From: @ling_qiao_min Reviewed-by: @zhang_xue_tong,@zhanghaibo5 Signed-off-by: @zhang_xue_tongtags/v1.1.0
| @@ -1,102 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "nnacl/arg_min_max.h" | |||||
| #include "nnacl/fp32/arg_min_max_fp32.h" | |||||
| #define FLOAT_DATA_TYPE 43 | |||||
| void GetCalcParameter(const int *shape, int dims_number, int axis, int *pre_axis_count, int *axis_count, | |||||
| int *after_axis_count) { | |||||
| *pre_axis_count = 1; | |||||
| for (int i = 0; i < axis; ++i) { | |||||
| *pre_axis_count = (*pre_axis_count) * shape[i]; | |||||
| } | |||||
| *axis_count = shape[axis]; | |||||
| *after_axis_count = 1; | |||||
| for (int i = axis + 1; i < dims_number; ++i) { | |||||
| *after_axis_count = (*after_axis_count) * shape[i]; | |||||
| } | |||||
| } | |||||
| void ArgMinMaxTopk1(const void *input, void *output, const int *shape, const ArgMinMaxParameter *param) { | |||||
| int pre_axis_count = 1; | |||||
| int axis_count = 1; | |||||
| int after_axis_count = 1; | |||||
| GetCalcParameter(shape, param->dims_size_, param->axis_, &pre_axis_count, &axis_count, &after_axis_count); | |||||
| if (param->data_type_ != FLOAT_DATA_TYPE) { | |||||
| return; | |||||
| } | |||||
| if (param->get_max_) { | |||||
| ArgMax(input, output, param, pre_axis_count, axis_count, after_axis_count); | |||||
| } else { | |||||
| ArgMin(input, output, param, pre_axis_count, axis_count, after_axis_count); | |||||
| } | |||||
| } | |||||
| void ArgMinMaxTopknFp32(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->get_max_) { | |||||
| switch (param->axis_) { | |||||
| case 0: | |||||
| ArgMaxDim0(input, output, in_shape, param); | |||||
| break; | |||||
| case 1: | |||||
| ArgMaxDim1(input, output, in_shape, param); | |||||
| break; | |||||
| case 2: | |||||
| ArgMaxDim2(input, output, in_shape, param); | |||||
| break; | |||||
| case 3: | |||||
| ArgMaxDim3(input, output, in_shape, param); | |||||
| break; | |||||
| } | |||||
| } else { | |||||
| switch (param->axis_) { | |||||
| case 0: | |||||
| ArgMinDim0(input, output, in_shape, param); | |||||
| break; | |||||
| case 1: | |||||
| ArgMinDim1(input, output, in_shape, param); | |||||
| break; | |||||
| case 2: | |||||
| ArgMinDim2(input, output, in_shape, param); | |||||
| break; | |||||
| case 3: | |||||
| ArgMinDim3(input, output, in_shape, param); | |||||
| break; | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMinMax(const void *input, void *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->topk_ == 1) { | |||||
| ArgMinMaxTopk1(input, output, in_shape, param); | |||||
| return; | |||||
| } | |||||
| switch (param->data_type_) { | |||||
| case FLOAT_DATA_TYPE: { | |||||
| ArgMinMaxTopknFp32(input, output, in_shape, param); | |||||
| return; | |||||
| } | |||||
| default: | |||||
| break; | |||||
| } | |||||
| } | |||||
| #undef FLOAT_DATA_TYPE | |||||
| #undef INT8_DATA_TYPE | |||||
| @@ -1,29 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_NNACL_ARG_MIN_MAX_H_ | |||||
| #define MINDSPORE_LITE_NNACL_ARG_MIN_MAX_H_ | |||||
| #include "nnacl/arg_min_max_parameter.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| void ArgMinMax(const void *input, void *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // MINDSPORE_LITE_NNACL_ARG_MIN_MAX_H_ | |||||
| @@ -43,87 +43,91 @@ int ArgCompareDescFp32(const void *a, const void *b) { | |||||
| return 0; | return 0; | ||||
| } | } | ||||
| void ArgMaxDim0OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | |||||
| for (int j = 0; j < in_shape[0]; ++j) { | |||||
| size_t offset = param->in_strides_[0] * j + i; | |||||
| param->arg_elements_[j].index_ = j; | |||||
| param->arg_elements_[j].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), ArgCompareDescFp32); | |||||
| for (int j = 0; j < param->topk_; ++j) { | |||||
| size_t out_offset = j * param->out_strides_[0] + i; | |||||
| output[out_offset] = param->arg_elements_[j].data_.f_data_; | |||||
| void ArgMaxTopK1(const float *input, float *output, float *output_value, const ArgMinMaxParameter *param, | |||||
| int pre_axis_count, int axis_count, int after_axis_count) { | |||||
| bool out_value = param->out_value_; | |||||
| for (int i = 0; i < pre_axis_count; ++i) { | |||||
| size_t output_offset = i * after_axis_count; | |||||
| size_t input_offset = output_offset * axis_count; | |||||
| for (int j = 0; j < after_axis_count; ++j) { | |||||
| float value = -FLT_MAX; | |||||
| float index = 0.0f; | |||||
| for (int k = 0; k < axis_count; ++k) { | |||||
| float value_tmp = input[input_offset + k * after_axis_count + j]; | |||||
| if (value_tmp > value) { | |||||
| value = value_tmp; | |||||
| index = k; | |||||
| } | |||||
| } | |||||
| output[output_offset + j] = out_value ? value : index; | |||||
| if (output_value != NULL) { | |||||
| output_value[output_offset + j] = value; | |||||
| } | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| void ArgMaxDim0OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | |||||
| for (int j = 0; j < in_shape[0]; ++j) { | |||||
| size_t offset = param->in_strides_[0] * j + i; | |||||
| param->arg_elements_[j].index_ = j; | |||||
| param->arg_elements_[j].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), ArgCompareDescFp32); | |||||
| for (int j = 0; j < param->topk_; ++j) { | |||||
| size_t out_offset = j * param->out_strides_[0] + i; | |||||
| output[out_offset] = param->arg_elements_[j].index_; | |||||
| void ArgMinTopK1(const float *input, float *output, float *output_value, const ArgMinMaxParameter *param, | |||||
| int pre_axis_count, int axis_count, int after_axis_count) { | |||||
| bool out_value = param->out_value_; | |||||
| for (int i = 0; i < pre_axis_count; ++i) { | |||||
| size_t output_offset = i * after_axis_count; | |||||
| size_t input_offset = output_offset * axis_count; | |||||
| for (int j = 0; j < after_axis_count; ++j) { | |||||
| float value = FLT_MAX; | |||||
| float index = 0.0f; | |||||
| for (int k = 0; k < axis_count; ++k) { | |||||
| float value_tmp = input[input_offset + k * after_axis_count + j]; | |||||
| if (value_tmp < value) { | |||||
| value = value_tmp; | |||||
| index = k; | |||||
| } | |||||
| } | |||||
| output[output_offset + j] = out_value ? value : index; | |||||
| if (output_value != NULL) { | |||||
| output_value[output_offset + j] = value; | |||||
| } | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| void ArgMinDim0OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | |||||
| for (int j = 0; j < in_shape[0]; ++j) { | |||||
| size_t offset = param->in_strides_[0] * j + i; | |||||
| param->arg_elements_[j].index_ = j; | |||||
| param->arg_elements_[j].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), ArgCompareAscFp32); | |||||
| for (int j = 0; j < param->topk_; ++j) { | |||||
| size_t out_offset = j * param->out_strides_[0] + i; | |||||
| output[out_offset] = param->arg_elements_[j].data_.f_data_; | |||||
| } | |||||
| void GetCalcParameter(const int *shape, int dims_number, int axis, int *pre_axis_count, int *axis_count, | |||||
| int *after_axis_count) { | |||||
| *pre_axis_count = 1; | |||||
| for (int i = 0; i < axis; ++i) { | |||||
| *pre_axis_count = (*pre_axis_count) * shape[i]; | |||||
| } | |||||
| *axis_count = shape[axis]; | |||||
| *after_axis_count = 1; | |||||
| for (int i = axis + 1; i < dims_number; ++i) { | |||||
| *after_axis_count = (*after_axis_count) * shape[i]; | |||||
| } | } | ||||
| } | } | ||||
| void ArgMinDim0OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| void ArgMinMaxDim0(const float *input, float *output, float *output_value, const int *in_shape, | |||||
| const ArgMinMaxParameter *param, COMPARE_FUNCTION compare_func) { | |||||
| for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | ||||
| for (int j = 0; j < in_shape[0]; ++j) { | for (int j = 0; j < in_shape[0]; ++j) { | ||||
| size_t offset = param->in_strides_[0] * j + i; | size_t offset = param->in_strides_[0] * j + i; | ||||
| param->arg_elements_[j].index_ = j; | param->arg_elements_[j].index_ = j; | ||||
| param->arg_elements_[j].data_.f_data_ = input[offset]; | param->arg_elements_[j].data_.f_data_ = input[offset]; | ||||
| } | } | ||||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), ArgCompareAscFp32); | |||||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), *compare_func); | |||||
| for (int j = 0; j < param->topk_; ++j) { | for (int j = 0; j < param->topk_; ++j) { | ||||
| size_t out_offset = j * param->out_strides_[0] + i; | size_t out_offset = j * param->out_strides_[0] + i; | ||||
| output[out_offset] = param->arg_elements_[j].index_; | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMaxDim1OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < param->in_strides_[1]; ++j) { | |||||
| for (int k = 0; k < in_shape1; ++k) { | |||||
| size_t offset = param->in_strides_[1] * k + in_dim0_offset + j; | |||||
| param->arg_elements_[k].index_ = k; | |||||
| param->arg_elements_[k].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), ArgCompareDescFp32); | |||||
| for (int k = 0; k < param->topk_; ++k) { | |||||
| size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | |||||
| output[out_offset] = param->arg_elements_[k].data_.f_data_; | |||||
| output[out_offset] = param->out_value_ ? param->arg_elements_[j].data_.f_data_ : param->arg_elements_[j].index_; | |||||
| if (output_value != NULL) { | |||||
| output_value[out_offset] = param->arg_elements_[j].data_.f_data_; | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| return; | |||||
| } | } | ||||
| void ArgMaxDim1OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| void ArgMinMaxDim1(const float *input, float *output, float *output_value, const int *in_shape, | |||||
| const ArgMinMaxParameter *param, COMPARE_FUNCTION compare_func) { | |||||
| int in_shape1 = in_shape[1]; | int in_shape1 = in_shape[1]; | ||||
| for (int i = 0; i < in_shape[0]; ++i) { | for (int i = 0; i < in_shape[0]; ++i) { | ||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | size_t in_dim0_offset = i * param->in_strides_[0]; | ||||
| @@ -134,81 +138,21 @@ void ArgMaxDim1OutIndex(const float *input, float *output, const int *in_shape, | |||||
| param->arg_elements_[k].index_ = k; | param->arg_elements_[k].index_ = k; | ||||
| param->arg_elements_[k].data_.f_data_ = input[offset]; | param->arg_elements_[k].data_.f_data_ = input[offset]; | ||||
| } | } | ||||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), ArgCompareDescFp32); | |||||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), *compare_func); | |||||
| for (int k = 0; k < param->topk_; ++k) { | for (int k = 0; k < param->topk_; ++k) { | ||||
| size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | ||||
| output[out_offset] = param->arg_elements_[k].index_; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMinDim1OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < param->in_strides_[1]; ++j) { | |||||
| for (int k = 0; k < in_shape1; ++k) { | |||||
| size_t offset = param->in_strides_[1] * k + in_dim0_offset + j; | |||||
| param->arg_elements_[k].index_ = k; | |||||
| param->arg_elements_[k].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), ArgCompareAscFp32); | |||||
| for (int k = 0; k < param->topk_; ++k) { | |||||
| size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | |||||
| output[out_offset] = param->arg_elements_[k].data_.f_data_; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMinDim1OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < param->in_strides_[1]; ++j) { | |||||
| for (int k = 0; k < in_shape1; ++k) { | |||||
| size_t offset = param->in_strides_[1] * k + in_dim0_offset + j; | |||||
| param->arg_elements_[k].index_ = k; | |||||
| param->arg_elements_[k].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), ArgCompareAscFp32); | |||||
| for (int k = 0; k < param->topk_; ++k) { | |||||
| size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | |||||
| output[out_offset] = param->arg_elements_[k].index_; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMaxDim2OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| int in_shape2 = in_shape[2]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < in_shape1; ++j) { | |||||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||||
| for (int k = 0; k < param->in_strides_[2]; ++k) { | |||||
| for (int l = 0; l < in_shape2; ++l) { | |||||
| size_t offset = param->in_strides_[2] * l + k + in_dim1_offset; | |||||
| param->arg_elements_[l].index_ = l; | |||||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), ArgCompareDescFp32); | |||||
| for (int l = 0; l < param->topk_; ++l) { | |||||
| size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | |||||
| output[out_offset] = param->arg_elements_[l].data_.f_data_; | |||||
| output[out_offset] = param->out_value_ ? param->arg_elements_[k].data_.f_data_ : param->arg_elements_[k].index_; | |||||
| if (output_value != NULL) { | |||||
| output_value[out_offset] = param->arg_elements_[k].data_.f_data_; | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| return; | |||||
| } | } | ||||
| void ArgMaxDim2OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| void ArgMinMaxDim2(const float *input, float *output, float *output_value, const int *in_shape, | |||||
| const ArgMinMaxParameter *param, COMPARE_FUNCTION compare_func) { | |||||
| int in_shape1 = in_shape[1]; | int in_shape1 = in_shape[1]; | ||||
| int in_shape2 = in_shape[2]; | int in_shape2 = in_shape[2]; | ||||
| for (int i = 0; i < in_shape[0]; ++i) { | for (int i = 0; i < in_shape[0]; ++i) { | ||||
| @@ -223,67 +167,23 @@ void ArgMaxDim2OutIndex(const float *input, float *output, const int *in_shape, | |||||
| param->arg_elements_[l].index_ = l; | param->arg_elements_[l].index_ = l; | ||||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | param->arg_elements_[l].data_.f_data_ = input[offset]; | ||||
| } | } | ||||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), ArgCompareDescFp32); | |||||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), *compare_func); | |||||
| for (int l = 0; l < param->topk_; ++l) { | for (int l = 0; l < param->topk_; ++l) { | ||||
| size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | ||||
| output[out_offset] = param->arg_elements_[l].index_; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMinDim2OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| int in_shape2 = in_shape[2]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < in_shape1; ++j) { | |||||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||||
| for (int k = 0; k < param->in_strides_[2]; ++k) { | |||||
| for (int l = 0; l < in_shape2; ++l) { | |||||
| size_t offset = param->in_strides_[2] * l + k + in_dim1_offset; | |||||
| param->arg_elements_[l].index_ = l; | |||||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), ArgCompareAscFp32); | |||||
| for (int l = 0; l < param->topk_; ++l) { | |||||
| size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | |||||
| output[out_offset] = param->arg_elements_[l].data_.f_data_; | |||||
| output[out_offset] = | |||||
| param->out_value_ ? param->arg_elements_[l].data_.f_data_ : param->arg_elements_[l].index_; | |||||
| if (output_value != NULL) { | |||||
| output_value[out_offset] = param->arg_elements_[l].data_.f_data_; | |||||
| } | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| void ArgMinDim2OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| int in_shape2 = in_shape[2]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < in_shape1; ++j) { | |||||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||||
| for (int k = 0; k < param->in_strides_[2]; ++k) { | |||||
| for (int l = 0; l < in_shape2; ++l) { | |||||
| size_t offset = param->in_strides_[2] * l + k + in_dim1_offset; | |||||
| param->arg_elements_[l].index_ = l; | |||||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), ArgCompareAscFp32); | |||||
| for (int l = 0; l < param->topk_; ++l) { | |||||
| size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | |||||
| output[out_offset] = param->arg_elements_[l].index_; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMaxDim3OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| void ArgMinMaxDim3(const float *input, float *output, float *output_value, const int *in_shape, | |||||
| const ArgMinMaxParameter *param, COMPARE_FUNCTION compare_func) { | |||||
| int in_shape1 = in_shape[1]; | int in_shape1 = in_shape[1]; | ||||
| int in_shape2 = in_shape[2]; | int in_shape2 = in_shape[2]; | ||||
| int in_shape3 = in_shape[3]; | int in_shape3 = in_shape[3]; | ||||
| @@ -301,202 +201,56 @@ void ArgMaxDim3OutValue(const float *input, float *output, const int *in_shape, | |||||
| param->arg_elements_[l].index_ = l; | param->arg_elements_[l].index_ = l; | ||||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | param->arg_elements_[l].data_.f_data_ = input[offset]; | ||||
| } | } | ||||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), ArgCompareDescFp32); | |||||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), *compare_func); | |||||
| for (int l = 0; l < param->topk_; ++l) { | for (int l = 0; l < param->topk_; ++l) { | ||||
| size_t out_offset = out_dim2_offset + l; | size_t out_offset = out_dim2_offset + l; | ||||
| output[out_offset] = param->arg_elements_[l].data_.f_data_; | |||||
| output[out_offset] = | |||||
| param->out_value_ ? param->arg_elements_[l].data_.f_data_ : param->arg_elements_[l].index_; | |||||
| if (output_value != NULL) { | |||||
| output_value[out_offset] = param->arg_elements_[l].data_.f_data_; | |||||
| } | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| void ArgMaxDim3OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| int in_shape2 = in_shape[2]; | |||||
| int in_shape3 = in_shape[3]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < in_shape1; ++j) { | |||||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||||
| for (int k = 0; k < in_shape2; ++k) { | |||||
| size_t in_dim2_offset = k * param->in_strides_[2] + in_dim1_offset; | |||||
| size_t out_dim2_offset = k * param->out_strides_[2] + out_dim1_offset; | |||||
| for (int l = 0; l < in_shape3; ++l) { | |||||
| size_t offset = l + in_dim2_offset; | |||||
| param->arg_elements_[l].index_ = l; | |||||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), ArgCompareDescFp32); | |||||
| for (int l = 0; l < param->topk_; ++l) { | |||||
| size_t out_offset = out_dim2_offset + l; | |||||
| output[out_offset] = param->arg_elements_[l].index_; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMinDim3OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| int in_shape2 = in_shape[2]; | |||||
| int in_shape3 = in_shape[3]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < in_shape1; ++j) { | |||||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||||
| for (int k = 0; k < in_shape2; ++k) { | |||||
| size_t in_dim2_offset = k * param->in_strides_[2] + in_dim1_offset; | |||||
| size_t out_dim2_offset = k * param->out_strides_[2] + out_dim1_offset; | |||||
| for (int l = 0; l < in_shape3; ++l) { | |||||
| size_t offset = l + in_dim2_offset; | |||||
| param->arg_elements_[l].index_ = l; | |||||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), ArgCompareAscFp32); | |||||
| for (int l = 0; l < param->topk_; ++l) { | |||||
| size_t out_offset = out_dim2_offset + l; | |||||
| output[out_offset] = param->arg_elements_[l].data_.f_data_; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMinMaxFp32(const float *input, float *output, float *output_value, const int *in_shape, | |||||
| const ArgMinMaxParameter *param) { | |||||
| if (param->topk_ == 1) { | |||||
| int pre_axis_count = 1; | |||||
| int axis_count = 1; | |||||
| int after_axis_count = 1; | |||||
| GetCalcParameter(in_shape, param->dims_size_, param->axis_, &pre_axis_count, &axis_count, &after_axis_count); | |||||
| void ArgMinDim3OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| int in_shape1 = in_shape[1]; | |||||
| int in_shape2 = in_shape[2]; | |||||
| int in_shape3 = in_shape[3]; | |||||
| for (int i = 0; i < in_shape[0]; ++i) { | |||||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||||
| for (int j = 0; j < in_shape1; ++j) { | |||||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||||
| for (int k = 0; k < in_shape2; ++k) { | |||||
| size_t in_dim2_offset = k * param->in_strides_[2] + in_dim1_offset; | |||||
| size_t out_dim2_offset = k * param->out_strides_[2] + out_dim1_offset; | |||||
| for (int l = 0; l < in_shape3; ++l) { | |||||
| size_t offset = l + in_dim2_offset; | |||||
| param->arg_elements_[l].index_ = l; | |||||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||||
| } | |||||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), ArgCompareAscFp32); | |||||
| for (int l = 0; l < param->topk_; ++l) { | |||||
| size_t out_offset = out_dim2_offset + l; | |||||
| output[out_offset] = param->arg_elements_[l].index_; | |||||
| } | |||||
| } | |||||
| if (param->get_max_) { | |||||
| ArgMaxTopK1(input, output, output_value, param, pre_axis_count, axis_count, after_axis_count); | |||||
| } else { | |||||
| ArgMinTopK1(input, output, output_value, param, pre_axis_count, axis_count, after_axis_count); | |||||
| } | } | ||||
| return; | |||||
| } | } | ||||
| } | |||||
| void ArgMaxDim0(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->out_value_) { | |||||
| ArgMaxDim0OutValue(input, output, in_shape, param); | |||||
| } else { | |||||
| ArgMaxDim0OutIndex(input, output, in_shape, param); | |||||
| } | |||||
| } | |||||
| void ArgMinDim0(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->out_value_) { | |||||
| ArgMinDim0OutValue(input, output, in_shape, param); | |||||
| COMPARE_FUNCTION compare_function = NULL; | |||||
| if (param->get_max_) { | |||||
| compare_function = ArgCompareDescFp32; | |||||
| } else { | } else { | ||||
| ArgMinDim0OutIndex(input, output, in_shape, param); | |||||
| compare_function = ArgCompareAscFp32; | |||||
| } | } | ||||
| } | |||||
| void ArgMaxDim1(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->out_value_) { | |||||
| ArgMaxDim1OutValue(input, output, in_shape, param); | |||||
| } else { | |||||
| ArgMaxDim1OutIndex(input, output, in_shape, param); | |||||
| } | |||||
| } | |||||
| void ArgMinDim1(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->out_value_) { | |||||
| ArgMinDim1OutValue(input, output, in_shape, param); | |||||
| } else { | |||||
| ArgMinDim1OutIndex(input, output, in_shape, param); | |||||
| } | |||||
| } | |||||
| void ArgMaxDim2(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->out_value_) { | |||||
| ArgMaxDim2OutValue(input, output, in_shape, param); | |||||
| } else { | |||||
| ArgMaxDim2OutIndex(input, output, in_shape, param); | |||||
| } | |||||
| } | |||||
| void ArgMinDim2(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->out_value_) { | |||||
| ArgMinDim2OutValue(input, output, in_shape, param); | |||||
| } else { | |||||
| ArgMinDim2OutIndex(input, output, in_shape, param); | |||||
| } | |||||
| } | |||||
| void ArgMaxDim3(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->out_value_) { | |||||
| ArgMaxDim3OutValue(input, output, in_shape, param); | |||||
| } else { | |||||
| ArgMaxDim3OutIndex(input, output, in_shape, param); | |||||
| } | |||||
| } | |||||
| void ArgMinDim3(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||||
| if (param->out_value_) { | |||||
| ArgMinDim3OutValue(input, output, in_shape, param); | |||||
| } else { | |||||
| ArgMinDim3OutIndex(input, output, in_shape, param); | |||||
| } | |||||
| } | |||||
| void ArgMax(const float *input, float *output, const ArgMinMaxParameter *param, int pre_axis_count, int axis_count, | |||||
| int after_axis_count) { | |||||
| bool out_value = param->out_value_; | |||||
| for (int i = 0; i < pre_axis_count; ++i) { | |||||
| size_t output_offset = i * after_axis_count; | |||||
| size_t input_offset = output_offset * axis_count; | |||||
| for (int j = 0; j < after_axis_count; ++j) { | |||||
| float value = -FLT_MAX; | |||||
| float index = 0.0f; | |||||
| for (int k = 0; k < axis_count; ++k) { | |||||
| float value_tmp = input[input_offset + k * after_axis_count + j]; | |||||
| if (value_tmp > value) { | |||||
| value = value_tmp; | |||||
| index = k; | |||||
| } | |||||
| } | |||||
| output[output_offset + j] = out_value ? value : index; | |||||
| } | |||||
| } | |||||
| } | |||||
| void ArgMin(const float *input, float *output, const ArgMinMaxParameter *param, int pre_axis_count, int axis_count, | |||||
| int after_axis_count) { | |||||
| bool out_value = param->out_value_; | |||||
| for (int i = 0; i < pre_axis_count; ++i) { | |||||
| size_t output_offset = i * after_axis_count; | |||||
| size_t input_offset = output_offset * axis_count; | |||||
| for (int j = 0; j < after_axis_count; ++j) { | |||||
| float value = FLT_MAX; | |||||
| float index = 0.0f; | |||||
| for (int k = 0; k < axis_count; ++k) { | |||||
| float value_tmp = input[input_offset + k * after_axis_count + j]; | |||||
| if (value_tmp < value) { | |||||
| value = value_tmp; | |||||
| index = k; | |||||
| } | |||||
| } | |||||
| output[output_offset + j] = out_value ? value : index; | |||||
| } | |||||
| switch (param->axis_) { | |||||
| case 0: | |||||
| ArgMinMaxDim0(input, output, output_value, in_shape, param, compare_function); | |||||
| break; | |||||
| case 1: | |||||
| ArgMinMaxDim1(input, output, output_value, in_shape, param, compare_function); | |||||
| break; | |||||
| case 2: | |||||
| ArgMinMaxDim2(input, output, output_value, in_shape, param, compare_function); | |||||
| break; | |||||
| case 3: | |||||
| ArgMinMaxDim3(input, output, output_value, in_shape, param, compare_function); | |||||
| break; | |||||
| } | } | ||||
| return; | |||||
| } | } | ||||
| @@ -18,21 +18,13 @@ | |||||
| #include "nnacl/arg_min_max_parameter.h" | #include "nnacl/arg_min_max_parameter.h" | ||||
| typedef int (*COMPARE_FUNCTION)(const void *a, const void *b); | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| extern "C" { | extern "C" { | ||||
| #endif | #endif | ||||
| void ArgMax(const float *input, float *output, const ArgMinMaxParameter *param, int pre_axis_count, int axis_count, | |||||
| int after_axis_count); | |||||
| void ArgMin(const float *input, float *output, const ArgMinMaxParameter *param, int pre_axis_count, int axis_count, | |||||
| int after_axis_count); | |||||
| void ArgMaxDim0(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| void ArgMinDim0(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| void ArgMaxDim1(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| void ArgMinDim1(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| void ArgMaxDim2(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| void ArgMinDim2(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| void ArgMaxDim3(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| void ArgMinDim3(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||||
| void ArgMinMaxFp32(const float *input, float *output, float *output_value, const int *in_shape, | |||||
| const ArgMinMaxParameter *param); | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| } | } | ||||
| #endif | #endif | ||||
| @@ -1,47 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "nnacl/fp32/instance_norm_fp32.h" | |||||
| #include <math.h> | |||||
| #include "nnacl/errorcode.h" | |||||
| #include "nnacl/op_base.h" | |||||
| int InstanceNorm(int outer_size, int inner_size, const float *src_data, const float *scale_data, const float *bias_data, | |||||
| const InstanceNormParameter *param, float *dst_data, int task_id, int thread_num) { | |||||
| if (src_data == NULL || dst_data == NULL || scale_data == NULL || bias_data == NULL) { | |||||
| return NNACL_NULL_PTR; | |||||
| } | |||||
| for (int j = task_id; j < outer_size; j += thread_num) { | |||||
| int offset = (j / param->channel_) * inner_size * param->channel_; | |||||
| const float *src = src_data + offset; | |||||
| float *dst = dst_data + offset; | |||||
| float mean = 0.0f; | |||||
| float square_mean = 0.0f; | |||||
| for (int i = 0; i < inner_size; i++) { | |||||
| int idx = j % param->channel_ + i * param->channel_; | |||||
| mean += src[idx]; | |||||
| square_mean += src[idx] * src[idx]; | |||||
| } | |||||
| mean /= (float)inner_size; | |||||
| square_mean /= (float)inner_size; | |||||
| const float deno = 1 / sqrtf(square_mean - mean * mean + param->epsilon_); | |||||
| for (int i = 0; i < inner_size; ++i) { | |||||
| int idx = j % param->channel_ + i * param->channel_; | |||||
| int scale_idx = (j / param->channel_) * param->channel_ + j % param->channel_; | |||||
| dst[idx] = ((src[idx] - mean) * deno) * scale_data[scale_idx] + bias_data[scale_idx]; | |||||
| } | |||||
| } | |||||
| return NNACL_OK; | |||||
| } | |||||
| @@ -1,32 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||||
| #define MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||||
| #include "nnacl/op_base.h" | |||||
| #include "nnacl/instance_norm_parameter.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| int InstanceNorm(int outer_size, int inner_size, const float *src_data, const float *scale_data, const float *bias_data, | |||||
| const InstanceNormParameter *param, float *dst_data, int task_id, int thread_num); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||||
| @@ -35,6 +35,7 @@ OpParameter *PopulateArgMaxParameter(const mindspore::lite::PrimitiveC *primitiv | |||||
| arg_param->axis_type_ = param->GetAxisType(); | arg_param->axis_type_ = param->GetAxisType(); | ||||
| arg_param->out_value_ = param->GetOutMaxValue(); | arg_param->out_value_ = param->GetOutMaxValue(); | ||||
| arg_param->keep_dims_ = param->GetKeepDims(); | arg_param->keep_dims_ = param->GetKeepDims(); | ||||
| arg_param->get_max_ = true; | |||||
| return reinterpret_cast<OpParameter *>(arg_param); | return reinterpret_cast<OpParameter *>(arg_param); | ||||
| } | } | ||||
| @@ -35,6 +35,7 @@ OpParameter *PopulateArgMinParameter(const mindspore::lite::PrimitiveC *primitiv | |||||
| arg_param->axis_type_ = param->GetAxisType(); | arg_param->axis_type_ = param->GetAxisType(); | ||||
| arg_param->out_value_ = param->GetOutMaxValue(); | arg_param->out_value_ = param->GetOutMaxValue(); | ||||
| arg_param->keep_dims_ = param->GetKeepDims(); | arg_param->keep_dims_ = param->GetKeepDims(); | ||||
| arg_param->get_max_ = false; | |||||
| return reinterpret_cast<OpParameter *>(arg_param); | return reinterpret_cast<OpParameter *>(arg_param); | ||||
| } | } | ||||
| @@ -1,118 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "src/runtime/kernel/arm/base/arg_min_max_base.h" | |||||
| #include "nnacl/arg_min_max.h" | |||||
| #include "src/runtime/kernel/arm/fp32/argminmax_fp32.h" | |||||
| #include "nnacl/arithmetic_common.h" | |||||
| #include "schema/model_generated.h" | |||||
| #include "src/kernel_registry.h" | |||||
| #include "include/errorcode.h" | |||||
| #include "include/context.h" | |||||
| using mindspore::lite::KernelRegistrar; | |||||
| using mindspore::lite::RET_ERROR; | |||||
| using mindspore::lite::RET_FORMAT_ERR; | |||||
| using mindspore::lite::RET_OK; | |||||
| using mindspore::lite::RET_PARAM_INVALID; | |||||
| using mindspore::schema::PrimitiveType_ArgMax; | |||||
| using mindspore::schema::PrimitiveType_ArgMin; | |||||
| namespace mindspore::kernel { | |||||
| int ArgMinMaxBaseCPUKernel::Init() { | |||||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||||
| switch (op_parameter_->type_) { | |||||
| case PrimitiveType_ArgMax: | |||||
| param->get_max_ = true; | |||||
| break; | |||||
| case PrimitiveType_ArgMin: | |||||
| param->get_max_ = false; | |||||
| break; | |||||
| default: | |||||
| MS_LOG(ERROR) << "Unexpected type " << op_parameter_->type_; | |||||
| return RET_ERROR; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| int ArgMinMaxBaseCPUKernel::ReSize() { | |||||
| auto in_shape = in_tensors_.at(0)->shape(); | |||||
| auto dims_size = in_shape.size(); | |||||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||||
| int axis = param->axis_ < 0 ? param->axis_ + dims_size : param->axis_; | |||||
| param->axis_ = axis; | |||||
| param->dims_size_ = dims_size; | |||||
| if (param->topk_ <= 0) { | |||||
| MS_LOG(ERROR) << "Invalid topk " << param->topk_; | |||||
| return RET_PARAM_INVALID; | |||||
| } | |||||
| param->topk_ = MSMIN(param->topk_, in_shape.at(axis)); | |||||
| ComputeStrides(in_shape.data(), param->in_strides_, in_shape.size()); | |||||
| auto out_shape = out_tensors_.at(0)->shape(); | |||||
| ComputeStrides(out_shape.data(), param->out_strides_, out_shape.size()); | |||||
| return RET_OK; | |||||
| } | |||||
| int ArgMinMaxBaseCPUKernel::Run() { | |||||
| auto input_data = in_tensors_.at(0)->MutableData(); | |||||
| auto output_data = out_tensors_.at(0)->MutableData(); | |||||
| auto shape = in_tensors_.at(0)->shape(); | |||||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||||
| MS_ASSERT(context_->allocator != nullptr); | |||||
| if (param->topk_ > 1 || param->keep_dims_) { | |||||
| param->arg_elements_ = | |||||
| reinterpret_cast<ArgElement *>(context_->allocator->Malloc(sizeof(ArgElement) * shape[param->axis_])); | |||||
| if (param->arg_elements_ == nullptr) { | |||||
| MS_LOG(ERROR) << "malloc memroy fail!"; | |||||
| return RET_ERROR; | |||||
| } | |||||
| } | |||||
| ArgMinMax(input_data, output_data, reinterpret_cast<const int *>(shape.data()), param); | |||||
| context_->allocator->Free(param->arg_elements_); | |||||
| param->arg_elements_ = nullptr; | |||||
| return RET_OK; | |||||
| } | |||||
| kernel::LiteKernel *CpuArgMinMaxFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||||
| const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter, | |||||
| const lite::InnerContext *ctx, const kernel::KernelKey &desc, | |||||
| const mindspore::lite::PrimitiveC *primitive) { | |||||
| if (op_parameter == nullptr) { | |||||
| MS_LOG(ERROR) << "Input op_parameter is nullptr!"; | |||||
| return nullptr; | |||||
| } | |||||
| auto kernel = new (std::nothrow) ArgMinMaxCPUKernel(op_parameter, inputs, outputs, ctx, primitive); | |||||
| if (kernel == nullptr) { | |||||
| MS_LOG(ERROR) << "new ArgMinMaxCPUKernel fail!"; | |||||
| free(op_parameter); | |||||
| return nullptr; | |||||
| } | |||||
| auto ret = kernel->Init(); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: " | |||||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_)); | |||||
| delete kernel; | |||||
| return nullptr; | |||||
| } | |||||
| return kernel; | |||||
| } | |||||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ArgMax, CpuArgMinMaxFp32KernelCreator) | |||||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ArgMin, CpuArgMinMaxFp32KernelCreator) | |||||
| } // namespace mindspore::kernel | |||||
| @@ -1,41 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_ARG_MIN_MAX_BASE_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_ARG_MIN_MAX_BASE_H_ | |||||
| #include <vector> | |||||
| #include "src/lite_kernel.h" | |||||
| namespace mindspore::kernel { | |||||
| class ArgMinMaxBaseCPUKernel : public LiteKernel { | |||||
| public: | |||||
| ArgMinMaxBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | |||||
| const mindspore::lite::PrimitiveC *primitive) | |||||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) {} | |||||
| virtual ~ArgMinMaxBaseCPUKernel() = default; | |||||
| int Init() override; | |||||
| int ReSize() override; | |||||
| int Run() override; | |||||
| private: | |||||
| }; | |||||
| } // namespace mindspore::kernel | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_ARG_MIN_MAX_BASE_H_ | |||||
| @@ -15,11 +15,8 @@ | |||||
| */ | */ | ||||
| #include "src/runtime/kernel/arm/fp32/argminmax_fp32.h" | #include "src/runtime/kernel/arm/fp32/argminmax_fp32.h" | ||||
| #include <vector> | |||||
| #include "schema/model_generated.h" | #include "schema/model_generated.h" | ||||
| #include "src/kernel_registry.h" | #include "src/kernel_registry.h" | ||||
| #include "nnacl/arg_min_max.h" | |||||
| #include "include/errorcode.h" | |||||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | using mindspore::kernel::KERNEL_ARCH::kCPU; | ||||
| using mindspore::lite::KernelRegistrar; | using mindspore::lite::KernelRegistrar; | ||||
| @@ -30,22 +27,79 @@ using mindspore::schema::PrimitiveType_ArgMin; | |||||
| namespace mindspore::kernel { | namespace mindspore::kernel { | ||||
| int ArgMinMaxCPUKernel::Init() { | int ArgMinMaxCPUKernel::Init() { | ||||
| auto ret = ArgMinMaxBaseCPUKernel::Init(); | |||||
| if (ret != RET_OK) { | |||||
| return ret; | |||||
| } | |||||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||||
| param->data_type_ = kNumberTypeFloat32; | |||||
| arg_param_->data_type_ = kNumberTypeFloat32; | |||||
| if (!InferShapeDone()) { | if (!InferShapeDone()) { | ||||
| return RET_OK; | return RET_OK; | ||||
| } | } | ||||
| return ReSize(); | return ReSize(); | ||||
| } | } | ||||
| int ArgMinMaxCPUKernel::ReSize() { return ArgMinMaxBaseCPUKernel::ReSize(); } | |||||
| int ArgMinMaxCPUKernel::ReSize() { | |||||
| auto in_shape = in_tensors_.at(0)->shape(); | |||||
| auto dims_size = in_shape.size(); | |||||
| int axis = arg_param_->axis_ < 0 ? arg_param_->axis_ + dims_size : arg_param_->axis_; | |||||
| arg_param_->axis_ = axis; | |||||
| arg_param_->dims_size_ = dims_size; | |||||
| if (arg_param_->topk_ <= 0) { | |||||
| MS_LOG(ERROR) << "Invalid topk " << arg_param_->topk_; | |||||
| return RET_ERROR; | |||||
| } | |||||
| arg_param_->topk_ = MSMIN(arg_param_->topk_, in_shape.at(axis)); | |||||
| ComputeStrides(in_shape.data(), arg_param_->in_strides_, in_shape.size()); | |||||
| auto out_shape = out_tensors_.at(0)->shape(); | |||||
| ComputeStrides(out_shape.data(), arg_param_->out_strides_, out_shape.size()); | |||||
| return RET_OK; | |||||
| } | |||||
| int ArgMinMaxCPUKernel::Run() { | int ArgMinMaxCPUKernel::Run() { | ||||
| auto ret = ArgMinMaxBaseCPUKernel::Run(); | |||||
| return ret; | |||||
| float *input_data = reinterpret_cast<float *>(in_tensors_.at(0)->data_c()); | |||||
| float *output_data = reinterpret_cast<float *>(out_tensors_.at(0)->data_c()); | |||||
| float *output_value = nullptr; | |||||
| if (out_tensors_.size() == 2) { | |||||
| output_value = reinterpret_cast<float *>(out_tensors_.at(1)->data_c()); | |||||
| } | |||||
| auto shape = in_tensors_.at(0)->shape(); | |||||
| MS_ASSERT(context_->allocator != nullptr); | |||||
| if (arg_param_->topk_ > 1 || arg_param_->keep_dims_) { | |||||
| arg_param_->arg_elements_ = | |||||
| reinterpret_cast<ArgElement *>(context_->allocator->Malloc(sizeof(ArgElement) * shape[arg_param_->axis_])); | |||||
| if (arg_param_->arg_elements_ == nullptr) { | |||||
| MS_LOG(ERROR) << "malloc memroy fail!"; | |||||
| return RET_ERROR; | |||||
| } | |||||
| } | |||||
| ArgMinMaxFp32(input_data, output_data, output_value, reinterpret_cast<const int *>(shape.data()), arg_param_); | |||||
| context_->allocator->Free(arg_param_->arg_elements_); | |||||
| arg_param_->arg_elements_ = nullptr; | |||||
| return RET_OK; | |||||
| } | } | ||||
| kernel::LiteKernel *CpuArgMinMaxFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||||
| const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter, | |||||
| const lite::InnerContext *ctx, const kernel::KernelKey &desc, | |||||
| const mindspore::lite::PrimitiveC *primitive) { | |||||
| if (op_parameter == nullptr) { | |||||
| MS_LOG(ERROR) << "Input op_parameter is nullptr!"; | |||||
| return nullptr; | |||||
| } | |||||
| auto kernel = new (std::nothrow) ArgMinMaxCPUKernel(op_parameter, inputs, outputs, ctx, primitive); | |||||
| if (kernel == nullptr) { | |||||
| MS_LOG(ERROR) << "new ArgMinMaxCPUKernel fail!"; | |||||
| free(op_parameter); | |||||
| return nullptr; | |||||
| } | |||||
| auto ret = kernel->Init(); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: " | |||||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_)); | |||||
| delete kernel; | |||||
| return nullptr; | |||||
| } | |||||
| return kernel; | |||||
| } | |||||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ArgMax, CpuArgMinMaxFp32KernelCreator) | |||||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ArgMin, CpuArgMinMaxFp32KernelCreator) | |||||
| } // namespace mindspore::kernel | } // namespace mindspore::kernel | ||||
| @@ -17,21 +17,29 @@ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_ARGMINMAX_H_ | #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_ARGMINMAX_H_ | ||||
| #include <vector> | #include <vector> | ||||
| #include "src/runtime/kernel/arm/base/arg_min_max_base.h" | |||||
| #include "include/errorcode.h" | |||||
| #include "nnacl/fp32/arg_min_max_fp32.h" | |||||
| #include "nnacl/arithmetic_common.h" | |||||
| #include "src/lite_kernel.h" | |||||
| namespace mindspore::kernel { | namespace mindspore::kernel { | ||||
| class ArgMinMaxCPUKernel : public ArgMinMaxBaseCPUKernel { | |||||
| class ArgMinMaxCPUKernel : public LiteKernel { | |||||
| public: | public: | ||||
| ArgMinMaxCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | ArgMinMaxCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | ||||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | ||||
| const mindspore::lite::PrimitiveC *primitive) | const mindspore::lite::PrimitiveC *primitive) | ||||
| : ArgMinMaxBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {} | |||||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) { | |||||
| arg_param_ = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||||
| } | |||||
| ~ArgMinMaxCPUKernel() = default; | ~ArgMinMaxCPUKernel() = default; | ||||
| int Init() override; | int Init() override; | ||||
| int ReSize() override; | int ReSize() override; | ||||
| int Run() override; | int Run() override; | ||||
| private: | |||||
| ArgMinMaxParameter *arg_param_; | |||||
| }; | }; | ||||
| } // namespace mindspore::kernel | } // namespace mindspore::kernel | ||||
| @@ -1,107 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "src/runtime/kernel/arm/fp32/instance_norm_fp32.h" | |||||
| #include <vector> | |||||
| #include "schema/model_generated.h" | |||||
| #include "src/kernel_registry.h" | |||||
| #include "include/errorcode.h" | |||||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | |||||
| using mindspore::lite::KernelRegistrar; | |||||
| using mindspore::lite::RET_ERROR; | |||||
| using mindspore::lite::RET_OK; | |||||
| using mindspore::schema::PrimitiveType_InstanceNorm; | |||||
| namespace mindspore::kernel { | |||||
| int InstanceNormCPUKernel::Init() { | |||||
| if (!InferShapeDone()) { | |||||
| return RET_OK; | |||||
| } | |||||
| return ReSize(); | |||||
| } | |||||
| int InstanceNormCPUKernel::ReSize() { | |||||
| auto input_shapes = in_tensors_.front()->shape(); | |||||
| auto n_dim = input_shapes.size(); | |||||
| outer_size_ = input_shapes.at(0) * input_shapes.at(n_dim - 1); | |||||
| inner_size_ = 1; | |||||
| for (size_t i = 0; i < n_dim - 1; ++i) { | |||||
| inner_size_ *= input_shapes.at(i); | |||||
| } | |||||
| param_->channel_ = input_shapes.at(n_dim - 1); | |||||
| return RET_OK; | |||||
| } | |||||
| int InstanceNormCPUKernel::DoInstanceNorm(int task_id) { | |||||
| int ret = InstanceNorm(outer_size_, inner_size_, src_data_, scale_data_, bias_data_, param_, dst_data_, task_id, | |||||
| op_parameter_->thread_num_); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "DoInstanceNorm error error_code[" << ret << "]"; | |||||
| return ret; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| int InstanceNormRun(void *cdata, int task_id) { | |||||
| auto kernel = reinterpret_cast<InstanceNormCPUKernel *>(cdata); | |||||
| auto ret = kernel->DoInstanceNorm(task_id); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "InstanceNormRun error task_id[" << task_id << "] error_code[" << ret << "]"; | |||||
| } | |||||
| return ret; | |||||
| } | |||||
| int InstanceNormCPUKernel::Run() { | |||||
| src_data_ = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData()); | |||||
| scale_data_ = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData()); | |||||
| bias_data_ = reinterpret_cast<float *>(in_tensors_.at(2)->MutableData()); | |||||
| dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData()); | |||||
| auto ret = ParallelLaunch(this->context_->thread_pool_, InstanceNormRun, this, op_parameter_->thread_num_); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "FillRun error error_code[" << ret << "]"; | |||||
| return ret; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| kernel::LiteKernel *CpuInstanceNormFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||||
| const std::vector<lite::Tensor *> &outputs, | |||||
| OpParameter *opParameter, const lite::InnerContext *ctx, | |||||
| const kernel::KernelKey &desc, | |||||
| const mindspore::lite::PrimitiveC *primitive) { | |||||
| if (opParameter == nullptr) { | |||||
| MS_LOG(ERROR) << "Create kernel failed, opParameter is nullptr, type: PrimitiveType_InstanceNorm. "; | |||||
| return nullptr; | |||||
| } | |||||
| MS_ASSERT(desc.type == schema::PrimitiveType_InstanceNorm); | |||||
| auto *kernel = new (std::nothrow) InstanceNormCPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||||
| if (kernel == nullptr) { | |||||
| MS_LOG(ERROR) << "new InstanceNormCPUKernel fail!"; | |||||
| free(opParameter); | |||||
| return nullptr; | |||||
| } | |||||
| auto ret = kernel->Init(); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: " | |||||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||||
| delete kernel; | |||||
| return nullptr; | |||||
| } | |||||
| return kernel; | |||||
| } | |||||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_InstanceNorm, CpuInstanceNormFp32KernelCreator) | |||||
| } // namespace mindspore::kernel | |||||
| @@ -1,53 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||||
| #include <vector> | |||||
| #include "src/lite_kernel.h" | |||||
| #include "include/context.h" | |||||
| #include "nnacl/fp32/instance_norm_fp32.h" | |||||
| using mindspore::lite::InnerContext; | |||||
| namespace mindspore::kernel { | |||||
| class InstanceNormCPUKernel : public LiteKernel { | |||||
| public: | |||||
| InstanceNormCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | |||||
| const mindspore::lite::PrimitiveC *primitive) | |||||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) { | |||||
| param_ = reinterpret_cast<InstanceNormParameter *>(parameter); | |||||
| } | |||||
| ~InstanceNormCPUKernel() override{}; | |||||
| int Init() override; | |||||
| int ReSize() override; | |||||
| int Run() override; | |||||
| int DoInstanceNorm(int thread_id); | |||||
| private: | |||||
| InstanceNormParameter *param_ = nullptr; | |||||
| int outer_size_; | |||||
| int inner_size_; | |||||
| float *src_data_ = nullptr; | |||||
| float *dst_data_ = nullptr; | |||||
| float *scale_data_ = nullptr; | |||||
| float *bias_data_ = nullptr; | |||||
| }; | |||||
| } // namespace mindspore::kernel | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||||
| @@ -14,11 +14,8 @@ | |||||
| * limitations under the License. | * limitations under the License. | ||||
| */ | */ | ||||
| #include "src/runtime/kernel/arm/int8/argminmax_int8.h" | #include "src/runtime/kernel/arm/int8/argminmax_int8.h" | ||||
| #include <vector> | |||||
| #include "schema/model_generated.h" | #include "schema/model_generated.h" | ||||
| #include "src/kernel_registry.h" | #include "src/kernel_registry.h" | ||||
| #include "nnacl/int8/arg_min_max_int8.h" | |||||
| #include "include/errorcode.h" | |||||
| using mindspore::lite::RET_ERROR; | using mindspore::lite::RET_ERROR; | ||||
| using mindspore::lite::RET_OK; | using mindspore::lite::RET_OK; | ||||
| @@ -31,10 +28,6 @@ using mindspore::schema::PrimitiveType_ArgMin; | |||||
| namespace mindspore::kernel { | namespace mindspore::kernel { | ||||
| int ArgMinMaxInt8CPUKernel::Init() { | int ArgMinMaxInt8CPUKernel::Init() { | ||||
| auto ret = ArgMinMaxBaseCPUKernel::Init(); | |||||
| if (ret != RET_OK) { | |||||
| return ret; | |||||
| } | |||||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | ||||
| param->data_type_ = kNumberTypeInt8; | param->data_type_ = kNumberTypeInt8; | ||||
| auto *input_tensor = in_tensors_.at(kInputIndex); | auto *input_tensor = in_tensors_.at(kInputIndex); | ||||
| @@ -52,7 +45,23 @@ int ArgMinMaxInt8CPUKernel::Init() { | |||||
| return ReSize(); | return ReSize(); | ||||
| } | } | ||||
| int ArgMinMaxInt8CPUKernel::ReSize() { return ArgMinMaxBaseCPUKernel::ReSize(); } | |||||
| int ArgMinMaxInt8CPUKernel::ReSize() { | |||||
| auto in_shape = in_tensors_.at(0)->shape(); | |||||
| auto dims_size = in_shape.size(); | |||||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||||
| int axis = param->axis_ < 0 ? param->axis_ + dims_size : param->axis_; | |||||
| param->axis_ = axis; | |||||
| param->dims_size_ = dims_size; | |||||
| if (param->topk_ <= 0) { | |||||
| MS_LOG(ERROR) << "Invalid topk " << param->topk_; | |||||
| return RET_ERROR; | |||||
| } | |||||
| param->topk_ = MSMIN(param->topk_, in_shape.at(axis)); | |||||
| ComputeStrides(in_shape.data(), param->in_strides_, in_shape.size()); | |||||
| auto out_shape = out_tensors_.at(0)->shape(); | |||||
| ComputeStrides(out_shape.data(), param->out_strides_, out_shape.size()); | |||||
| return RET_OK; | |||||
| } | |||||
| int ArgMinMaxInt8CPUKernel::Run() { | int ArgMinMaxInt8CPUKernel::Run() { | ||||
| auto input = in_tensors_.at(0); | auto input = in_tensors_.at(0); | ||||
| @@ -110,5 +119,4 @@ kernel::LiteKernel *CpuArgMinMaxInt8KernelCreator(const std::vector<lite::Tensor | |||||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_ArgMax, CpuArgMinMaxInt8KernelCreator) | REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_ArgMax, CpuArgMinMaxInt8KernelCreator) | ||||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_ArgMin, CpuArgMinMaxInt8KernelCreator) | REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_ArgMin, CpuArgMinMaxInt8KernelCreator) | ||||
| } // namespace mindspore::kernel | } // namespace mindspore::kernel | ||||
| @@ -17,16 +17,19 @@ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARGMINMAX_INT8_H_ | #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARGMINMAX_INT8_H_ | ||||
| #include <vector> | #include <vector> | ||||
| #include "src/runtime/kernel/arm/base/arg_min_max_base.h" | |||||
| #include "nnacl/quantization/quantize.h" | #include "nnacl/quantization/quantize.h" | ||||
| #include "nnacl/int8/arg_min_max_int8.h" | |||||
| #include "nnacl/arithmetic_common.h" | |||||
| #include "include/errorcode.h" | |||||
| #include "src/lite_kernel.h" | |||||
| namespace mindspore::kernel { | namespace mindspore::kernel { | ||||
| class ArgMinMaxInt8CPUKernel : public ArgMinMaxBaseCPUKernel { | |||||
| class ArgMinMaxInt8CPUKernel : public LiteKernel { | |||||
| public: | public: | ||||
| ArgMinMaxInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | ArgMinMaxInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | ||||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | ||||
| const mindspore::lite::PrimitiveC *primitive) | const mindspore::lite::PrimitiveC *primitive) | ||||
| : ArgMinMaxBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {} | |||||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) {} | |||||
| ~ArgMinMaxInt8CPUKernel() = default; | ~ArgMinMaxInt8CPUKernel() = default; | ||||
| @@ -1,291 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "src/common/log_adapter.h" | |||||
| #include "common/common_test.h" | |||||
| #include "mindspore/lite/nnacl/fp32/arg_min_max_fp32.h" | |||||
| #include "mindspore/lite/nnacl/arg_min_max.h" | |||||
| #include "mindspore/lite/nnacl/arithmetic_common.h" | |||||
| namespace mindspore { | |||||
| class TestArgMinMaxTestFp32 : public mindspore::CommonTest { | |||||
| public: | |||||
| TestArgMinMaxTestFp32() = default; | |||||
| }; | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest1) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {2, 2, 0, 2, 0}; | |||||
| std::vector<int> shape = {3, 5}; | |||||
| float out[5]; | |||||
| ArgMinMaxParameter param; | |||||
| param.topk_ = 1; | |||||
| param.out_value_ = false; | |||||
| param.axis_ = 0; | |||||
| param.data_type_ = 43; | |||||
| param.dims_size_ = 2; | |||||
| param.get_max_ = true; | |||||
| param.keep_dims_ = false; | |||||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||||
| for (size_t i = 0; i < except_out.size(); ++i) { | |||||
| std::cout << out[i] << " "; | |||||
| } | |||||
| std::cout << "\n"; | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest1_keep_dim) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {2, 2, 0, 2, 0}; | |||||
| std::vector<int> shape = {3, 5}; | |||||
| float out[5]; | |||||
| ArgMinMaxParameter param; | |||||
| param.topk_ = 1; | |||||
| param.out_value_ = false; | |||||
| param.axis_ = 0; | |||||
| param.data_type_ = 43; | |||||
| param.dims_size_ = 2; | |||||
| param.get_max_ = true; | |||||
| param.keep_dims_ = true; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(shape[param.axis_] * sizeof(ArgElement))); | |||||
| std::vector<int> out_shape = {1, 5}; | |||||
| ComputeStrides(shape.data(), param.in_strides_, shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||||
| for (size_t i = 0; i < except_out.size(); ++i) { | |||||
| std::cout << out[i] << " "; | |||||
| } | |||||
| std::cout << "\n"; | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest_axis2_keep_dim) { | |||||
| std::vector<float> in = {10, 20, 30, 11, 15, 10, 5, 10, 12, 10, 20, 30, 11, 15, | |||||
| 10, 5, 10, 12, 10, 20, 30, 11, 15, 10, 5, 10, 12}; | |||||
| std::vector<float> except_out = {1, 0, 0, 1, 0, 0, 1, 0, 0}; | |||||
| std::vector<int> shape = {1, 3, 3, 3}; | |||||
| float out[9]; | |||||
| ArgMinMaxParameter param; | |||||
| param.topk_ = 1; | |||||
| param.out_value_ = false; | |||||
| param.axis_ = 2; | |||||
| param.data_type_ = 43; | |||||
| param.dims_size_ = 4; | |||||
| param.get_max_ = true; | |||||
| param.keep_dims_ = true; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(shape[param.axis_] * sizeof(ArgElement))); | |||||
| std::vector<int> out_shape = {1, 3, 1, 3}; | |||||
| ComputeStrides(shape.data(), param.in_strides_, shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||||
| for (size_t i = 0; i < except_out.size(); ++i) { | |||||
| std::cout << out[i] << " "; | |||||
| } | |||||
| std::cout << "\n"; | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest2) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {30, 45, 30, 50, 90}; | |||||
| std::vector<int> shape = {3, 5}; | |||||
| float out[5]; | |||||
| ArgMinMaxParameter param; | |||||
| param.topk_ = 1; | |||||
| param.out_value_ = true; | |||||
| param.axis_ = 0; | |||||
| param.data_type_ = 43; | |||||
| param.dims_size_ = 2; | |||||
| param.get_max_ = true; | |||||
| param.keep_dims_ = false; | |||||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMinTest2) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {10, 11, 15, 1, 30}; | |||||
| std::vector<int> shape = {3, 5}; | |||||
| float out[5]; | |||||
| ArgMinMaxParameter param; | |||||
| param.topk_ = 1; | |||||
| param.out_value_ = true; | |||||
| param.axis_ = 0; | |||||
| param.data_type_ = 43; | |||||
| param.dims_size_ = 2; | |||||
| param.get_max_ = false; | |||||
| param.keep_dims_ = false; | |||||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest3_axis2_out_data) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {30, 45, 30, 50, 90, 20, 20, 25, 40, 50}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 2; | |||||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = true; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {1, 1, 2, 5}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[10]; | |||||
| ArgMaxDim2(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest3_axis2_out_index) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {2, 2, 0, 2, 0, 1, 0, 2, 0, 1}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 2; | |||||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = false; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {1, 1, 2, 5}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[10]; | |||||
| ArgMaxDim2(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest4_axis3_out_data) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {90, 40, 50, 20, 50, 45}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 3; | |||||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = true; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {1, 1, 3, 2}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[6]; | |||||
| ArgMaxDim3(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest4_axis3_out_index) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {4, 3, 4, 0, 3, 1}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 3; | |||||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = false; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {1, 1, 3, 2}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[6]; | |||||
| ArgMaxDim3(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest5_axis1_out_index) { | |||||
| std::vector<float> in = {100, 2, 300, 4, 50, 6, 11, 12, 13, 34, 35, 36, 9, 6, 17, 10, 20, 30, | |||||
| 10, 20, 30, 40, 5, 60, 7, 80, 90, 10, 11, 120, 18, 5, 16, 9, 22, 23}; | |||||
| std::vector<float> except_out = {0, 1, 0, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 1; | |||||
| std::vector<int> in_shape = {2, 3, 2, 3}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = false; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {2, 2, 2, 3}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[24]; | |||||
| ArgMaxDim1(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest5_axis1_out_data) { | |||||
| std::vector<float> in = {100, 2, 300, 4, 50, 6, 11, 12, 13, 34, 35, 36, 9, 6, 17, 10, 20, 30, | |||||
| 10, 20, 30, 40, 5, 60, 7, 80, 90, 10, 11, 120, 18, 5, 16, 9, 22, 23}; | |||||
| std::vector<float> except_out = {100, 12, 300, 34, 50, 36, 11, 6, 17, 10, 35, 30, | |||||
| 18, 80, 90, 40, 22, 120, 10, 20, 30, 10, 11, 60}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 1; | |||||
| std::vector<int> in_shape = {2, 3, 2, 3}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = true; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {2, 2, 2, 3}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[24]; | |||||
| ArgMaxDim1(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest6_axis0_out_index) { | |||||
| std::vector<float> in = {100, 2, 4, 50, 11, 12, 34, 35, 10, 20, 40, 5, 7, 80, 10, 11, 55, 25, 5, 15, 18, 8, 15, 16}; | |||||
| std::vector<float> except_out = {0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 2, 2, 0, 0, 2, 2}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 1; | |||||
| std::vector<int> in_shape = {3, 2, 2, 2}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = false; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {2, 2, 2, 2}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[16]; | |||||
| ArgMaxDim0(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest6_axis0_out_data) { | |||||
| std::vector<float> in = {100, 2, 4, 50, 11, 12, 34, 35, 10, 20, 40, 5, 7, 80, 10, 11, 55, 25, 5, 15, 18, 8, 15, 16}; | |||||
| std::vector<float> except_out = {100, 25, 40, 50, 18, 80, 34, 35, 55, 20, 5, 15, 11, 12, 15, 16}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 1; | |||||
| std::vector<int> in_shape = {3, 2, 2, 2}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = true; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {2, 2, 2, 2}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[16]; | |||||
| ArgMaxDim0(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| TEST_F(TestArgMinMaxTestFp32, ArgMinTest1_axis3_out_data) { | |||||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||||
| std::vector<float> except_out = {10, 20, 1, 11, 25, 30}; | |||||
| ArgMinMaxParameter param; | |||||
| param.axis_ = 3; | |||||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||||
| param.out_value_ = true; | |||||
| param.topk_ = 2; | |||||
| std::vector<int> out_shape = {1, 1, 3, 2}; | |||||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||||
| float out[6]; | |||||
| ArgMinDim3(in.data(), out, in_shape.data(), ¶m); | |||||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||||
| } | |||||
| } // namespace mindspore | |||||
| @@ -1,134 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <iostream> | |||||
| #include "src/common/log_adapter.h" | |||||
| #include "common/common_test.h" | |||||
| #include "mindspore/lite/nnacl/fp32/instance_norm_fp32.h" | |||||
| #include "mindspore/lite/src/kernel_registry.h" | |||||
| #include "mindspore/lite/src/lite_kernel.h" | |||||
| namespace mindspore { | |||||
| class TestInstanceNormFp32 : public mindspore::CommonTest { | |||||
| public: | |||||
| TestInstanceNormFp32() {} | |||||
| }; | |||||
| TEST_F(TestInstanceNormFp32, INTest1) { | |||||
| std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399, | |||||
| -1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344}; | |||||
| std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514}; | |||||
| std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003}; | |||||
| InstanceNormParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_InstanceNorm; | |||||
| op_param.epsilon_ = 0.001f; | |||||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {3}); | |||||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {3}); | |||||
| input0_tensor.set_data(in_data.data()); | |||||
| input1_tensor.set_data(in_data1.data()); | |||||
| input2_tensor.set_data(in_data2.data()); | |||||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||||
| std::vector<float> output(12); | |||||
| std::vector<float> corr_out = {5.0145645, 9.248516, 15.439679, 33.51017, 0.0012711287, 31.0666883, | |||||
| 17.70254, -2.5507483, -8.204435, 2.3031063, -3.8630369, 6.4138837}; | |||||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||||
| output0_tensor.set_data(output.data()); | |||||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| lite::InnerContext ctx; | |||||
| ctx.thread_num_ = 4; | |||||
| ASSERT_EQ(lite::RET_OK, ctx.Init()); | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor.shape(); | |||||
| kernel->Run(); | |||||
| printf("==================output data=================\n"); | |||||
| for (int i = 0; i < output0_tensor.ElementsNum(); i++) { | |||||
| std::cout << output[i] << " ,"; | |||||
| } | |||||
| std::cout << std::endl; | |||||
| ASSERT_EQ(0, CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001)); | |||||
| input0_tensor.set_data(nullptr); | |||||
| input1_tensor.set_data(nullptr); | |||||
| input2_tensor.set_data(nullptr); | |||||
| output0_tensor.set_data(nullptr); | |||||
| } | |||||
| TEST_F(TestInstanceNormFp32, INTest2) { | |||||
| std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399, | |||||
| -1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344, | |||||
| -12.18675, 12.433986, 12.386012, 12.245945, -3.7614849, 15.692399, | |||||
| -2.1983503, -7.6790967, 7.383416, -14.3213005, -9.693595, 10.476344}; | |||||
| std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514, 12.352293, 5.122387, 14.249514}; | |||||
| std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003, 14.632595, 0.70900035, 11.179003}; | |||||
| InstanceNormParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_InstanceNorm; | |||||
| op_param.epsilon_ = 0.001f; | |||||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {2, 2, 2, 3}); | |||||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {2, 3}); | |||||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {2, 3}); | |||||
| input0_tensor.set_data(in_data.data()); | |||||
| input1_tensor.set_data(in_data1.data()); | |||||
| input2_tensor.set_data(in_data2.data()); | |||||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||||
| std::vector<float> output(24); | |||||
| std::vector<float> corr_out = {5.0145645, 9.248516, 15.439679, 33.51017, 0.0012711287, 31.0666883, | |||||
| 17.70254, -2.5507483, -8.204435, 2.3031063, -3.8630369, 6.4138837, | |||||
| 5.133601, 9.310399, 15.439679, 33.886883, -0.22505027, 31.066883, | |||||
| 16.888313, -2.5316327, -8.204435, 2.6215858, -3.717714, 6.4138837}; | |||||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {2, 2, 2, 3}); | |||||
| output0_tensor.set_data(output.data()); | |||||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| lite::InnerContext ctx; | |||||
| ctx.thread_num_ = 4; | |||||
| ASSERT_EQ(lite::RET_OK, ctx.Init()); | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor.shape(); | |||||
| kernel->Run(); | |||||
| printf("==================output data=================\n"); | |||||
| for (int i = 0; i < output0_tensor.ElementsNum(); i++) { | |||||
| std::cout << output[i] << " ,"; | |||||
| } | |||||
| std::cout << std::endl; | |||||
| ASSERT_EQ(0, CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001)); | |||||
| input0_tensor.set_data(nullptr); | |||||
| input1_tensor.set_data(nullptr); | |||||
| input2_tensor.set_data(nullptr); | |||||
| output0_tensor.set_data(nullptr); | |||||
| } | |||||
| } // namespace mindspore | |||||