Merge pull request !4436 from peixu_ren/custom_gputags/v0.7.0-beta
| @@ -19,19 +19,26 @@ template <typename T> | |||
| __global__ void NormalKernel(int seed, curandState *globalState, T *output, size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| curand_init(seed, i, 0, &globalState[i]); | |||
| output[i] = curand_normal(&globalState[i]); | |||
| output[i] = (T)curand_normal(&globalState[i]); | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void UniformKernel(int seed, curandState *globalState, T *input1, size_t input_size_1, | |||
| T *input2, size_t input_size_2, T *output, size_t count) { | |||
| __global__ void UniformIntKernel(int seed, curandState *globalState, T *input1, size_t input_size_1, | |||
| T *input2, size_t input_size_2, T *output, size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| input1[i] = (input_size_1 == 1 ? input1[0] : input1[i]); | |||
| input2[i] = (input_size_2 == 1 ? input2[0] : input2[i]); | |||
| curand_init(seed, i, 0, &globalState[i]); | |||
| output[i] = curand_uniform(&globalState[i]) * (input2[i] - input1[i]) + input1[i]; | |||
| output[i] = (T)(curand_uniform(&globalState[i])) * (input2[0] - input1[0]) + input1[0]; | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void UniformRealKernel(int seed, curandState *globalState, T *output, size_t count) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||
| curand_init(seed, i, 0, &globalState[i]); | |||
| output[i] = (T)curand_uniform(&globalState[i]); | |||
| } | |||
| return; | |||
| } | |||
| @@ -51,16 +58,46 @@ void StandardNormal(int seed, int seed2, curandState *globalState, T *output, si | |||
| } | |||
| template <typename T> | |||
| void UniformReal(int seed, curandState *globalState, T *input1, size_t input_size_1, | |||
| T *input2, size_t input_size_2, T *output, size_t count, cudaStream_t cuda_stream) { | |||
| seed = (seed == 0 ? time(NULL):seed); | |||
| UniformKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>> | |||
| (seed, globalState, input1, input_size_1, input2, input_size_2, output, count); | |||
| void UniformInt(int seed, int seed2, curandState *globalState, T *input1, size_t input_size_1, | |||
| T *input2, size_t input_size_2, T *output, size_t count, cudaStream_t cuda_stream) { | |||
| int RNG_seed = 0; | |||
| if (seed2 != 0) { | |||
| RNG_seed = seed2; | |||
| } else if (seed != 0) { | |||
| RNG_seed = seed; | |||
| } else { | |||
| RNG_seed = time(NULL); | |||
| } | |||
| UniformIntKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>> | |||
| (RNG_seed, globalState, input1, input_size_1, input2, input_size_2, output, count); | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void UniformReal(int seed, int seed2, curandState *globalState, T *output, size_t count, cudaStream_t cuda_stream) { | |||
| int RNG_seed = 0; | |||
| if (seed2 != 0) { | |||
| RNG_seed = seed2; | |||
| } else if (seed != 0) { | |||
| RNG_seed = seed; | |||
| } else { | |||
| RNG_seed = time(NULL); | |||
| } | |||
| UniformRealKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(RNG_seed, globalState, output, count); | |||
| return; | |||
| } | |||
| template void StandardNormal<float>(int seed, int seed2, curandState *globalState, | |||
| float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void UniformReal<float>(int seed, curandState *globalState, float *input1, size_t input_size_1, | |||
| float *input2, size_t input_size_2, float *output, size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void StandardNormal<int>(int seed, int seed2, curandState *globalState, | |||
| int *output, size_t count, cudaStream_t cuda_stream); | |||
| template void UniformInt<float>(int seed, int seed2, curandState *globalState, float *input1, size_t input_size_1, | |||
| float *input2, size_t input_size_2, float *output, size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void UniformInt<int>(int seed, int seed2, curandState *globalState, int *input1, size_t input_size_1, | |||
| int *input2, size_t input_size_2, int *output, size_t count, | |||
| cudaStream_t cuda_stream); | |||
| template void UniformReal<float>(int seed, int seed2, curandState *globalState, | |||
| float *output, size_t count, cudaStream_t cuda_stream); | |||
| template void UniformReal<int>(int seed, int seed2, curandState *globalState, | |||
| int *output, size_t count, cudaStream_t cuda_stream); | |||
| @@ -24,7 +24,10 @@ template <typename T> | |||
| void StandardNormal(int seed, int seed2, curandState *globalState, | |||
| T *output, size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void UniformReal(int seed, curandState *globalState, | |||
| T *input1, size_t input_size_1, T *input2, size_t input_size_2, | |||
| T *output, size_t count, cudaStream_t cuda_stream); | |||
| void UniformInt(int seed, int seed2, curandState *globalState, | |||
| T *input1, size_t input_size_1, T *input2, size_t input_size_2, | |||
| T *output, size_t count, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void UniformReal(int seed, int seed2, curandState *globalState, | |||
| T *output, size_t count, cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_RANDOMOPIMPL_H_ | |||
| @@ -20,12 +20,14 @@ namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE(StandardNormal, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32), | |||
| RandomOpGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(UniformReal, | |||
| MS_REG_GPU_KERNEL_ONE(UniformInt, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| RandomOpGpuKernel, int) | |||
| MS_REG_GPU_KERNEL_ONE(UniformReal, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32), | |||
| RandomOpGpuKernel, float) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -28,16 +28,17 @@ | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| enum RandomOptype { RANDOM_OP_NORMAL = 0, RANDOM_OP_UNIFORM_REAL, RANDOM_OP_INVALID_TYPE = 255 }; | |||
| enum RandomOptype { RANDOM_OP_NORMAL = 0, RANDOM_OP_UNIFORM_INT, RANDOM_OP_UNIFORM_REAL, RANDOM_OP_INVALID_TYPE = 255 }; | |||
| const std::map<std::string, RandomOptype> kRandomOpTypeMap = { | |||
| {"StandardNormal", RANDOM_OP_NORMAL}, {"UniformInt", RANDOM_OP_UNIFORM_INT}, {"UniformReal", RANDOM_OP_UNIFORM_REAL}}; | |||
| const std::map<std::string, RandomOptype> kRandomOpTypeMap = {{"StandardNormal", RANDOM_OP_NORMAL}, | |||
| {"UniformReal", RANDOM_OP_UNIFORM_REAL}}; | |||
| template <typename T> | |||
| class RandomOpGpuKernel : public GpuKernel { | |||
| public: | |||
| RandomOpGpuKernel() | |||
| : random_op_type_(RANDOM_OP_INVALID_TYPE), | |||
| input_size_0_(sizeof(int)), | |||
| input_size_0_(sizeof(0)), | |||
| input_size_1_(sizeof(T)), | |||
| input_size_2_(sizeof(T)), | |||
| output_size_(sizeof(T)), | |||
| @@ -62,11 +63,16 @@ class RandomOpGpuKernel : public GpuKernel { | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| case RANDOM_OP_UNIFORM_REAL: { | |||
| case RANDOM_OP_UNIFORM_INT: { | |||
| T *input_addr_1 = GetDeviceAddress<T>(inputs, 1); | |||
| T *input_addr_2 = GetDeviceAddress<T>(inputs, 2); | |||
| UniformReal(seed_, devStates, input_addr_1, inputs[1]->size / sizeof(T), input_addr_2, | |||
| inputs[2]->size / sizeof(T), output_addr, outputs[0]->size / sizeof(T), | |||
| UniformInt(seed_, seed2_, devStates, input_addr_1, inputs[1]->size / sizeof(T), input_addr_2, | |||
| inputs[2]->size / sizeof(T), output_addr, outputs[0]->size / sizeof(T), | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| case RANDOM_OP_UNIFORM_REAL: { | |||
| UniformReal(seed_, seed2_, devStates, output_addr, outputs[0]->size / sizeof(T), | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| @@ -86,11 +92,11 @@ class RandomOpGpuKernel : public GpuKernel { | |||
| random_op_type_ = iter->second; | |||
| } | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (random_op_type_ == RANDOM_OP_NORMAL && input_num != 1) { | |||
| if ((random_op_type_ == RANDOM_OP_NORMAL || random_op_type_ == RANDOM_OP_UNIFORM_REAL) && input_num != 1) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but random op needs 1 input."; | |||
| return false; | |||
| } | |||
| if (random_op_type_ == RANDOM_OP_UNIFORM_REAL && input_num != 3) { | |||
| if (random_op_type_ == RANDOM_OP_UNIFORM_INT && input_num != 3) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but random op needs 3 inputs."; | |||
| return false; | |||
| } | |||
| @@ -104,15 +110,9 @@ class RandomOpGpuKernel : public GpuKernel { | |||
| input_size_0_ += input_shape_0[i]; | |||
| } | |||
| input_size_0_ *= sizeof(int); | |||
| if (random_op_type_ == RANDOM_OP_UNIFORM_REAL) { | |||
| auto input_shape_1 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| for (size_t i = 0; i < input_shape_1.size(); i++) { | |||
| input_size_1_ *= input_shape_1[i]; | |||
| } | |||
| auto input_shape_2 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2); | |||
| for (size_t i = 0; i < input_shape_2.size(); i++) { | |||
| input_size_2_ *= input_shape_2[i]; | |||
| } | |||
| if (random_op_type_ == RANDOM_OP_UNIFORM_INT) { | |||
| input_size_1_ *= 1; | |||
| input_size_2_ *= 1; | |||
| } | |||
| auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < output_shape.size(); i++) { | |||
| @@ -120,9 +120,7 @@ class RandomOpGpuKernel : public GpuKernel { | |||
| workspace_size_ *= output_shape[i]; | |||
| } | |||
| seed_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed")); | |||
| if (random_op_type_ == RANDOM_OP_NORMAL) { | |||
| seed2_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed2")); | |||
| } | |||
| seed2_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed2")); | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| @@ -130,7 +128,7 @@ class RandomOpGpuKernel : public GpuKernel { | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_0_); | |||
| if (random_op_type_ == RANDOM_OP_UNIFORM_REAL) { | |||
| if (random_op_type_ == RANDOM_OP_UNIFORM_INT) { | |||
| input_size_list_.push_back(input_size_1_); | |||
| input_size_list_.push_back(input_size_2_); | |||
| } | |||