Browse Source

!1044 clean pylint warning in test dir

Merge pull request !1044 from jinyaohui/clean_pylint_test
tags/v0.3.0-alpha
mindspore-ci-bot Gitee 5 years ago
parent
commit
2bc3fcb1c1
100 changed files with 932 additions and 572 deletions
  1. +8
    -3
      tests/st/ops/ascend/test_add.py
  2. +5
    -1
      tests/st/ops/ascend/test_addn.py
  3. +80
    -67
      tests/st/ops/ascend/test_aicpu_ops/test_expand_dims.py
  4. +68
    -57
      tests/st/ops/ascend/test_aicpu_ops/test_flatten.py
  5. +80
    -67
      tests/st/ops/ascend/test_aicpu_ops/test_is_finite.py
  6. +80
    -67
      tests/st/ops/ascend/test_aicpu_ops/test_reshape.py
  7. +80
    -67
      tests/st/ops/ascend/test_aicpu_ops/test_squeeze.py
  8. +10
    -5
      tests/st/ops/ascend/test_apply_momentum.py
  9. +14
    -11
      tests/st/ops/ascend/test_biasAddGrad.py
  10. +4
    -1
      tests/st/ops/ascend/test_bias_add_grad.py
  11. +12
    -11
      tests/st/ops/ascend/test_conv.py
  12. +24
    -21
      tests/st/ops/ascend/test_conv2dGradFilter.py
  13. +12
    -8
      tests/st/ops/ascend/test_conv_grad.py
  14. +4
    -0
      tests/st/ops/ascend/test_dense.py
  15. +4
    -0
      tests/st/ops/ascend/test_dense_grad.py
  16. +1
    -0
      tests/st/ops/ascend/test_drop_out_gen_mask.py
  17. +1
    -0
      tests/st/ops/ascend/test_full_connection.py
  18. +4
    -2
      tests/st/ops/ascend/test_fused_batchnorm.py
  19. +7
    -3
      tests/st/ops/ascend/test_fused_batchnorm_grad.py
  20. +21
    -19
      tests/st/ops/ascend/test_image_gradients.py
  21. +7
    -2
      tests/st/ops/ascend/test_matmul.py
  22. +3
    -2
      tests/st/ops/ascend/test_maxpool.py
  23. +1
    -0
      tests/st/ops/ascend/test_maxpool_grad.py
  24. +6
    -2
      tests/st/ops/ascend/test_maxpool_with_argmax_grad.py
  25. +5
    -1
      tests/st/ops/ascend/test_relu.py
  26. +6
    -2
      tests/st/ops/ascend/test_relu_grad.py
  27. +14
    -10
      tests/st/ops/ascend/test_reshape.py
  28. +5
    -1
      tests/st/ops/ascend/test_simplemean.py
  29. +6
    -2
      tests/st/ops/ascend/test_simplemean_grad.py
  30. +6
    -2
      tests/st/ops/ascend/test_sparseSoftmaxCrossEntropyWithLogits.py
  31. +1
    -0
      tests/st/ops/ascend/test_sparse_softmax_cross_entropy_with_logits_grad.py
  32. +4
    -2
      tests/st/ops/ascend/test_tbe_ops/test_AssignAdd.py
  33. +4
    -2
      tests/st/ops/ascend/test_tbe_ops/test_AssignSub.py
  34. +5
    -0
      tests/st/ops/ascend/test_tbe_ops/test_ReduceMean.py
  35. +4
    -2
      tests/st/ops/ascend/test_tbe_ops/test_add.py
  36. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_addn.py
  37. +10
    -9
      tests/st/ops/ascend/test_tbe_ops/test_apply_adam.py
  38. +8
    -5
      tests/st/ops/ascend/test_tbe_ops/test_apply_momentum.py
  39. +5
    -0
      tests/st/ops/ascend/test_tbe_ops/test_batchmatmul.py
  40. +2
    -2
      tests/st/ops/ascend/test_tbe_ops/test_batchnorm.py
  41. +6
    -3
      tests/st/ops/ascend/test_tbe_ops/test_batchnorm_grad.py
  42. +2
    -1
      tests/st/ops/ascend/test_tbe_ops/test_bias_add.py
  43. +4
    -0
      tests/st/ops/ascend/test_tbe_ops/test_bias_add_grad.py
  44. +3
    -2
      tests/st/ops/ascend/test_tbe_ops/test_concat.py
  45. +10
    -11
      tests/st/ops/ascend/test_tbe_ops/test_conv.py
  46. +10
    -7
      tests/st/ops/ascend/test_tbe_ops/test_conv2d_backprop_filter.py
  47. +15
    -12
      tests/st/ops/ascend/test_tbe_ops/test_conv2d_backprop_input.py
  48. +3
    -2
      tests/st/ops/ascend/test_tbe_ops/test_dropout_do_mask.py
  49. +3
    -0
      tests/st/ops/ascend/test_tbe_ops/test_gelu.py
  50. +4
    -1
      tests/st/ops/ascend/test_tbe_ops/test_gelu_grad_sens.py
  51. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_greater.py
  52. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_layernorm.py
  53. +6
    -1
      tests/st/ops/ascend/test_tbe_ops/test_layernorm_grad.py
  54. +7
    -3
      tests/st/ops/ascend/test_tbe_ops/test_less.py
  55. +7
    -3
      tests/st/ops/ascend/test_tbe_ops/test_less_equal.py
  56. +6
    -1
      tests/st/ops/ascend/test_tbe_ops/test_logical_and.py
  57. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_logical_not.py
  58. +6
    -1
      tests/st/ops/ascend/test_tbe_ops/test_logical_or.py
  59. +5
    -2
      tests/st/ops/ascend/test_tbe_ops/test_matmul.py
  60. +7
    -2
      tests/st/ops/ascend/test_tbe_ops/test_matmul_failed.py
  61. +7
    -3
      tests/st/ops/ascend/test_tbe_ops/test_maximum.py
  62. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_maximum_grad.py
  63. +2
    -2
      tests/st/ops/ascend/test_tbe_ops/test_maxpool.py
  64. +1
    -0
      tests/st/ops/ascend/test_tbe_ops/test_maxpool_grad.py
  65. +7
    -3
      tests/st/ops/ascend/test_tbe_ops/test_minimum.py
  66. +4
    -1
      tests/st/ops/ascend/test_tbe_ops/test_minimum_grad.py
  67. +7
    -2
      tests/st/ops/ascend/test_tbe_ops/test_mul.py
  68. +4
    -1
      tests/st/ops/ascend/test_tbe_ops/test_npu_alloc_float_status.py
  69. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_npu_clear_float_status.py
  70. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_npu_get_float_status.py
  71. +4
    -1
      tests/st/ops/ascend/test_tbe_ops/test_pad.py
  72. +7
    -3
      tests/st/ops/ascend/test_tbe_ops/test_pow.py
  73. +7
    -2
      tests/st/ops/ascend/test_tbe_ops/test_realdiv.py
  74. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_reciprocal.py
  75. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_relu.py
  76. +6
    -2
      tests/st/ops/ascend/test_tbe_ops/test_relu_grad.py
  77. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_relu_v2_grad.py
  78. +3
    -0
      tests/st/ops/ascend/test_tbe_ops/test_resize_nearest_neighbor.py
  79. +2
    -1
      tests/st/ops/ascend/test_tbe_ops/test_resize_nearest_neighbor_grad.py
  80. +3
    -1
      tests/st/ops/ascend/test_tbe_ops/test_scatter_nd.py
  81. +12
    -7
      tests/st/ops/ascend/test_tbe_ops/test_select.py
  82. +3
    -0
      tests/st/ops/ascend/test_tbe_ops/test_sigmoid.py
  83. +1
    -0
      tests/st/ops/ascend/test_tbe_ops/test_sigmoid_cross_entropy_with_logits.py
  84. +1
    -0
      tests/st/ops/ascend/test_tbe_ops/test_sigmoid_cross_entropy_with_logits_grad.py
  85. +2
    -1
      tests/st/ops/ascend/test_tbe_ops/test_sigmoid_grad.py
  86. +8
    -6
      tests/st/ops/ascend/test_tbe_ops/test_slice.py
  87. +1
    -0
      tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss.py
  88. +1
    -0
      tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss_grad.py
  89. +6
    -1
      tests/st/ops/ascend/test_tbe_ops/test_softmax.py
  90. +2
    -1
      tests/st/ops/ascend/test_tbe_ops/test_softmax_cross_entropy_with_logits.py
  91. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_split.py
  92. +6
    -1
      tests/st/ops/ascend/test_tbe_ops/test_sqrt.py
  93. +6
    -1
      tests/st/ops/ascend/test_tbe_ops/test_square.py
  94. +12
    -6
      tests/st/ops/ascend/test_tbe_ops/test_stridedslice.py
  95. +5
    -0
      tests/st/ops/ascend/test_tbe_ops/test_stridedslice_grad.py
  96. +7
    -3
      tests/st/ops/ascend/test_tbe_ops/test_sub.py
  97. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_tanh.py
  98. +5
    -1
      tests/st/ops/ascend/test_tbe_ops/test_tanh_grad.py
  99. +1
    -0
      tests/st/ops/ascend/test_tbe_ops/test_tile.py
  100. +4
    -2
      tests/st/ops/ascend/test_tbe_ops/test_topk.py

+ 8
- 3
tests/st/ops/ascend/test_add.py View File

@@ -20,18 +20,23 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_task_sink=True)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.TensorAdd()
def construct(self, x, y):
return self.add(x, y)

x = np.ones([1,3,3,4]).astype(np.float32)
y = np.ones([1,3,3,4]).astype(np.float32)

x = np.ones([1, 3, 3, 4]).astype(np.float32)
y = np.ones([1, 3, 3, 4]).astype(np.float32)


def test_net():
add = Net()


+ 5
- 1
tests/st/ops/ascend/test_addn.py View File

@@ -20,15 +20,19 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.AddN()
def construct(self, x, y):
return self.add((x, y))


def test_net():
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32)


+ 80
- 67
tests/st/ops/ascend/test_aicpu_ops/test_expand_dims.py View File

@@ -18,97 +18,110 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.expand_dims = P.ExpandDims()
def __init__(self):
super(Net, self).__init__()
self.expand_dims = P.ExpandDims()

def construct(self, tensor, dim):
return self.expand_dims(tensor, dim)
def construct(self, tensor, dim):
return self.expand_dims(tensor, dim)


def test_net_bool():
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))


def test_net_float64():
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))

+ 68
- 57
tests/st/ops/ascend/test_aicpu_ops/test_flatten.py View File

@@ -17,83 +17,94 @@ from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np
import mindspore.context as context

context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.flatten = P.Flatten()
def __init__(self):
super(Net, self).__init__()
self.flatten = P.Flatten()

def construct(self, tensor):
return self.flatten(tensor)
def construct(self, tensor):
return self.flatten(tensor)


def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))


def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten()))
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))

+ 80
- 67
tests/st/ops/ascend/test_aicpu_ops/test_is_finite.py View File

@@ -18,97 +18,110 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.isfinite = P.IsFinite()
def __init__(self):
super(Net, self).__init__()
self.isfinite = P.IsFinite()

def construct(self, tensor):
return self.isfinite(tensor)
def construct(self, tensor):
return self.isfinite(tensor)


def test_net_bool():
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))


def test_net_float64():
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x)))
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))

+ 80
- 67
tests/st/ops/ascend/test_aicpu_ops/test_reshape.py View File

@@ -18,97 +18,110 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.reshape = P.Reshape()
def __init__(self):
super(Net, self).__init__()
self.reshape = P.Reshape()

def construct(self, tensor):
return self.reshape(tensor, (4,4))
def construct(self, tensor):
return self.reshape(tensor, (4, 4))


def test_net_bool():
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))


def test_net_float64():
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))

+ 80
- 67
tests/st/ops/ascend/test_aicpu_ops/test_squeeze.py View File

@@ -17,97 +17,110 @@ from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np
import mindspore.context as context

context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.squeeze = P.Squeeze()
def __init__(self):
super(Net, self).__init__()
self.squeeze = P.Squeeze()

def construct(self, tensor):
return self.squeeze(tensor)
def construct(self, tensor):
return self.squeeze(tensor)


def test_net_bool():
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))


def test_net_float64():
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze()))
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))

+ 10
- 5
tests/st/ops/ascend/test_apply_momentum.py View File

@@ -20,24 +20,29 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
self.variable = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='variable')
'normal', [2, 3, 3, 4]), name='variable')
self.accumulation = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='accumulation')
'normal', [2, 3, 3, 4]), name='accumulation')
self.learning_rate = Parameter(initializer(
'normal', [1, ]), name='learning_rate')
'normal', [1, ]), name='learning_rate')
self.gradient = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='gradient')
'normal', [2, 3, 3, 4]), name='gradient')
self.momentum = Parameter(initializer(
'normal', [1, ]), name='momentum')
'normal', [1, ]), name='momentum')

def construct(self):
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)


def test_net():
apply_momentum = Net()
output = apply_momentum()


+ 14
- 11
tests/st/ops/ascend/test_biasAddGrad.py View File

@@ -21,22 +21,25 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.bias_add_grad = G.BiasAddGrad()
#self.dout = Parameter(initializer(
#'normal', [2, 3, 3, 4]), name='dout')
def __init__(self):
super(Net, self).__init__()
self.bias_add_grad = G.BiasAddGrad()
# self.dout = Parameter(initializer(
# 'normal', [2, 3, 3, 4]), name='dout')

@ms_function
def construct(self, dout):
return self.bias_add_grad(dout)

@ms_function
def construct(self, dout):
return self.bias_add_grad(dout)

dout = np.ones([2,3,4,4]).astype(np.float32)
dout = np.ones([2, 3, 4, 4]).astype(np.float32)
bias_add_grad = Net()
output = bias_add_grad(Tensor(dout))
expect_output = np.array([32.,32.,32.]).astype(np.float32)
assert np.all(output.asnumpy()==expect_output), "bias_add_grad execute failed, please check current code commit"
expect_output = np.array([32., 32., 32.]).astype(np.float32)
assert np.all(output.asnumpy() == expect_output), "bias_add_grad execute failed, please check current code commit"
print(output.asnumpy())

+ 4
- 1
tests/st/ops/ascend/test_bias_add_grad.py View File

@@ -21,17 +21,20 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.bias_add_grad = G.BiasAddGrad()

@ms_function
def construct(self, dout):
return self.bias_add_grad(dout)


def test_net():
dout = np.random.rand(1, 1001).astype(np.float32)
bias_add_grad = Net()


+ 12
- 11
tests/st/ops/ascend/test_conv.py View File

@@ -20,32 +20,33 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
out_channel = 64
kernel_size = 7
self.conv = P.Conv2D(out_channel,
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1)
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1)
self.w = Parameter(initializer(
'normal', [64, 3, 7, 7]), name='w')

'normal', [64, 3, 7, 7]), name='w')

@ms_function
def construct(self, x):
return self.conv(x, self.w)



def test_net():
x = np.random.randn(32,3,224,224).astype(np.float32)
x = np.random.randn(32, 3, 224, 224).astype(np.float32)
conv = Net()
output = conv(Tensor(x))
print(output.asnumpy())

+ 24
- 21
tests/st/ops/ascend/test_conv2dGradFilter.py View File

@@ -21,37 +21,40 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.conv2d_grad = G.Conv2DBackpropFilter(4,1)
yt = Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32))
self.y = Parameter(yt, name='y')
self.get_shape = P.Shape()
def __init__(self):
super(Net, self).__init__()
self.conv2d_grad = G.Conv2DBackpropFilter(4, 1)
yt = Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32))
self.y = Parameter(yt, name='y')
self.get_shape = P.Shape()

@ms_function
def construct(self, x, out):
return self.conv2d_grad(out, x, self.get_shape(self.y))

@ms_function
def construct(self, x, out):
return self.conv2d_grad(out, x, self.get_shape(self.y))

x = Tensor(np.array([[[
[3, 0, 1, 2, 7, 4],
[1, 5, 8, 9, 3, 1],
[2, 7, 2, 5, 1, 3],
[0, 1, 3, 1, 7, 8],
[4, 2, 1, 6, 2, 8],
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32))
[3, 0, 1, 2, 7, 4],
[1, 5, 8, 9, 3, 1],
[2, 7, 2, 5, 1, 3],
[0, 1, 3, 1, 7, 8],
[4, 2, 1, 6, 2, 8],
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32))

out = Tensor(np.array([[[
[ -5, -4, 0, 8],
[-10, -2, 2, 3],
[ 0, -2, -4, -7],
[ -3, -2, -3, -16]]]]).astype(np.float32))
[-5, -4, 0, 8],
[-10, -2, 2, 3],
[0, -2, -4, -7],
[-3, -2, -3, -16]]]]).astype(np.float32))

operator = Net()
output = operator(x, out)
expect_out = np.array([[[[ -60., -142., -265.],[-104., -211., -322.],[-102., -144., -248.]]]]).astype(np.float32)
expect_out = np.array([[[[-60., -142., -265.], [-104., -211., -322.], [-102., -144., -248.]]]]).astype(np.float32)
print(output.asnumpy())
print(expect_out)
assert np.all(output.asnumpy()==expect_out), "conv2d_grad execute failed, please check current code commit"
assert np.all(output.asnumpy() == expect_out), "conv2d_grad execute failed, please check current code commit"

+ 12
- 8
tests/st/ops/ascend/test_conv_grad.py View File

@@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation

context.set_context(device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -33,26 +35,28 @@ class Grad(nn.Cell):
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
out_channel = 512
kernel_size = 2048
self.conv = P.Conv2D(out_channel,
(kernel_size, kernel_size),
mode=1,
pad_mode="same",
pad=3,
stride=2,
dilation=1,
group=1)
(kernel_size, kernel_size),
mode=1,
pad_mode="same",
pad=3,
stride=2,
dilation=1,
group=1)
self.w = Parameter(initializer(
'normal', [512, 2048, 1, 1]), name='w')
'normal', [512, 2048, 1, 1]), name='w')

@ms_function
def construct(self, x):
return self.conv(x, self.w)


def test_net():
x = np.ones([32, 2048, 7, 7]).astype(np.float32)
sens = np.ones([32, 512, 7, 7]).astype(np.float32)


+ 4
- 0
tests/st/ops/ascend/test_dense.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -30,6 +33,7 @@ class Net(nn.Cell):
def construct(self, x):
return self.dense(x)


def test_net():
x = np.random.randn(32, 2048).astype(np.float32)
net = Net()


+ 4
- 0
tests/st/ops/ascend/test_dense_grad.py View File

@@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation

context.set_context(device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -41,6 +44,7 @@ class Net(nn.Cell):
def construct(self, x):
return self.dense(x)


def test_net():
x = np.random.randn(32, 2048).astype(np.float32)
sens = np.random.randn(32, 1001).astype(np.float32)


+ 1
- 0
tests/st/ops/ascend/test_drop_out_gen_mask.py View File

@@ -17,6 +17,7 @@ from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np
import mindspore.context as context

context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend")



+ 1
- 0
tests/st/ops/ascend/test_full_connection.py View File

@@ -21,6 +21,7 @@ import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()


+ 4
- 2
tests/st/ops/ascend/test_fused_batchnorm.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -35,7 +38,7 @@ class Net(nn.Cell):


def test_net():
x = np.random.randn(1,64,112,112).astype(np.float32)
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
# mean = np.random.randn(1,16,1,1).astype(np.float32)
# variance = np.random.randn(1,16,1,1).astype(np.float32)
fusedBn = Net()
@@ -45,4 +48,3 @@ def test_net():

print("***********output y*********")
print(output.asnumpy())


+ 7
- 3
tests/st/ops/ascend/test_fused_batchnorm_grad.py View File

@@ -21,8 +21,11 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation
#context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

# context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -33,6 +36,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -47,8 +51,8 @@ class Net(nn.Cell):


def test_net():
x = np.random.randn(1,64,112,112).astype(np.float32)
sens = np.random.randn(1,64,112,112).astype(np.float32)
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
net = Grad(Net())
output = net(Tensor(x), Tensor(sens))
print("***********x*********")


+ 21
- 19
tests/st/ops/ascend/test_image_gradients.py View File

@@ -20,6 +20,8 @@ from mindspore import Tensor
from mindspore.common.api import ms_function

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -31,32 +33,32 @@ class Net(nn.Cell):


def test_image_gradients():
image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32)
expected_dy = np.array([[[[2,2],[0,0]]]]).astype(np.int32)
expected_dx = np.array([[[[1,0],[1,0]]]]).astype(np.int32)
image = Tensor(np.array([[[[1, 2], [3, 4]]]]), dtype=mstype.int32)
expected_dy = np.array([[[[2, 2], [0, 0]]]]).astype(np.int32)
expected_dx = np.array([[[[1, 0], [1, 0]]]]).astype(np.int32)
net = Net()
dy, dx = net(image)
assert np.any(dx.asnumpy()-expected_dx) == False
assert np.any(dy.asnumpy()-expected_dy) == False
assert np.any(dx.asnumpy() - expected_dx) == False
assert np.any(dy.asnumpy() - expected_dy) == False


def test_image_gradients_multi_channel_depth():
# 4 x 2 x 2 x 2
dtype = mstype.int32
image = Tensor(np.array([[[[1,2],[3,4]], [[5,6],[7,8]]],
[[[3,5],[7,9]], [[11,13],[15,17]]],
[[[5,10],[15,20]], [[25,30],[35,40]]],
[[[10,20],[30,40]], [[50,60],[70,80]]]]), dtype=dtype)
expected_dy = Tensor(np.array([[[[2,2],[0,0]], [[2,2],[0,0]]],
[[[4,4],[0,0]], [[4,4],[0,0]]],
[[[10,10],[0,0]], [[10,10],[0,0]]],
[[[20,20],[0,0]], [[20,20],[0,0]]]]), dtype=dtype)
expected_dx = Tensor(np.array([[[[1,0],[1,0]], [[1,0],[1,0]]],
[[[2,0],[2,0]], [[2,0],[2,0]]],
[[[5,0],[5,0]], [[5,0],[5,0]]],
[[[10,0],[10,0]], [[10,0],[10,0]]]]), dtype=dtype)
image = Tensor(np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
[[[3, 5], [7, 9]], [[11, 13], [15, 17]]],
[[[5, 10], [15, 20]], [[25, 30], [35, 40]]],
[[[10, 20], [30, 40]], [[50, 60], [70, 80]]]]), dtype=dtype)
expected_dy = Tensor(np.array([[[[2, 2], [0, 0]], [[2, 2], [0, 0]]],
[[[4, 4], [0, 0]], [[4, 4], [0, 0]]],
[[[10, 10], [0, 0]], [[10, 10], [0, 0]]],
[[[20, 20], [0, 0]], [[20, 20], [0, 0]]]]), dtype=dtype)
expected_dx = Tensor(np.array([[[[1, 0], [1, 0]], [[1, 0], [1, 0]]],
[[[2, 0], [2, 0]], [[2, 0], [2, 0]]],
[[[5, 0], [5, 0]], [[5, 0], [5, 0]]],
[[[10, 0], [10, 0]], [[10, 0], [10, 0]]]]), dtype=dtype)
net = Net()
dy, dx = net(image)

assert np.any(dx.asnumpy()-expected_dx.asnumpy()) == False
assert np.any(dy.asnumpy()-expected_dy.asnumpy()) == False
assert np.any(dx.asnumpy() - expected_dx.asnumpy()) == False
assert np.any(dy.asnumpy() - expected_dy.asnumpy()) == False

+ 7
- 2
tests/st/ops/ascend/test_matmul.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -30,8 +33,10 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.matmul(x1, x2)

x1 = np.random.randn(1,3).astype(np.float32)
x2 = np.random.randn(3,4).astype(np.float32)

x1 = np.random.randn(1, 3).astype(np.float32)
x2 = np.random.randn(3, 4).astype(np.float32)


def test_net():
matmul = Net()


+ 3
- 2
tests/st/ops/ascend/test_maxpool.py View File

@@ -20,12 +20,13 @@ import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.maxpool = P.MaxPool(pad_mode="SAME", window=3, stride=2)


@ms_function
def construct(self, x):
output = self.maxpool(x)
@@ -33,7 +34,7 @@ class Net(nn.Cell):


def test_net():
x = np.random.randn(32,64,112,112).astype(np.float32)
x = np.random.randn(32, 64, 112, 112).astype(np.float32)
maxpool = Net()
output = maxpool(Tensor(x))
print(output.asnumpy())

+ 1
- 0
tests/st/ops/ascend/test_maxpool_grad.py View File

@@ -19,6 +19,7 @@ from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context
from mindspore.ops.composite import GradOperation

context.set_context(device_target="Ascend")




+ 6
- 2
tests/st/ops/ascend/test_maxpool_with_argmax_grad.py View File

@@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation

context.set_context(device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -43,8 +46,9 @@ class Net(nn.Cell):

@ms_function
def construct(self, x):
output = self.maxpool(x)
return output[0]
output = self.maxpool(x)
return output[0]


def test_net():
x = np.random.randn(32, 64, 112, 112).astype(np.float32)


+ 5
- 1
tests/st/ops/ascend/test_relu.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -30,8 +33,9 @@ class Net(nn.Cell):
def construct(self, x):
return self.relu(x)


def test_net():
x = np.random.randn(2,3,3,4).astype(np.float32)
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
relu = Net()
output = relu(Tensor(x))
print(x)


+ 6
- 2
tests/st/ops/ascend/test_relu_grad.py View File

@@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation

context.set_context(device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -41,9 +44,10 @@ class Net(nn.Cell):
def construct(self, x):
return self.relu(x)


def test_net():
x = np.random.randn(2,3,3,4).astype(np.float32)
sens = np.random.randn(2,3,3,4).astype(np.float32)
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
net = Grad(Net())
output = net(Tensor(x), Tensor(sens))
print(len(output))


+ 14
- 10
tests/st/ops/ascend/test_reshape.py View File

@@ -18,18 +18,22 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.reshape = P.Reshape()
@ms_function
def construct(self, tensor):
return self.reshape(tensor, (1,16))
def __init__(self):
super(Net, self).__init__()
self.reshape = P.Reshape()

@ms_function
def construct(self, tensor):
return self.reshape(tensor, (1, 16))


def test_net():
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
reshape = Net()
output = reshape(Tensor(x))
print(output.asnumpy())
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
reshape = Net()
output = reshape(Tensor(x))
print(output.asnumpy())

+ 5
- 1
tests/st/ops/ascend/test_simplemean.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -29,7 +32,8 @@ class Net(nn.Cell):
@ms_function
def construct(self, x):
return self.simplemean(x, (-2, -1))


def test_net():
x = np.random.randn(32, 2048, 7, 7).astype(np.float32)
simplemean = Net()


+ 6
- 2
tests/st/ops/ascend/test_simplemean_grad.py View File

@@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation

context.set_context(device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -41,9 +44,10 @@ class Net(nn.Cell):
def construct(self, x):
return self.simplemean(x, (-2, -1))


def test_net():
x = np.random.randn(32,2048,7,7).astype(np.float32)
sens = np.random.randn(32,2048, 1, 1).astype(np.float32)
x = np.random.randn(32, 2048, 7, 7).astype(np.float32)
sens = np.random.randn(32, 2048, 1, 1).astype(np.float32)
net = Grad(Net())
output = net(Tensor(x), Tensor(sens))
print(output.asnumpy())


+ 6
- 2
tests/st/ops/ascend/test_sparseSoftmaxCrossEntropyWithLogits.py View File

@@ -18,6 +18,7 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


@@ -30,9 +31,10 @@ class Net(nn.Cell):
def construct(self, features, labels):
return self.SparseSoftmaxCrossEntropyWithLogits(features, labels)


def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logits_dtype):
num_class = logits_shape[1]
labels = np.random.randint(low=0, high=num_class - 1, size=labels_shape).astype(np.int32)
labels = np.random.randint(low=0, high=num_class - 1, size=labels_shape).astype(np.int32)
logits = np.random.rand(*logits_shape).astype(logits_dtype)
features = logits
features_reshape = np.reshape(features, [-1, num_class])
@@ -48,7 +50,7 @@ def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logi
loss = -np.sum(labels_mat * np.log(probs + 1.0e-20), axis=1)
bp_res = np.reshape(bp, features.shape)
loss_res = np.reshape(loss, labels.shape)
loss_res = np.sum(loss_res, axis=0)/loss_res.shape[0]
loss_res = np.sum(loss_res, axis=0) / loss_res.shape[0]
return labels, logits, loss_res, bp_res


@@ -65,4 +67,6 @@ def test_net():
print(loss_me.asnumpy().flatten())
print("-------------------------")
print(expect)


test_net()

+ 1
- 0
tests/st/ops/ascend/test_sparse_softmax_cross_entropy_with_logits_grad.py View File

@@ -21,6 +21,7 @@ import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self, is_grad=False):
super(Net, self).__init__()


+ 4
- 2
tests/st/ops/ascend/test_tbe_ops/test_AssignAdd.py View File

@@ -20,11 +20,13 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
"""Net definition"""

def __init__(self):
super(Net, self).__init__()
self.AssignAdd = P.AssignAdd()
@@ -39,8 +41,8 @@ class Net(nn.Cell):
def test_net():
"""test AssignAdd"""
net = Net()
x = Tensor(np.ones([1]).astype(np.float32)*100)
x = Tensor(np.ones([1]).astype(np.float32) * 100)

print("MyPrintResult dataX:", x)
result = net(x)
print("MyPrintResult data::", result.asnumpy())
print("MyPrintResult data::", result.asnumpy())

+ 4
- 2
tests/st/ops/ascend/test_tbe_ops/test_AssignSub.py View File

@@ -20,11 +20,13 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
"""Net definition"""

def __init__(self):
super(Net, self).__init__()
self.AssignSub = P.AssignSub()
@@ -39,8 +41,8 @@ class Net(nn.Cell):
def test_net():
"""test AssignSub"""
net = Net()
x = Tensor(np.ones([1]).astype(np.int32)*100)
x = Tensor(np.ones([1]).astype(np.int32) * 100)

print("MyPrintResult dataX:", x)
result = net(x)
print("MyPrintResult data::", result.asnumpy())
print("MyPrintResult data::", result.asnumpy())

+ 5
- 0
tests/st/ops/ascend/test_tbe_ops/test_ReduceMean.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self, keep_dims, axis):
super(Net, self).__init__()
@@ -31,8 +34,10 @@ class Net(nn.Cell):
def construct(self, inputs):
return self.reduce_mean(inputs, self.axis)


x1 = np.random.randn(64).astype(np.float32)


def test_net():
keepdims = False
axis = -1


+ 4
- 2
tests/st/ops/ascend/test_tbe_ops/test_add.py View File

@@ -21,6 +21,7 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -29,8 +30,9 @@ class Net(nn.Cell):
def construct(self, x, y):
return self.add(x, y)

x = np.random.randn(1,3,3,4).astype(np.float32)
y = np.random.randn(1,3,3,4).astype(np.float32)

x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32)


def test_net():


+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_addn.py View File

@@ -20,15 +20,19 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.AddN()
def construct(self, x, y):
return self.add((x, y))


def test_net():
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32)


+ 10
- 9
tests/st/ops/ascend/test_tbe_ops/test_apply_adam.py View File

@@ -19,6 +19,7 @@ from mindspore.nn import Dense, SoftmaxCrossEntropyWithLogits
from mindspore.nn import TrainOneStepCell, WithLossCell

import mindspore.context as context

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", impl_type="tbe")
context.set_context(enable_task_sink=True)

@@ -44,16 +45,16 @@ class Adam:
label = Tensor(label_np_onehot)

ms_dense = Dense(in_channels=self.input_channels,
out_channels=self.output_channels,
weight_init=weight_np,
bias_init=bias, has_bias=True)
out_channels=self.output_channels,
weight_init=weight_np,
bias_init=bias, has_bias=True)
criterion = SoftmaxCrossEntropyWithLogits()
optimizer = nn.Adam(ms_dense.trainable_params(),
learning_rate=1e-3,
beta1=0.9, beta2=0.999, eps=self.epsilon,
use_locking=False,
use_nesterov=False, weight_decay=0.0,
loss_scale=1.0)
learning_rate=1e-3,
beta1=0.9, beta2=0.999, eps=self.epsilon,
use_locking=False,
use_nesterov=False, weight_decay=0.0,
loss_scale=1.0)

net_with_criterion = WithLossCell(ms_dense, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer)
@@ -68,5 +69,5 @@ class Adam:


def test_adam():
fact = Adam(batch_num=8, input_channels=20, output_channels=5, epoch=5, lr=0.1, weight_decay=0.0, epsilon= 1e-8)
fact = Adam(batch_num=8, input_channels=20, output_channels=5, epoch=5, lr=0.1, weight_decay=0.0, epsilon=1e-8)
fact.train_mindspore_impl()

+ 8
- 5
tests/st/ops/ascend/test_tbe_ops/test_apply_momentum.py View File

@@ -21,23 +21,26 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
self.variable = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='variable')
'normal', [2, 3, 3, 4]), name='variable')
self.accumulation = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='accumulation')
'normal', [2, 3, 3, 4]), name='accumulation')
self.learning_rate = Parameter(initializer(
'normal', [1, ]), name='learning_rate')
'normal', [1, ]), name='learning_rate')
self.gradient = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='gradient')
'normal', [2, 3, 3, 4]), name='gradient')
self.momentum = Parameter(initializer(
'normal', [1, ]), name='momentum')
'normal', [1, ]), name='momentum')

def construct(self):
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)


def test_net():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
apply_momentum = Net()


+ 5
- 0
tests/st/ops/ascend/test_tbe_ops/test_batchmatmul.py View File

@@ -19,8 +19,10 @@ from mindspore.nn import Cell
from mindspore.train.model import Model
import pytest
from mindspore import context

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(Cell):
def __init__(self):
super(Net, self).__init__()
@@ -30,17 +32,20 @@ class Net(Cell):
x = self.batchmatmul(inputa, inputb)
return x


def tf_me_batchmatmul(inputa, inputb):
net = Net()
net.set_train()
model = Model(net)
out_me = model.predict(Tensor(inputa), Tensor(inputb))


def test_batchmatmul_normal_shape1():
inputa = np.random.randn(128, 16, 128).astype(np.float32)
inputb = np.random.randn(128, 128, 64).astype(np.float32)
tf_me_batchmatmul(Tensor(inputa), Tensor(inputb))


def test_batchmatmul_normal_shape2():
inputa = np.random.randn(1, 16, 128, 128).astype(np.float32)
inputb = np.random.randn(1, 16, 128, 64).astype(np.float32)


+ 2
- 2
tests/st/ops/ascend/test_tbe_ops/test_batchnorm.py View File

@@ -21,6 +21,7 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -35,7 +36,7 @@ class Net(nn.Cell):


def test_net():
x = np.random.randn(1,64,112,112).astype(np.float32)
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
# mean = np.random.randn(1,16,1,1).astype(np.float32)
# variance = np.random.randn(1,16,1,1).astype(np.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@@ -55,4 +56,3 @@ def test_net():

print("***********output y*********")
print(output.asnumpy())


+ 6
- 3
tests/st/ops/ascend/test_tbe_ops/test_batchnorm_grad.py View File

@@ -21,8 +21,11 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation
#context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

# context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -48,7 +51,7 @@ class Net(nn.Cell):


def test_net():
x = np.random.randn(1,64,112,112).astype(np.float32)
sens = np.random.randn(1,64,112,112).astype(np.float32)
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
net = Grad(Net())
output = net(Tensor(x), Tensor(sens))

+ 2
- 1
tests/st/ops/ascend/test_tbe_ops/test_bias_add.py View File

@@ -20,11 +20,13 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
"""Net definition"""

def __init__(self,
output_channels,
bias_init='zeros',
@@ -51,4 +53,3 @@ def test_compile():
# enable it when staging function is ready
output = net(input_data)
print(output.asnumpy())


+ 4
- 0
tests/st/ops/ascend/test_tbe_ops/test_bias_add_grad.py View File

@@ -21,7 +21,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -31,6 +34,7 @@ class Net(nn.Cell):
def construct(self, dout):
return self.bias_add_grad(dout)


def test_net():
dout = np.random.rand(1, 1001).astype(np.float32)
bias_add_grad = Net()


+ 3
- 2
tests/st/ops/ascend/test_tbe_ops/test_concat.py View File

@@ -20,11 +20,12 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__( self):
def __init__(self):
super(Net, self).__init__()

self.cat = P.Concat(axis=1)
@@ -46,4 +47,4 @@ def test_net():
print(np.arange(2 * 2).reshape(2, 2))
print(np.arange(2 * 3).reshape(2, 3))
print(output)
assert(output.asnumpy() == expect).all()
assert (output.asnumpy() == expect).all()

+ 10
- 11
tests/st/ops/ascend/test_tbe_ops/test_conv.py View File

@@ -21,31 +21,30 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
out_channel = 64
kernel_size = 7
self.conv = P.Conv2D(out_channel,
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1)
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1)
self.w = Parameter(initializer(
'normal', [64, 3, 7, 7]), name='w')

'normal', [64, 3, 7, 7]), name='w')

@ms_function
def construct(self, x):
return self.conv(x, self.w)



def test_net():
x = np.random.randn(32,3,224,224).astype(np.float32)
x = np.random.randn(32, 3, 224, 224).astype(np.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
conv = Net()
output = conv(Tensor(x))


+ 10
- 7
tests/st/ops/ascend/test_tbe_ops/test_conv2d_backprop_filter.py View File

@@ -21,6 +21,7 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target='Ascend')


@@ -37,19 +38,21 @@ class Net(nn.Cell):
stride=1,
dilation=1,
group=1)
self.w = Parameter(initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='w')
self.w = Parameter(
initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]),
name='w')
self.x = Parameter(initializer(Tensor(np.array([[[
[3, 0, 1, 2, 7, 4],
[1, 5, 8, 9, 3, 1],
[2, 7, 2, 5, 1, 3],
[0, 1, 3, 1, 7, 8],
[4, 2, 1, 6, 2, 8],
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1,1,6,6]), name='x')
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1, 1, 6, 6]), name='x')
self.out = Parameter(initializer(Tensor(np.array([[[
[ -5, -4, 0, 8],
[-10, -2, 2, 3],
[ 0, -2, -4, -7],
[ -3, -2, -3, -16]]]]).astype(np.float32)),[1,1,4,4]), name='y')
[-5, -4, 0, 8],
[-10, -2, 2, 3],
[0, -2, -4, -7],
[-3, -2, -3, -16]]]]).astype(np.float32)), [1, 1, 4, 4]), name='y')
self.get_shape = P.Shape()

@ms_function
@@ -67,7 +70,7 @@ def test_conv2d_backprop_filter():
[-104, -211, -322]
[-102, -144, -248]]]]
"""
expect = np.array([[[[ -60, -142, -265],
expect = np.array([[[[-60, -142, -265],
[-104, -211, -322],
[-102, -144, -248]]]]).astype(np.float32)
print(output)


+ 15
- 12
tests/st/ops/ascend/test_tbe_ops/test_conv2d_backprop_input.py View File

@@ -20,6 +20,7 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


@@ -36,19 +37,21 @@ class Net(nn.Cell):
stride=1,
dilation=1,
group=1)
self.w = Parameter(initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='w')
self.w = Parameter(
initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]),
name='w')
self.x = Parameter(initializer(Tensor(np.array([[[
[3, 0, 1, 2, 7, 4],
[1, 5, 8, 9, 3, 1],
[2, 7, 2, 5, 1, 3],
[0, 1, 3, 1, 7, 8],
[4, 2, 1, 6, 2, 8],
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1,1,6,6]), name='x')
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1, 1, 6, 6]), name='x')
self.out = Parameter(initializer(Tensor(np.array([[[
[ -5, -4, 0, 8],
[-10, -2, 2, 3],
[ 0, -2, -4, -7],
[ -3, -2, -3, -16]]]]).astype(np.float32)),[1,1,4,4]), name='y')
[-5, -4, 0, 8],
[-10, -2, 2, 3],
[0, -2, -4, -7],
[-3, -2, -3, -16]]]]).astype(np.float32)), [1, 1, 4, 4]), name='y')
self.get_shape = P.Shape()

@ms_function
@@ -69,11 +72,11 @@ def test_conv2d_backprop_input():
[ -3, -4, -4, -19, 7, 23]
[ -3, -2, 0, -14, 3, 16]]]]
"""
expect = np.array([[[[ -5, -4, 5, 12, 0, -8],
[-15, -6, 17, 17, -2, -11],
[-15, -8, 13, 12, 2, -4],
[-13, -6, 8, -14, 5, 20],
[ -3, -4, -4, -19, 7, 23],
[ -3, -2, 0, -14, 3, 16]]]]).astype(np.float32)
expect = np.array([[[[-5, -4, 5, 12, 0, -8],
[-15, -6, 17, 17, -2, -11],
[-15, -8, 13, 12, 2, -4],
[-13, -6, 8, -14, 5, 20],
[-3, -4, -4, -19, 7, 23],
[-3, -2, 0, -14, 3, 16]]]]).astype(np.float32)
print(output)
assert (output.asnumpy() == expect).all()

+ 3
- 2
tests/st/ops/ascend/test_tbe_ops/test_dropout_do_mask.py View File

@@ -20,9 +20,11 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
from mindspore import log as logger


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -33,7 +35,7 @@ class Net(nn.Cell):


def test_net():
x = np.random.randn(2,5,8).astype(np.float32)
x = np.random.randn(2, 5, 8).astype(np.float32)
mask = np.random.randn(16).astype(np.uint8)
keep_prob = 1

@@ -48,4 +50,3 @@ def test_net():

logger.info("***********output y*********")
logger.info(output.asnumpy())


+ 3
- 0
tests/st/ops/ascend/test_tbe_ops/test_gelu.py View File

@@ -21,6 +21,7 @@ import math
import pytest
from mindspore import context
from mindspore import log as logger

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


@@ -52,6 +53,7 @@ def test_gelu_input_dim_0():
with pytest.raises(ValueError):
gelu_forward_cmp(input_shape)


def test_gelu_input_dim_10240_1024():
input_shape = [10240, 1024]
gelu_forward_cmp(input_shape)
@@ -96,6 +98,7 @@ def test_gelu_input_dim_128_4096():
input_shape = [128, 4096]
gelu_forward_cmp(input_shape)


@pytest.mark.lower_bs
def test_gelu_input_dim_160_1024():
input_shape = [160, 1024]


+ 4
- 1
tests/st/ops/ascend/test_tbe_ops/test_gelu_grad_sens.py View File

@@ -25,6 +25,7 @@ from mindspore import log as logger

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Grad(Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -55,6 +56,7 @@ def gelu_backward_cmp(input_shape):
logger.info("---------me--------")
logger.info(output_grad_me)


# ---------- LARGE INPUT ---------------

class MEGeluLargeIn(Cell):
@@ -67,6 +69,7 @@ class MEGeluLargeIn(Cell):
x = self.matmul(x1, x2)
return self.gelu(x)


class GradLargeIn(Cell):
def __init__(self, network):
super(GradLargeIn, self).__init__()
@@ -86,5 +89,5 @@ def gelu_backward_me_large_in_impl(x1, x2, output_grad):


def test_grad_gelu_input_10240_1024():
input_shape = [10240,1024]
input_shape = [10240, 1024]
gelu_backward_cmp(input_shape)

+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_greater.py View File

@@ -20,8 +20,10 @@ from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore import log as logger
from mindspore import context

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Greater(Cell):
def __init__(self):
super(Greater, self).__init__()
@@ -30,6 +32,7 @@ class Greater(Cell):
def construct(self, inputa, inputb):
return self.greater(inputa, inputb)


def me_greater(inputa, inputb):
net = Greater()
net.set_train()
@@ -42,10 +45,11 @@ def me_greater(inputa, inputb):
logger.info(inputb)
return out.asnumpy()


@pytest.mark.ssd_tbe
def test_greater_2d_scalar0():
a = np.random.randint(-5, 5, [8, 32]).astype(np.int32)
b = np.random.randint(-5, 5, [8, 32]).astype(np.int32)
out_me = me_greater(Tensor(a), Tensor(b))
logger.info("Check me result:")
logger.info(out_me)
logger.info(out_me)

+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_layernorm.py View File

@@ -20,8 +20,10 @@ from mindspore.train.model import Model
from mindspore import log as logger
import pytest
from mindspore import context

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(Cell):
def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta):
super(Net, self).__init__()
@@ -31,6 +33,7 @@ class Net(Cell):
x = self.layernorm(input)
return x


def pt_me_layernorm(input_data, normalized_shape, gamma, beta, axis):
net = Net(normalized_shape, begin_norm_axis=axis,
begin_params_axis=axis,
@@ -42,6 +45,7 @@ def pt_me_layernorm(input_data, normalized_shape, gamma, beta, axis):
logger.info("Check me result:")
logger.info(out_me.asnumpy())


@pytest.mark.lower_bs
def test_normal_layernorm_1_128_1024_axis_2():
"""
@@ -52,4 +56,4 @@ def test_normal_layernorm_1_128_1024_axis_2():
gamma.fill(1.1)
beta = np.random.randn(1024).astype(np.float32)
beta.fill(0.1)
pt_me_layernorm(input_data, (1024, ), gamma, beta, 2)
pt_me_layernorm(input_data, (1024,), gamma, beta, 2)

+ 6
- 1
tests/st/ops/ascend/test_tbe_ops/test_layernorm_grad.py View File

@@ -19,18 +19,21 @@ from mindspore.nn import Cell
from mindspore.ops.composite import GradOperation
from mindspore import log as logger
from mindspore import context

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Grad(Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network

def construct(self, input, output_grad,):
def construct(self, input, output_grad, ):
gout = self.grad(self.network)(input, output_grad)
return gout


class Net(Cell):
def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta):
super(Net, self).__init__()
@@ -40,6 +43,7 @@ class Net(Cell):
x = self.layernorm(input)
return x


def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradients):
input_me = Tensor(input_data)
net_me = Grad(Net(normalized_shape, begin_norm_axis=axis,
@@ -52,6 +56,7 @@ def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradie
logger.info("Check me result:")
logger.info(out_grad.asnumpy())


def test_normal_layernorm_grad_normalize_2d():
"""
1 input[1, 128, 1024],normalized_shape=[1024],element_affine=False


+ 7
- 3
tests/st/ops/ascend/test_tbe_ops/test_less.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.less(x1, x2)

x1 = np.random.randn(3,4).astype(np.float16)
x2 = np.random.randn(3,4).astype(np.float16)

x1 = np.random.randn(3, 4).astype(np.float16)
x2 = np.random.randn(3, 4).astype(np.float16)


def test_net():
less = Net()
@@ -37,4 +42,3 @@ def test_net():
print(x1)
print(x2)
print(output.asnumpy())


+ 7
- 3
tests/st/ops/ascend/test_tbe_ops/test_less_equal.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.less_equal(x1, x2)

x1 = np.random.randn(3,4).astype(np.float16)
x2 = np.random.randn(3,4).astype(np.float16)

x1 = np.random.randn(3, 4).astype(np.float16)
x2 = np.random.randn(3, 4).astype(np.float16)


def test_net():
less_equal = Net()
@@ -37,4 +42,3 @@ def test_net():
print(x1)
print(x2)
print(output.asnumpy())


+ 6
- 1
tests/st/ops/ascend/test_tbe_ops/test_logical_and.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,12 +31,14 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.logical_and(x1, x2)


x1 = [True, True, False, False, True, True, False, False]
x2 = [True, False, False, True, True, False, False, True]


def test_net():
logical_and = Net()
output = logical_and(Tensor(x1), Tensor(x2))
print(x1)
print(x2)
print(output.asnumpy())


+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_logical_not.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,11 +31,12 @@ class Net(nn.Cell):
def construct(self, x1):
return self.logical_not(x1)


x1 = [True, True, False, False, True, True, False, False]


def test_net():
logical_not = Net()
output = logical_not(Tensor(x1))
print(x1)
print(output.asnumpy())


+ 6
- 1
tests/st/ops/ascend/test_tbe_ops/test_logical_or.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,12 +31,14 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.logical_or(x1, x2)


x1 = [True, True, False, False, True, True, False, False]
x2 = [True, False, False, True, True, False, False, True]


def test_net():
logical_or = Net()
output = logical_or(Tensor(x1), Tensor(x2))
print(x1)
print(x2)
print(output.asnumpy())


+ 5
- 2
tests/st/ops/ascend/test_tbe_ops/test_matmul.py View File

@@ -21,6 +21,7 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -30,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.matmul(x1, x2)

x1 = np.random.randn(1,3).astype(np.float32)
x2 = np.random.randn(3,4).astype(np.float32)

x1 = np.random.randn(1, 3).astype(np.float32)
x2 = np.random.randn(3, 4).astype(np.float32)


def test_net():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


+ 7
- 2
tests/st/ops/ascend/test_tbe_ops/test_matmul_failed.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -30,8 +33,10 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.matmul(x1, x2)

x1 = np.random.randn(10,1).astype(np.float32)
x2 = np.random.randn(100,1).astype(np.float32)

x1 = np.random.randn(10, 1).astype(np.float32)
x2 = np.random.randn(100, 1).astype(np.float32)


def test_net():
matmul = Net()


+ 7
- 3
tests/st/ops/ascend/test_tbe_ops/test_maximum.py View File

@@ -22,14 +22,16 @@ from mindspore.ops import operations as P

context.set_context(device_target="Ascend")


class Max(nn.Cell):
def __init__(self,dtype):
def __init__(self, dtype):
super(Max, self).__init__()
self.max = P.Maximum()

def construct(self, inputa, inputb):
return self.max(inputa, inputb)


def me_max(inputa, inputb, dtype=ms.float32):
context.set_context(mode=context.GRAPH_MODE)
net = Max(dtype)
@@ -44,14 +46,16 @@ def me_max(inputa, inputb, dtype=ms.float32):
print(out)
return out.asnumpy()

def cmp_max(a,b):

def cmp_max(a, b):
out = np.maximum(a, b)
out_ms = me_max(a, b)
print("-------ms------")
print("numpy out :{}".format(out))
print("ms out :{}".format(out_ms))


def test_maximum_2_2():
a = np.random.randn(2, 2).astype(np.float32)
b = np.random.randn(2, 2).astype(np.float32)
cmp_max(a,b)
cmp_max(a, b)

+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_maximum_grad.py View File

@@ -22,6 +22,7 @@ from mindspore.ops import operations as P
context.set_context(device_target="Ascend")
grad = C.GradOperation('get_all', get_all=True, sens_param=True)


class MaxNetMe(Cell):
def __init__(self):
super(MaxNetMe, self).__init__()
@@ -31,6 +32,7 @@ class MaxNetMe(Cell):
x = self.max(inputA, inputB)
return x


class GradWrap(Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
@@ -40,6 +42,7 @@ class GradWrap(Cell):
gout = grad(self.network)(inputA, inputB, sens)
return gout


def gen_data(inputA_np, inputB_np, grad=None):
inputA_me = inputA_np
if isinstance(inputA_np, np.ndarray) == True:
@@ -61,7 +64,8 @@ def gen_data(inputA_np, inputB_np, grad=None):
print(output[0].asnumpy())
print(output[1].asnumpy())


def test_net():
inputA_np = np.random.randn(1, 3, 2, 2).astype(np.float32)
inputB_np = np.random.randn(1, 3, 2, 2).astype(np.float32)
gen_data(inputA_np, inputB_np)
gen_data(inputA_np, inputB_np)

+ 2
- 2
tests/st/ops/ascend/test_tbe_ops/test_maxpool.py View File

@@ -19,12 +19,12 @@ from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.maxpool = P.MaxPool(padding="SAME", ksize=3, strides=2)


@ms_function
def construct(self, x):
output = self.maxpool(x)
@@ -32,7 +32,7 @@ class Net(nn.Cell):


def test_net():
x = np.random.randn(32,64,112,112).astype(np.float16)
x = np.random.randn(32, 64, 112, 112).astype(np.float16)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
maxpool = Net()
output = maxpool(Tensor(x))


+ 1
- 0
tests/st/ops/ascend/test_tbe_ops/test_maxpool_grad.py View File

@@ -19,6 +19,7 @@ from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context
from mindspore.ops.composite import GradOperation

context.set_context(device_target="Ascend")




+ 7
- 3
tests/st/ops/ascend/test_tbe_ops/test_minimum.py View File

@@ -22,7 +22,10 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
import mindspore as ms
from mindspore.train.model import Model

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Min(nn.Cell):
def __init__(self, dtype):
super(Min, self).__init__()
@@ -46,7 +49,8 @@ def me_min(inputa, inputb, dtype=ms.float32):
print(out)
return out.asnumpy()

def cmp_min(a,b):

def cmp_min(a, b):
print(a)
print(b)

@@ -55,8 +59,8 @@ def cmp_min(a,b):
out_me = me_min(a, b)
print(out_me)


def test_minimum_2_2():
a = np.random.randn(2, 2, 1, 1).astype(np.float32)
b = np.random.randn(2, 2, 1, 1).astype(np.float32)
cmp_min(a,b)

cmp_min(a, b)

+ 4
- 1
tests/st/ops/ascend/test_tbe_ops/test_minimum_grad.py View File

@@ -22,6 +22,8 @@ from mindspore.ops.operations import Minimum

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = C.GradOperation('get_all', get_all=True, sens_param=True)


class MinNetMe(Cell):
def __init__(self):
super(MinNetMe, self).__init__()
@@ -41,6 +43,7 @@ class GradWrap(Cell):
gout = grad(self.network)(inputA, inputB, sens)
return gout


def gen_data(inputA_np, inputB_np, grad=None):
inputA_me = inputA_np
if isinstance(inputA_np, np.ndarray) == True:
@@ -51,7 +54,7 @@ def gen_data(inputA_np, inputB_np, grad=None):
inputB_me = Tensor(inputB_np)

if grad is None:
grad = np.random.randn(1, 3, 2, 2).astype(np.float32)
grad = np.random.randn(1, 3, 2, 2).astype(np.float32)

print(inputA_np)
print(inputB_np)


+ 7
- 2
tests/st/ops/ascend/test_tbe_ops/test_mul.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.mul(x1, x2)

x1 = np.random.randn(3,4).astype(np.float32)
x2 = np.random.randn(3,4).astype(np.float32)

x1 = np.random.randn(3, 4).astype(np.float32)
x2 = np.random.randn(3, 4).astype(np.float32)


def test_net():
mul = Net()


+ 4
- 1
tests/st/ops/ascend/test_tbe_ops/test_npu_alloc_float_status.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,8 +31,8 @@ class Net(nn.Cell):
def construct(self):
return self.npu_alloc_float_status()


def test_net():
npu_alloc_float_status = Net()
output = npu_alloc_float_status()
print(output.asnumpy())


+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_npu_clear_float_status.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,11 +31,12 @@ class Net(nn.Cell):
def construct(self, x1):
return self.npu_clear_float_status(x1)


x1 = np.random.randn(8).astype(np.float32)


def test_net():
npu_clear_float_status = Net()
output = npu_clear_float_status(Tensor(x1))
print(x1)
print(output.asnumpy())


+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_npu_get_float_status.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,11 +31,12 @@ class Net(nn.Cell):
def construct(self, x1):
return self.npu_get_float_status(x1)


x1 = np.random.randn(8).astype(np.float32)


def test_net():
npu_get_float_status = Net()
output = npu_get_float_status(Tensor(x1))
print(x1)
print(output.asnumpy())


+ 4
- 1
tests/st/ops/ascend/test_tbe_ops/test_pad.py View File

@@ -18,21 +18,24 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.pad = P.Pad(paddings=((3,2), (2,3)))
self.pad = P.Pad(paddings=((3, 2), (2, 3)))

@ms_function
def construct(self, x):
x = self.pad(x)
return x


x = np.random.random(size=(2, 2)).astype(np.float32)


def test_net():
pad = Net()
output = pad(Tensor(x))


+ 7
- 3
tests/st/ops/ascend/test_tbe_ops/test_pow.py View File

@@ -23,8 +23,10 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
import mindspore as ms
from mindspore.train.model import Model

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class PowMe(Cell):
def __init__(self):
super(PowMe, self).__init__()
@@ -33,6 +35,7 @@ class PowMe(Cell):
def construct(self, input, exp):
return self.pow(input, exp)


def pow_forward_me_impl(input, exp):
n = PowMe()
n.set_train()
@@ -40,6 +43,7 @@ def pow_forward_me_impl(input, exp):
out = m.predict(input, exp)
return out.asnumpy()


def pow_forward_cmp(input_shape, exp_shape):
if len(input_shape) == 0:
input_np = np.absolute(np.random.randn())
@@ -54,14 +58,14 @@ def pow_forward_cmp(input_shape, exp_shape):
exp_np = np.absolute(np.random.randn(*exp_shape).astype(np.float32))
exp_tf = exp_np
exp_me = Tensor(exp_np, dtype=ms.float32)
out_me = pow_forward_me_impl(input_me, exp_me)
print(input_me)
print(exp_me)
print(out_me)


def test_pow_input_scalar_exp_scalar():
input_shape = []
exp_shape = []
pow_forward_cmp(input_shape, exp_shape)


+ 7
- 2
tests/st/ops/ascend/test_tbe_ops/test_realdiv.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2):
return self.realdiv(x1, x2)

x1 = np.random.randn(3,4).astype(np.float32)
x2 = np.random.randn(3,4).astype(np.float32)

x1 = np.random.randn(3, 4).astype(np.float32)
x2 = np.random.randn(3, 4).astype(np.float32)


def test_net():
realdiv = Net()


+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_reciprocal.py View File

@@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -28,11 +31,12 @@ class Net(nn.Cell):
def construct(self, x1):
return self.reciprocal(x1)


x1 = np.random.randn(3, 4).astype(np.float32)


def test_net():
reciprocal = Net()
output = reciprocal(Tensor(x1))
print(x1)
print(output.asnumpy())


+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_relu.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -30,8 +33,9 @@ class Net(nn.Cell):
def construct(self, x):
return self.relu(x)


def test_net():
x = np.random.randn(2,3,3,4).astype(np.float32)
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
relu = Net()
output = relu(Tensor(x))
print(x)


+ 6
- 2
tests/st/ops/ascend/test_tbe_ops/test_relu_grad.py View File

@@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation

context.set_context(device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -41,9 +44,10 @@ class Net(nn.Cell):
def construct(self, x):
return self.relu(x)


def test_net():
x = np.random.randn(2,3,3,4).astype(np.float32)
sens = np.random.randn(2,3,3,4).astype(np.float32)
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
net = Grad(Net())
output = net(Tensor(x), Tensor(sens))
print(len(output))


+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_relu_v2_grad.py View File

@@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input):
return self.grad(self.network)(input)


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -41,8 +44,9 @@ class Net(nn.Cell):
def construct(self, x):
return self.relu_v2(x)


def test_net():
x = Tensor(np.ones((2,3,3,4)).astype(np.float32))
x = Tensor(np.ones((2, 3, 3, 4)).astype(np.float32))
relu_net = Net()
relu_output = relu_net(x)
net = Grad(Net())


+ 3
- 0
tests/st/ops/ascend/test_tbe_ops/test_resize_nearest_neighbor.py View File

@@ -18,8 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -29,6 +31,7 @@ class Net(nn.Cell):
def construct(self, x):
return self.upsample(x)


def test_net():
x = np.random.random(size=(32, 3, 32, 32)).astype(np.float32)
upsample = Net()


+ 2
- 1
tests/st/ops/ascend/test_tbe_ops/test_resize_nearest_neighbor_grad.py View File

@@ -19,6 +19,7 @@ from mindspore.ops.composite import GradOperation
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


@@ -49,4 +50,4 @@ def test_net():
grad = Grad(Net())
output = grad(Tensor(image), Tensor(grads))
print("=================output====================")
print(output)
print(output)

+ 3
- 1
tests/st/ops/ascend/test_tbe_ops/test_scatter_nd.py View File

@@ -20,6 +20,7 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


@@ -29,12 +30,13 @@ class Net(nn.Cell):
self.scatternd = P.ScatterNd()

def construct(self, indices, update):
return self.scatternd(indices, update, (3,3))
return self.scatternd(indices, update, (3, 3))


indices = np.array([[0, 1], [1, 1]]).astype(np.int32)
update = np.array([3.2, 1.1]).astype(np.float32)


def test_net():
scatternd = Net()
print(indices)


+ 12
- 7
tests/st/ops/ascend/test_tbe_ops/test_select.py View File

@@ -23,7 +23,10 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
import mindspore as ms
from mindspore.train.model import Model

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Select(Cell):
def __init__(self, dtype):
super(Select, self).__init__()
@@ -32,6 +35,7 @@ class Select(Cell):
def construct(self, cond, inputa, inputb):
return self.select(cond, inputa, inputb)


def me_select(cond, inputa, inputb, dtype=ms.float32):
net = Select(dtype)
net.set_train()
@@ -45,9 +49,10 @@ def me_select(cond, inputa, inputb, dtype=ms.float32):

out = model.predict(Tensor(cond), inputa, inputb)
return out.asnumpy()
def cmp_select(input_cond,inputa,inputb):
cond = input_cond > 0.5


def cmp_select(input_cond, inputa, inputb):
cond = input_cond > 0.5
out_me = me_select(cond, inputa, inputb)
print(input_cond)
print(cond)
@@ -55,9 +60,9 @@ def cmp_select(input_cond,inputa,inputb):
print(inputb)
print(out_me)


def test_select_2_2():
input_cond = np.random.rand(2, 2)
inputa = np.random.randn(2,2).astype(np.float32)
inputb = np.random.randn(2,2).astype(np.float32)
cmp_select(input_cond,inputa,inputb)

inputa = np.random.randn(2, 2).astype(np.float32)
inputb = np.random.randn(2, 2).astype(np.float32)
cmp_select(input_cond, inputa, inputb)

+ 3
- 0
tests/st/ops/ascend/test_tbe_ops/test_sigmoid.py View File

@@ -18,8 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -29,6 +31,7 @@ class Net(nn.Cell):
def construct(self, x):
return self.sigmoid(x)


def test_net():
x = np.random.random(size=(2, 3)).astype(np.float32)
sigmoid = Net()


+ 1
- 0
tests/st/ops/ascend/test_tbe_ops/test_sigmoid_cross_entropy_with_logits.py View File

@@ -21,6 +21,7 @@ import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()


+ 1
- 0
tests/st/ops/ascend/test_tbe_ops/test_sigmoid_cross_entropy_with_logits_grad.py View File

@@ -22,6 +22,7 @@ import mindspore.context as context

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()


+ 2
- 1
tests/st/ops/ascend/test_tbe_ops/test_sigmoid_grad.py View File

@@ -19,6 +19,7 @@ from mindspore.ops.composite import GradOperation
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


@@ -42,6 +43,7 @@ class Grad(nn.Cell):
def construct(self, x, y):
return self.grad(self.network)(x, y)


def test_net():
x = np.random.random(size=(2, 3, 4, 5, 6)).astype(np.float32)
y = np.random.random(size=(2, 3, 4, 5, 6)).astype(np.float32)
@@ -49,4 +51,3 @@ def test_net():
output = net(Tensor(x), Tensor(y))
print("=================output====================")
print(output.asnumpy())


+ 8
- 6
tests/st/ops/ascend/test_tbe_ops/test_slice.py View File

@@ -20,26 +20,28 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Slice(nn.Cell):
def __init__( self):
def __init__(self):
super(Slice, self).__init__()

self.cat = P.Slice()
self.x1 = Parameter(initializer(
Tensor(np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32)), [3,2,3]), name='x1')
Tensor(np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(
np.float32)), [3, 2, 3]), name='x1')

@ms_function
def construct(self):
return self.cat(self.x1, (0,1, 0), (2, 1, 3))
return self.cat(self.x1, (0, 1, 0), (2, 1, 3))


def test_slice():
cat = Slice()
output = cat()
expect = [[[2., -2., 2.]],
[[4., -4., 4.]]]
expect = [[[2., -2., 2.]],
[[4., -4., 4.]]]
print(output)
assert (output.asnumpy() == expect).all()
assert (output.asnumpy() == expect).all()

+ 1
- 0
tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss.py View File

@@ -18,6 +18,7 @@ import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")




+ 1
- 0
tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss_grad.py View File

@@ -31,6 +31,7 @@ class Net(nn.Cell):
def construct(self, pred, gt):
return self.SmoothL1Loss(pred, gt)


class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()


+ 6
- 1
tests/st/ops/ascend/test_tbe_ops/test_softmax.py View File

@@ -20,17 +20,22 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.Softmax = P.Softmax()
def construct(self, x):
return self.Softmax(x)


x = np.array([[5, 1]]).astype(np.float32)


def test_net():
softmax = Net()
output = softmax(Tensor(x))


+ 2
- 1
tests/st/ops/ascend/test_tbe_ops/test_softmax_cross_entropy_with_logits.py View File

@@ -18,6 +18,7 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context

context.set_context(device_target="Ascend")


@@ -36,4 +37,4 @@ def test_net():
labels = np.random.randn(32, 1001).astype(np.float16)
SoftmaxCrossEntropyWithLogits = Net()
output = SoftmaxCrossEntropyWithLogits(Tensor(features), Tensor(labels))
#print(output.asnumpy())
# print(output.asnumpy())

+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_split.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -29,7 +32,8 @@ class Net(nn.Cell):
def construct(self, x):
return self.split(x)

x = np.random.randn(2,4).astype(np.float32)

x = np.random.randn(2, 4).astype(np.float32)


def test_net():


+ 6
- 1
tests/st/ops/ascend/test_tbe_ops/test_sqrt.py View File

@@ -20,17 +20,22 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.sqrt = P.Sqrt()
def construct(self, x):
return self.sqrt(x)


x = np.array([1.0, 4.0, 9.0]).astype(np.float32)


def test_net():
sqrt = Net()
output = sqrt(Tensor(x))


+ 6
- 1
tests/st/ops/ascend/test_tbe_ops/test_square.py View File

@@ -20,17 +20,22 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.square = P.Square()
def construct(self, x):
return self.square(x)


x = np.array([1.0, 4.0, 9.0]).astype(np.float32)


def test_net():
square = Net()
output = square(Tensor(x))


+ 12
- 6
tests/st/ops/ascend/test_tbe_ops/test_stridedslice.py View File

@@ -19,7 +19,10 @@ from mindspore.nn import Cell
from mindspore.train.model import Model
import pytest
import mindspore.context as context

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(Cell):
def __init__(self, begin, end, stride):
super(Net, self).__init__()
@@ -32,6 +35,7 @@ class Net(Cell):
x = self.stridedslice(input, self.begin, self.end, self.stride)
return x


def me_stridedslice(input1, begin, end, stride):
input_me = Tensor(input1)
net = Net(begin, end, stride)
@@ -40,17 +44,19 @@ def me_stridedslice(input1, begin, end, stride):
output = model.predict(input_me)
print(output.asnumpy())


def test_stridedslice_input_2d():
input = np.random.randn(5, 5).astype(np.int32)
begin = (0,0)
end = (2,2)
stride = (1,1)
begin = (0, 0)
end = (2, 2)
stride = (1, 1)

me_stridedslice(input, begin, end, stride)


def test_stridedslice_input_3d():
input = np.random.randn(5, 5, 5).astype(np.float32)
begin = (0,0,0)
end = (3,3,3)
stride = (1,1,1)
begin = (0, 0, 0)
end = (3, 3, 3)
stride = (1, 1, 1)
me_stridedslice(input, begin, end, stride)

+ 5
- 0
tests/st/ops/ascend/test_tbe_ops/test_stridedslice_grad.py View File

@@ -19,8 +19,10 @@ from mindspore.nn import Cell
from mindspore.ops.composite import GradOperation
from mindspore import context
import pytest

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Grad(Cell):
def __init__(self, network):
super(Grad, self).__init__()
@@ -31,6 +33,7 @@ class Grad(Cell):
gout = self.grad(self.network)(input, output_grad)
return gout


class Net(Cell):
def __init__(self, begin, end, stride):
super(Net, self).__init__()
@@ -43,6 +46,7 @@ class Net(Cell):
x = self.stridedslice(input, self.begin, self.end, self.stride)
return x


def me_stridedslice(input, begin, end, stride, gradients):
input_me = Tensor(input)
out_grad_me = Tensor(gradients)
@@ -51,6 +55,7 @@ def me_stridedslice(input, begin, end, stride, gradients):
out_grad = net_me(input_me, out_grad_me)
print(out_grad.asnumpy())


def test_grad_stridedslice_1d():
input = np.random.randn(2).astype(np.float32)
begin = (0,)


+ 7
- 3
tests/st/ops/ascend/test_tbe_ops/test_sub.py View File

@@ -20,17 +20,21 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.sub = P.Sub()
def construct(self, x, y):
return self.sub(x, y)

x = np.random.randn(1,3,3,4).astype(np.float32)
y = np.random.randn(1,3,3,4).astype(np.float32)

x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32)


def test_net():


+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_tanh.py View File

@@ -21,6 +21,7 @@ from mindspore.ops import operations as P

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -29,9 +30,12 @@ class Net(nn.Cell):
def construct(self, x):
return self.tanh(x)


input_shape = [1]
input_np = np.random.randn(*input_shape).astype(np.float32)
input_me = Tensor(input_np)


def test_net():
context.set_context(mode=context.GRAPH_MODE)
tanh = Net()
@@ -40,4 +44,4 @@ def test_net():
out = m.predict(input_me)
print("out_me.dtype={}".format(out.dtype))
print("out_me.asnumpy={}".format(out.asnumpy()))
return out.asnumpy()
return out.asnumpy()

+ 5
- 1
tests/st/ops/ascend/test_tbe_ops/test_tanh_grad.py View File

@@ -22,6 +22,7 @@ from mindspore.ops.operations import _grad_ops as G

context.set_context(device_target="Ascend")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@@ -30,9 +31,12 @@ class Net(nn.Cell):
def construct(self, y, dy):
return self.tanh_grad(y, dy)


input_shape = [1]
input_np = np.random.randn(*input_shape).astype(np.float32)
input_me = Tensor(input_np)


def test_net():
context.set_context(mode=context.GRAPH_MODE)
tanh_grad = Net()
@@ -41,4 +45,4 @@ def test_net():
out = m.predict(input_me, input_me)
print("out_me.dtype={}".format(out.dtype))
print("out_me.asnumpy={}".format(out.asnumpy()))
return out.asnumpy()
return out.asnumpy()

+ 1
- 0
tests/st/ops/ascend/test_tbe_ops/test_tile.py View File

@@ -20,6 +20,7 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")




+ 4
- 2
tests/st/ops/ascend/test_tbe_ops/test_topk.py View File

@@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(nn.Cell):
def __init__(self, k):
super(Net, self).__init__()
@@ -32,7 +35,7 @@ class Net(nn.Cell):


def test_net():
x = np.random.randn(4,4).astype(np.float16)
x = np.random.randn(4, 4).astype(np.float16)
k = 2
TopK = Net(k)
output = TopK(Tensor(x))
@@ -41,4 +44,3 @@ def test_net():

print("***********output y*********")
print(output[0].asnumpy())


Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save