthwiseCPUKernel::InitBuffer() { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_input_, 0, pack_input_size * sizeof(float)); | |||
| int OC4 = UP_DIV(conv_param_->output_channel_, C4NUM); | |||
| int pack_output_size = conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * C4NUM * OC4; | |||
| @@ -126,6 +119,17 @@ int DeconvolutionDepthwiseCPUKernel::InitBuffer() { | |||
| } | |||
| int DeconvolutionDepthwiseCPUKernel::Init() { | |||
| sliding_ = new (std::nothrow) SlidingWindowParam; | |||
| if (sliding_ == nullptr) { | |||
| MS_LOG(ERROR) << "new sliding window param failed."; | |||
| return RET_ERROR; | |||
| } | |||
| auto ret = InitWeightBias(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Deconvolution depthwise fp32 InitWeightBias failed.ret: " << ret; | |||
| return ret; | |||
| } | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| @@ -135,16 +139,9 @@ int DeconvolutionDepthwiseCPUKernel::Init() { | |||
| int DeconvolutionDepthwiseCPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| InitSlideParam(); | |||
| // conv base init | |||
| ConvolutionBaseCPUKernel::Init(); | |||
| auto ret = InitWeightBias(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Deconvolution depthwise fp32 InitWeightBias failed.ret: " << ret; | |||
| return ret; | |||
| } | |||
| ret = InitBuffer(); | |||
| auto ret = InitBuffer(); | |||
| if (ret != 0) { | |||
| MS_LOG(ERROR) << "Deconvolution depthwise fp32 InitBuffer failed.ret: " << ret; | |||
| return ret; | |||
| @@ -181,7 +178,6 @@ int DeconvolutionDepthwiseCPUKernel::Run() { | |||
| auto input_tensor = in_tensors_.at(kInputIndex); | |||
| auto input_addr = reinterpret_cast<float *>(input_tensor->Data()); | |||
| // pack input: to nhwc4 | |||
| if (need_align_) { | |||
| PackNHWCToNHWC4Fp32(input_addr, packed_input_, conv_param_->input_batch_, | |||
| conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_); | |||
| @@ -29,15 +29,6 @@ using mindspore::schema::PrimitiveType_DepthwiseConv2D; | |||
| namespace mindspore::kernel { | |||
| void ConvolutionDepthwiseInt8CPUKernel::FreeTmpBuffer() { | |||
| if (sliding != nullptr) { | |||
| delete sliding; | |||
| sliding = nullptr; | |||
| } | |||
| if (packed_weight_ != nullptr) { | |||
| free(packed_weight_); | |||
| packed_weight_ = nullptr; | |||
| } | |||
| if (packed_input_ != nullptr) { | |||
| free(packed_input_); | |||
| packed_input_ = nullptr; | |||
| @@ -51,6 +42,14 @@ void ConvolutionDepthwiseInt8CPUKernel::FreeTmpBuffer() { | |||
| } | |||
| ConvolutionDepthwiseInt8CPUKernel::~ConvolutionDepthwiseInt8CPUKernel() { | |||
| if (sliding != nullptr) { | |||
| delete sliding; | |||
| sliding = nullptr; | |||
| } | |||
| if (packed_weight_ != nullptr) { | |||
| free(packed_weight_); | |||
| packed_weight_ = nullptr; | |||
| } | |||
| FreeTmpBuffer(); | |||
| FreeQuantParam(); | |||
| } | |||
| @@ -58,18 +57,18 @@ ConvolutionDepthwiseInt8CPUKernel::~ConvolutionDepthwiseInt8CPUKernel() { | |||
| int ConvolutionDepthwiseInt8CPUKernel::InitWeightBias() { | |||
| // init weight, int8 -> int16 | |||
| // o, h, w, i -> o/8, h, w, i, 8; o == group, i == 1 | |||
| auto origin_weight = reinterpret_cast<int8_t *>(in_tensors_[kWeightIndex]->Data()); | |||
| int OC4 = UP_DIV(conv_param_->output_channel_, C4NUM); | |||
| int pack_weight_size = C4NUM * OC4 * conv_param_->kernel_h_ * conv_param_->kernel_w_; | |||
| auto weight_tensor = in_tensors_[kWeightIndex]; | |||
| auto origin_weight = reinterpret_cast<int8_t *>(weight_tensor->Data()); | |||
| int OC4 = UP_DIV(weight_tensor->Batch(), C4NUM); | |||
| int pack_weight_size = C4NUM * OC4 * weight_tensor->Height() * weight_tensor->Width(); | |||
| packed_weight_ = reinterpret_cast<int16_t *>(malloc(pack_weight_size * sizeof(int16_t))); | |||
| if (packed_weight_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_weight_, 0, pack_weight_size * sizeof(int16_t)); | |||
| PackDepthwiseInt8Weight(origin_weight, packed_weight_, conv_param_); | |||
| PackDepthwiseInt8Weight(origin_weight, packed_weight_, weight_tensor->Height() * weight_tensor->Width(), | |||
| weight_tensor->Batch(), &(conv_param_->conv_quant_arg_)); | |||
| // init bias, add output zp | |||
| bias_data_ = reinterpret_cast<int32_t *>(malloc(C4NUM * OC4 * sizeof(int32_t))); | |||
| if (bias_data_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| @@ -77,18 +76,19 @@ int ConvolutionDepthwiseInt8CPUKernel::InitWeightBias() { | |||
| } | |||
| memset(bias_data_, 0, C4NUM * OC4 * sizeof(int32_t)); | |||
| if (in_tensors_.size() == kInputSize2) { | |||
| auto ori_bias = reinterpret_cast<int32_t *>(in_tensors_.at(kBiasIndex)->Data()); | |||
| memcpy(bias_data_, ori_bias, conv_param_->output_channel_ * sizeof(int32_t)); | |||
| auto bias_tensor = in_tensors_.at(kBiasIndex); | |||
| auto ori_bias = reinterpret_cast<int32_t *>(bias_tensor->Data()); | |||
| memcpy(bias_data_, ori_bias, bias_tensor->ElementsNum() * sizeof(int32_t)); | |||
| } | |||
| conv_param_->thread_num_ = MSMIN(thread_count_, OC4); | |||
| return RET_OK; | |||
| } | |||
| int ConvolutionDepthwiseInt8CPUKernel::InitBuffer() { | |||
| // malloc packed input buffer | |||
| int pack_input_size = conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * C4NUM * | |||
| UP_DIV(conv_param_->input_channel_, 4); | |||
| packed_input_ = reinterpret_cast<int16_t *>(malloc(pack_input_size * sizeof(int16_t))); | |||
| memset(packed_input_, 0, pack_input_size * sizeof(int16_t)); | |||
| if (packed_input_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| @@ -108,6 +108,11 @@ int ConvolutionDepthwiseInt8CPUKernel::InitBuffer() { | |||
| } | |||
| int ConvolutionDepthwiseInt8CPUKernel::Init() { | |||
| sliding = new (std::nothrow) SlidingWindowParam; | |||
| if (sliding == nullptr) { | |||
| MS_LOG(ERROR) << "new sliding window param."; | |||
| return RET_ERROR; | |||
| } | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| @@ -116,32 +121,19 @@ int ConvolutionDepthwiseInt8CPUKernel::Init() { | |||
| int ConvolutionDepthwiseInt8CPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| // conv base init | |||
| ConvolutionBaseCPUKernel::Init(); | |||
| // init sliding window param | |||
| sliding = new (std::nothrow) SlidingWindowParam; | |||
| if (sliding == nullptr) { | |||
| MS_LOG(ERROR) << "new sliding window param."; | |||
| return RET_ERROR; | |||
| } | |||
| InitSlidingParamConvDw(sliding, conv_param_, C4NUM); | |||
| // init quant param | |||
| auto ret = ConvolutionBaseCPUKernel::SetQuantParam(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Set quant param failed."; | |||
| return ret; | |||
| } | |||
| // init weight and bias | |||
| ret = InitWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Depthwise int8 InitWeightBias error!"; | |||
| return ret; | |||
| } | |||
| ret = InitBuffer(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Depthwise int8 ReSize error!"; | |||
| @@ -177,7 +169,6 @@ int ConvolutionDepthwiseInt8CPUKernel::Run() { | |||
| return RET_ERROR; | |||
| } | |||
| // pack input, assume input format: NHWC -> NHWC4 | |||
| auto input_tensor = in_tensors_.at(kInputIndex); | |||
| auto input_addr = reinterpret_cast<int8_t *>(input_tensor->Data()); | |||
| PackDepthwiseInt8Input(input_addr, packed_input_, conv_param_); | |||
| @@ -29,11 +29,6 @@ using mindspore::schema::PrimitiveType_DeDepthwiseConv2D; | |||
| namespace mindspore::kernel { | |||
| DeconvolutionDepthwiseInt8CPUKernel::~DeconvolutionDepthwiseInt8CPUKernel() { | |||
| FreeTmpBuffer(); | |||
| FreeQuantParam(); | |||
| } | |||
| void DeconvolutionDepthwiseInt8CPUKernel::FreeTmpBuffer() { | |||
| if (sliding != nullptr) { | |||
| delete sliding; | |||
| sliding = nullptr; | |||
| @@ -42,6 +37,11 @@ void DeconvolutionDepthwiseInt8CPUKernel::FreeTmpBuffer() { | |||
| delete packed_weight_; | |||
| packed_weight_ = nullptr; | |||
| } | |||
| FreeTmpBuffer(); | |||
| FreeQuantParam(); | |||
| } | |||
| void DeconvolutionDepthwiseInt8CPUKernel::FreeTmpBuffer() { | |||
| if (packed_input_ != nullptr) { | |||
| delete packed_input_; | |||
| packed_input_ = nullptr; | |||
| @@ -61,18 +61,18 @@ void DeconvolutionDepthwiseInt8CPUKernel::FreeTmpBuffer() { | |||
| int DeconvolutionDepthwiseInt8CPUKernel::InitWeightBias() { | |||
| // init weight: int8 -> int16 | |||
| // o, h, w, i -> o/8, h, w, i, 8; o == group, i == 1 | |||
| auto origin_weight = reinterpret_cast<int8_t *>(in_tensors_[kWeightIndex]->Data()); | |||
| int OC4 = UP_DIV(conv_param_->output_channel_, C4NUM); | |||
| int pack_weight_size = C4NUM * OC4 * conv_param_->kernel_h_ * conv_param_->kernel_w_; | |||
| auto weight_tensor = in_tensors_[kWeightIndex]; | |||
| auto origin_weight = reinterpret_cast<int8_t *>(weight_tensor->Data()); | |||
| int OC4 = UP_DIV(weight_tensor->Batch(), C4NUM); | |||
| int pack_weight_size = C4NUM * OC4 * weight_tensor->Height() * weight_tensor->Width(); | |||
| packed_weight_ = reinterpret_cast<int16_t *>(malloc(pack_weight_size * sizeof(int16_t))); | |||
| if (packed_weight_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| } | |||
| memset(packed_weight_, 0, pack_weight_size * sizeof(int16_t)); | |||
| PackDepthwiseInt8Weight(origin_weight, packed_weight_, conv_param_); | |||
| PackDepthwiseInt8Weight(origin_weight, packed_weight_, weight_tensor->Height() * weight_tensor->Width(), | |||
| weight_tensor->Batch(), &(conv_param_->conv_quant_arg_)); | |||
| // init bias, add output zp | |||
| bias_data_ = reinterpret_cast<int32_t *>(malloc(C4NUM * OC4 * sizeof(int32_t))); | |||
| if (bias_data_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| @@ -80,9 +80,11 @@ int DeconvolutionDepthwiseInt8CPUKernel::InitWeightBias() { | |||
| } | |||
| memset(bias_data_, 0, C4NUM * OC4 * sizeof(int32_t)); | |||
| if (in_tensors_.size() == kInputSize2) { | |||
| auto ori_bias = reinterpret_cast<int32_t *>(in_tensors_.at(kBiasIndex)->Data()); | |||
| memcpy(bias_data_, ori_bias, conv_param_->output_channel_ * sizeof(int32_t)); | |||
| auto bias_tensor = in_tensors_.at(kBiasIndex); | |||
| auto ori_bias = reinterpret_cast<int32_t *>(bias_tensor->Data()); | |||
| memcpy(bias_data_, ori_bias, bias_tensor->ElementsNum() * sizeof(int32_t)); | |||
| } | |||
| conv_param_->thread_num_ = MSMIN(thread_count_, OC4); | |||
| return RET_OK; | |||
| } | |||
| @@ -96,7 +98,6 @@ int DeconvolutionDepthwiseInt8CPUKernel::InitSlideParam() { | |||
| conv_param_->output_w_ = in_tensors_.front()->shape().at(kNHWC_W); | |||
| conv_param_->output_channel_ = in_tensors_.front()->shape().at(kNHWC_C); | |||
| // init sliding window param | |||
| InitSlidingParamConvDw(sliding, conv_param_, C4NUM); | |||
| sliding->in_h_step_ = conv_param_->input_w_ * C4NUM; | |||
| @@ -108,11 +109,9 @@ int DeconvolutionDepthwiseInt8CPUKernel::InitSlideParam() { | |||
| } | |||
| int DeconvolutionDepthwiseInt8CPUKernel::InitBuffer() { | |||
| // malloc packed input buffer | |||
| int pack_input_size = conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * C4NUM * | |||
| UP_DIV(conv_param_->input_channel_, 4); | |||
| packed_input_ = reinterpret_cast<int16_t *>(malloc(pack_input_size * sizeof(int16_t))); | |||
| memset(packed_input_, 0, pack_input_size * sizeof(int16_t)); | |||
| if (packed_input_ == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||
| return RET_ERROR; | |||
| @@ -130,7 +129,6 @@ int DeconvolutionDepthwiseInt8CPUKernel::InitBuffer() { | |||
| memset(packed_output_, 0, pack_output_size * sizeof(int8_t)); | |||
| } | |||
| // malloc tmp buffer for int32 output | |||
| output_buffer_ = | |||
| reinterpret_cast<int32_t *>(malloc(conv_param_->output_h_ * conv_param_->output_w_ * C4NUM * sizeof(int32_t))); | |||
| if (output_buffer_ == nullptr) { | |||
| @@ -145,41 +143,33 @@ int DeconvolutionDepthwiseInt8CPUKernel::InitBuffer() { | |||
| } | |||
| int DeconvolutionDepthwiseInt8CPUKernel::Init() { | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| return ReSize(); | |||
| } | |||
| int DeconvolutionDepthwiseInt8CPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| sliding = new (std::nothrow) SlidingWindowParam; | |||
| if (sliding == nullptr) { | |||
| MS_LOG(ERROR) << "new SlidingWindowParam fail!"; | |||
| return RET_ERROR; | |||
| } | |||
| InitSlideParam(); | |||
| // conv base init | |||
| ConvolutionBaseCPUKernel::Init(); | |||
| // init quant param | |||
| auto ret = ConvolutionBaseCPUKernel::SetQuantParam(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Set quant param failed."; | |||
| return ret; | |||
| } | |||
| // init weight and bias | |||
| ret = InitWeightBias(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Deconv Depthwise int8 InitWeightBias error!"; | |||
| return ret; | |||
| } | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| return ReSize(); | |||
| } | |||
| int DeconvolutionDepthwiseInt8CPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| InitSlideParam(); | |||
| ConvolutionBaseCPUKernel::Init(); | |||
| ret = InitBuffer(); | |||
| auto ret = InitBuffer(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Deconv Depthwise int8 InitBuffer error!"; | |||
| return ret; | |||
| @@ -1035,18 +1035,18 @@ void PackDepthwiseInt8Input(const int8_t *src, int16_t *dst, const ConvParameter | |||
| } | |||
| } | |||
| void PackDepthwiseInt8Weight(const int8_t *origin_weight, int16_t *packed_weight_, const ConvParameter *conv_param) { | |||
| int weight_zp = conv_param->conv_quant_arg_.filter_quant_args_[0].zp_; | |||
| int unit = conv_param->kernel_h_ * conv_param->kernel_w_; | |||
| for (int c = 0; c < conv_param->output_channel_; c++) { | |||
| if (conv_param->conv_quant_arg_.per_channel_ & FILTER_PER_CHANNEL) { | |||
| weight_zp = conv_param->conv_quant_arg_.filter_quant_args_[c].zp_; | |||
| void PackDepthwiseInt8Weight(const int8_t *origin_weight, int16_t *packed_weight_, int plane, int channel, | |||
| ConvQuantArg *quant_qrg) { | |||
| int weight_zp = quant_qrg->filter_quant_args_[0].zp_; | |||
| for (int c = 0; c < channel; c++) { | |||
| if (quant_qrg->per_channel_ & FILTER_PER_CHANNEL) { | |||
| weight_zp = quant_qrg->filter_quant_args_[c].zp_; | |||
| } | |||
| int c4_block_num = c / C4NUM; | |||
| int c4_block_rem = c % C4NUM; | |||
| const int8_t *src_c = origin_weight + c * unit; | |||
| int16_t *dst_c = packed_weight_ + c4_block_num * unit * C4NUM; | |||
| for (int k = 0; k < unit; k++) { | |||
| const int8_t *src_c = origin_weight + c * plane; | |||
| int16_t *dst_c = packed_weight_ + c4_block_num * plane * C4NUM; | |||
| for (int k = 0; k < plane; k++) { | |||
| const int8_t *src_kernel = src_c + k; | |||
| int16_t *dst_kernel = dst_c + C4NUM * k + c4_block_rem; | |||
| *dst_kernel = (int16_t)(src_kernel[0] - weight_zp); | |||
| @@ -100,7 +100,8 @@ void PackNCHWToNHWCInt8(const void *src, void *dst, int batch, int plane, int ch | |||
| void PackDepthwiseInt8Input(const int8_t *src, int16_t *dst, const ConvParameter *conv_param); | |||
| void PackDepthwiseInt8Weight(const int8_t *src, int16_t *dst, const ConvParameter *conv_param); | |||
| void PackDepthwiseInt8Weight(const int8_t *origin_weight, int16_t *packed_weight_, int plane, int channel, | |||
| ConvQuantArg *quant_qrg); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||