|
|
|
@@ -29,7 +29,7 @@ from mindspore.common import dtype as mstype |
|
|
|
|
|
|
|
from src.config import nasnet_a_mobile_config_gpu as cfg |
|
|
|
from src.dataset import create_dataset |
|
|
|
from src.nasnet_a_mobile import NASNetAMobileWithLoss, NASNetAMobileTrainOneStepWithClipGradient |
|
|
|
from src.nasnet_a_mobile import NASNetAMobileWithLoss |
|
|
|
from src.lr_generator import get_lr |
|
|
|
|
|
|
|
|
|
|
|
@@ -104,9 +104,13 @@ if __name__ == '__main__': |
|
|
|
optimizer = RMSProp(group_params, lr, decay=cfg.rmsprop_decay, weight_decay=cfg.weight_decay, |
|
|
|
momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale) |
|
|
|
|
|
|
|
net_with_grads = NASNetAMobileTrainOneStepWithClipGradient(net_with_loss, optimizer) |
|
|
|
net_with_grads.set_train() |
|
|
|
model = Model(net_with_grads) |
|
|
|
# net_with_grads = NASNetAMobileTrainOneStepWithClipGradient(net_with_loss, optimizer) |
|
|
|
# net_with_grads.set_train() |
|
|
|
# model = Model(net_with_grads) |
|
|
|
|
|
|
|
# high performance |
|
|
|
net_with_loss.set_train() |
|
|
|
model = Model(net_with_loss, optimizer=optimizer) |
|
|
|
|
|
|
|
print("============== Starting Training ==============") |
|
|
|
loss_cb = LossMonitor(per_print_times=batches_per_epoch) |
|
|
|
|