From: @ling_qiao_min Reviewed-by: @zhang_xue_tong,@zhanghaibo5 Signed-off-by: @zhang_xue_tongtags/v1.1.0
| @@ -1,102 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "nnacl/arg_min_max.h" | |||
| #include "nnacl/fp32/arg_min_max_fp32.h" | |||
| #define FLOAT_DATA_TYPE 43 | |||
| void GetCalcParameter(const int *shape, int dims_number, int axis, int *pre_axis_count, int *axis_count, | |||
| int *after_axis_count) { | |||
| *pre_axis_count = 1; | |||
| for (int i = 0; i < axis; ++i) { | |||
| *pre_axis_count = (*pre_axis_count) * shape[i]; | |||
| } | |||
| *axis_count = shape[axis]; | |||
| *after_axis_count = 1; | |||
| for (int i = axis + 1; i < dims_number; ++i) { | |||
| *after_axis_count = (*after_axis_count) * shape[i]; | |||
| } | |||
| } | |||
| void ArgMinMaxTopk1(const void *input, void *output, const int *shape, const ArgMinMaxParameter *param) { | |||
| int pre_axis_count = 1; | |||
| int axis_count = 1; | |||
| int after_axis_count = 1; | |||
| GetCalcParameter(shape, param->dims_size_, param->axis_, &pre_axis_count, &axis_count, &after_axis_count); | |||
| if (param->data_type_ != FLOAT_DATA_TYPE) { | |||
| return; | |||
| } | |||
| if (param->get_max_) { | |||
| ArgMax(input, output, param, pre_axis_count, axis_count, after_axis_count); | |||
| } else { | |||
| ArgMin(input, output, param, pre_axis_count, axis_count, after_axis_count); | |||
| } | |||
| } | |||
| void ArgMinMaxTopknFp32(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->get_max_) { | |||
| switch (param->axis_) { | |||
| case 0: | |||
| ArgMaxDim0(input, output, in_shape, param); | |||
| break; | |||
| case 1: | |||
| ArgMaxDim1(input, output, in_shape, param); | |||
| break; | |||
| case 2: | |||
| ArgMaxDim2(input, output, in_shape, param); | |||
| break; | |||
| case 3: | |||
| ArgMaxDim3(input, output, in_shape, param); | |||
| break; | |||
| } | |||
| } else { | |||
| switch (param->axis_) { | |||
| case 0: | |||
| ArgMinDim0(input, output, in_shape, param); | |||
| break; | |||
| case 1: | |||
| ArgMinDim1(input, output, in_shape, param); | |||
| break; | |||
| case 2: | |||
| ArgMinDim2(input, output, in_shape, param); | |||
| break; | |||
| case 3: | |||
| ArgMinDim3(input, output, in_shape, param); | |||
| break; | |||
| } | |||
| } | |||
| } | |||
| void ArgMinMax(const void *input, void *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->topk_ == 1) { | |||
| ArgMinMaxTopk1(input, output, in_shape, param); | |||
| return; | |||
| } | |||
| switch (param->data_type_) { | |||
| case FLOAT_DATA_TYPE: { | |||
| ArgMinMaxTopknFp32(input, output, in_shape, param); | |||
| return; | |||
| } | |||
| default: | |||
| break; | |||
| } | |||
| } | |||
| #undef FLOAT_DATA_TYPE | |||
| #undef INT8_DATA_TYPE | |||
| @@ -1,29 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_NNACL_ARG_MIN_MAX_H_ | |||
| #define MINDSPORE_LITE_NNACL_ARG_MIN_MAX_H_ | |||
| #include "nnacl/arg_min_max_parameter.h" | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| void ArgMinMax(const void *input, void *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| #endif // MINDSPORE_LITE_NNACL_ARG_MIN_MAX_H_ | |||
| @@ -43,87 +43,91 @@ int ArgCompareDescFp32(const void *a, const void *b) { | |||
| return 0; | |||
| } | |||
| void ArgMaxDim0OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | |||
| for (int j = 0; j < in_shape[0]; ++j) { | |||
| size_t offset = param->in_strides_[0] * j + i; | |||
| param->arg_elements_[j].index_ = j; | |||
| param->arg_elements_[j].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), ArgCompareDescFp32); | |||
| for (int j = 0; j < param->topk_; ++j) { | |||
| size_t out_offset = j * param->out_strides_[0] + i; | |||
| output[out_offset] = param->arg_elements_[j].data_.f_data_; | |||
| void ArgMaxTopK1(const float *input, float *output, float *output_value, const ArgMinMaxParameter *param, | |||
| int pre_axis_count, int axis_count, int after_axis_count) { | |||
| bool out_value = param->out_value_; | |||
| for (int i = 0; i < pre_axis_count; ++i) { | |||
| size_t output_offset = i * after_axis_count; | |||
| size_t input_offset = output_offset * axis_count; | |||
| for (int j = 0; j < after_axis_count; ++j) { | |||
| float value = -FLT_MAX; | |||
| float index = 0.0f; | |||
| for (int k = 0; k < axis_count; ++k) { | |||
| float value_tmp = input[input_offset + k * after_axis_count + j]; | |||
| if (value_tmp > value) { | |||
| value = value_tmp; | |||
| index = k; | |||
| } | |||
| } | |||
| output[output_offset + j] = out_value ? value : index; | |||
| if (output_value != NULL) { | |||
| output_value[output_offset + j] = value; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMaxDim0OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | |||
| for (int j = 0; j < in_shape[0]; ++j) { | |||
| size_t offset = param->in_strides_[0] * j + i; | |||
| param->arg_elements_[j].index_ = j; | |||
| param->arg_elements_[j].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), ArgCompareDescFp32); | |||
| for (int j = 0; j < param->topk_; ++j) { | |||
| size_t out_offset = j * param->out_strides_[0] + i; | |||
| output[out_offset] = param->arg_elements_[j].index_; | |||
| void ArgMinTopK1(const float *input, float *output, float *output_value, const ArgMinMaxParameter *param, | |||
| int pre_axis_count, int axis_count, int after_axis_count) { | |||
| bool out_value = param->out_value_; | |||
| for (int i = 0; i < pre_axis_count; ++i) { | |||
| size_t output_offset = i * after_axis_count; | |||
| size_t input_offset = output_offset * axis_count; | |||
| for (int j = 0; j < after_axis_count; ++j) { | |||
| float value = FLT_MAX; | |||
| float index = 0.0f; | |||
| for (int k = 0; k < axis_count; ++k) { | |||
| float value_tmp = input[input_offset + k * after_axis_count + j]; | |||
| if (value_tmp < value) { | |||
| value = value_tmp; | |||
| index = k; | |||
| } | |||
| } | |||
| output[output_offset + j] = out_value ? value : index; | |||
| if (output_value != NULL) { | |||
| output_value[output_offset + j] = value; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMinDim0OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | |||
| for (int j = 0; j < in_shape[0]; ++j) { | |||
| size_t offset = param->in_strides_[0] * j + i; | |||
| param->arg_elements_[j].index_ = j; | |||
| param->arg_elements_[j].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), ArgCompareAscFp32); | |||
| for (int j = 0; j < param->topk_; ++j) { | |||
| size_t out_offset = j * param->out_strides_[0] + i; | |||
| output[out_offset] = param->arg_elements_[j].data_.f_data_; | |||
| } | |||
| void GetCalcParameter(const int *shape, int dims_number, int axis, int *pre_axis_count, int *axis_count, | |||
| int *after_axis_count) { | |||
| *pre_axis_count = 1; | |||
| for (int i = 0; i < axis; ++i) { | |||
| *pre_axis_count = (*pre_axis_count) * shape[i]; | |||
| } | |||
| *axis_count = shape[axis]; | |||
| *after_axis_count = 1; | |||
| for (int i = axis + 1; i < dims_number; ++i) { | |||
| *after_axis_count = (*after_axis_count) * shape[i]; | |||
| } | |||
| } | |||
| void ArgMinDim0OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| void ArgMinMaxDim0(const float *input, float *output, float *output_value, const int *in_shape, | |||
| const ArgMinMaxParameter *param, COMPARE_FUNCTION compare_func) { | |||
| for (int32_t i = 0; i < param->in_strides_[0]; ++i) { | |||
| for (int j = 0; j < in_shape[0]; ++j) { | |||
| size_t offset = param->in_strides_[0] * j + i; | |||
| param->arg_elements_[j].index_ = j; | |||
| param->arg_elements_[j].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), ArgCompareAscFp32); | |||
| qsort(param->arg_elements_, in_shape[0], sizeof(ArgElement), *compare_func); | |||
| for (int j = 0; j < param->topk_; ++j) { | |||
| size_t out_offset = j * param->out_strides_[0] + i; | |||
| output[out_offset] = param->arg_elements_[j].index_; | |||
| } | |||
| } | |||
| } | |||
| void ArgMaxDim1OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < param->in_strides_[1]; ++j) { | |||
| for (int k = 0; k < in_shape1; ++k) { | |||
| size_t offset = param->in_strides_[1] * k + in_dim0_offset + j; | |||
| param->arg_elements_[k].index_ = k; | |||
| param->arg_elements_[k].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), ArgCompareDescFp32); | |||
| for (int k = 0; k < param->topk_; ++k) { | |||
| size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | |||
| output[out_offset] = param->arg_elements_[k].data_.f_data_; | |||
| output[out_offset] = param->out_value_ ? param->arg_elements_[j].data_.f_data_ : param->arg_elements_[j].index_; | |||
| if (output_value != NULL) { | |||
| output_value[out_offset] = param->arg_elements_[j].data_.f_data_; | |||
| } | |||
| } | |||
| } | |||
| return; | |||
| } | |||
| void ArgMaxDim1OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| void ArgMinMaxDim1(const float *input, float *output, float *output_value, const int *in_shape, | |||
| const ArgMinMaxParameter *param, COMPARE_FUNCTION compare_func) { | |||
| int in_shape1 = in_shape[1]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| @@ -134,81 +138,21 @@ void ArgMaxDim1OutIndex(const float *input, float *output, const int *in_shape, | |||
| param->arg_elements_[k].index_ = k; | |||
| param->arg_elements_[k].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), ArgCompareDescFp32); | |||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), *compare_func); | |||
| for (int k = 0; k < param->topk_; ++k) { | |||
| size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | |||
| output[out_offset] = param->arg_elements_[k].index_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMinDim1OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < param->in_strides_[1]; ++j) { | |||
| for (int k = 0; k < in_shape1; ++k) { | |||
| size_t offset = param->in_strides_[1] * k + in_dim0_offset + j; | |||
| param->arg_elements_[k].index_ = k; | |||
| param->arg_elements_[k].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), ArgCompareAscFp32); | |||
| for (int k = 0; k < param->topk_; ++k) { | |||
| size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | |||
| output[out_offset] = param->arg_elements_[k].data_.f_data_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMinDim1OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < param->in_strides_[1]; ++j) { | |||
| for (int k = 0; k < in_shape1; ++k) { | |||
| size_t offset = param->in_strides_[1] * k + in_dim0_offset + j; | |||
| param->arg_elements_[k].index_ = k; | |||
| param->arg_elements_[k].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape1, sizeof(ArgElement), ArgCompareAscFp32); | |||
| for (int k = 0; k < param->topk_; ++k) { | |||
| size_t out_offset = out_dim0_offset + j + k * param->out_strides_[1]; | |||
| output[out_offset] = param->arg_elements_[k].index_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMaxDim2OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| int in_shape2 = in_shape[2]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < in_shape1; ++j) { | |||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||
| for (int k = 0; k < param->in_strides_[2]; ++k) { | |||
| for (int l = 0; l < in_shape2; ++l) { | |||
| size_t offset = param->in_strides_[2] * l + k + in_dim1_offset; | |||
| param->arg_elements_[l].index_ = l; | |||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), ArgCompareDescFp32); | |||
| for (int l = 0; l < param->topk_; ++l) { | |||
| size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | |||
| output[out_offset] = param->arg_elements_[l].data_.f_data_; | |||
| output[out_offset] = param->out_value_ ? param->arg_elements_[k].data_.f_data_ : param->arg_elements_[k].index_; | |||
| if (output_value != NULL) { | |||
| output_value[out_offset] = param->arg_elements_[k].data_.f_data_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| return; | |||
| } | |||
| void ArgMaxDim2OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| void ArgMinMaxDim2(const float *input, float *output, float *output_value, const int *in_shape, | |||
| const ArgMinMaxParameter *param, COMPARE_FUNCTION compare_func) { | |||
| int in_shape1 = in_shape[1]; | |||
| int in_shape2 = in_shape[2]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| @@ -223,67 +167,23 @@ void ArgMaxDim2OutIndex(const float *input, float *output, const int *in_shape, | |||
| param->arg_elements_[l].index_ = l; | |||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), ArgCompareDescFp32); | |||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), *compare_func); | |||
| for (int l = 0; l < param->topk_; ++l) { | |||
| size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | |||
| output[out_offset] = param->arg_elements_[l].index_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMinDim2OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| int in_shape2 = in_shape[2]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < in_shape1; ++j) { | |||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||
| for (int k = 0; k < param->in_strides_[2]; ++k) { | |||
| for (int l = 0; l < in_shape2; ++l) { | |||
| size_t offset = param->in_strides_[2] * l + k + in_dim1_offset; | |||
| param->arg_elements_[l].index_ = l; | |||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), ArgCompareAscFp32); | |||
| for (int l = 0; l < param->topk_; ++l) { | |||
| size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | |||
| output[out_offset] = param->arg_elements_[l].data_.f_data_; | |||
| output[out_offset] = | |||
| param->out_value_ ? param->arg_elements_[l].data_.f_data_ : param->arg_elements_[l].index_; | |||
| if (output_value != NULL) { | |||
| output_value[out_offset] = param->arg_elements_[l].data_.f_data_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMinDim2OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| int in_shape2 = in_shape[2]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < in_shape1; ++j) { | |||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||
| for (int k = 0; k < param->in_strides_[2]; ++k) { | |||
| for (int l = 0; l < in_shape2; ++l) { | |||
| size_t offset = param->in_strides_[2] * l + k + in_dim1_offset; | |||
| param->arg_elements_[l].index_ = l; | |||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape2, sizeof(ArgElement), ArgCompareAscFp32); | |||
| for (int l = 0; l < param->topk_; ++l) { | |||
| size_t out_offset = out_dim1_offset + k + l * param->out_strides_[2]; | |||
| output[out_offset] = param->arg_elements_[l].index_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMaxDim3OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| void ArgMinMaxDim3(const float *input, float *output, float *output_value, const int *in_shape, | |||
| const ArgMinMaxParameter *param, COMPARE_FUNCTION compare_func) { | |||
| int in_shape1 = in_shape[1]; | |||
| int in_shape2 = in_shape[2]; | |||
| int in_shape3 = in_shape[3]; | |||
| @@ -301,202 +201,56 @@ void ArgMaxDim3OutValue(const float *input, float *output, const int *in_shape, | |||
| param->arg_elements_[l].index_ = l; | |||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), ArgCompareDescFp32); | |||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), *compare_func); | |||
| for (int l = 0; l < param->topk_; ++l) { | |||
| size_t out_offset = out_dim2_offset + l; | |||
| output[out_offset] = param->arg_elements_[l].data_.f_data_; | |||
| output[out_offset] = | |||
| param->out_value_ ? param->arg_elements_[l].data_.f_data_ : param->arg_elements_[l].index_; | |||
| if (output_value != NULL) { | |||
| output_value[out_offset] = param->arg_elements_[l].data_.f_data_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMaxDim3OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| int in_shape2 = in_shape[2]; | |||
| int in_shape3 = in_shape[3]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < in_shape1; ++j) { | |||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||
| for (int k = 0; k < in_shape2; ++k) { | |||
| size_t in_dim2_offset = k * param->in_strides_[2] + in_dim1_offset; | |||
| size_t out_dim2_offset = k * param->out_strides_[2] + out_dim1_offset; | |||
| for (int l = 0; l < in_shape3; ++l) { | |||
| size_t offset = l + in_dim2_offset; | |||
| param->arg_elements_[l].index_ = l; | |||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), ArgCompareDescFp32); | |||
| for (int l = 0; l < param->topk_; ++l) { | |||
| size_t out_offset = out_dim2_offset + l; | |||
| output[out_offset] = param->arg_elements_[l].index_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMinDim3OutValue(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| int in_shape2 = in_shape[2]; | |||
| int in_shape3 = in_shape[3]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < in_shape1; ++j) { | |||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||
| for (int k = 0; k < in_shape2; ++k) { | |||
| size_t in_dim2_offset = k * param->in_strides_[2] + in_dim1_offset; | |||
| size_t out_dim2_offset = k * param->out_strides_[2] + out_dim1_offset; | |||
| for (int l = 0; l < in_shape3; ++l) { | |||
| size_t offset = l + in_dim2_offset; | |||
| param->arg_elements_[l].index_ = l; | |||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), ArgCompareAscFp32); | |||
| for (int l = 0; l < param->topk_; ++l) { | |||
| size_t out_offset = out_dim2_offset + l; | |||
| output[out_offset] = param->arg_elements_[l].data_.f_data_; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void ArgMinMaxFp32(const float *input, float *output, float *output_value, const int *in_shape, | |||
| const ArgMinMaxParameter *param) { | |||
| if (param->topk_ == 1) { | |||
| int pre_axis_count = 1; | |||
| int axis_count = 1; | |||
| int after_axis_count = 1; | |||
| GetCalcParameter(in_shape, param->dims_size_, param->axis_, &pre_axis_count, &axis_count, &after_axis_count); | |||
| void ArgMinDim3OutIndex(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| int in_shape1 = in_shape[1]; | |||
| int in_shape2 = in_shape[2]; | |||
| int in_shape3 = in_shape[3]; | |||
| for (int i = 0; i < in_shape[0]; ++i) { | |||
| size_t in_dim0_offset = i * param->in_strides_[0]; | |||
| size_t out_dim0_offset = i * param->out_strides_[0]; | |||
| for (int j = 0; j < in_shape1; ++j) { | |||
| size_t in_dim1_offset = j * param->in_strides_[1] + in_dim0_offset; | |||
| size_t out_dim1_offset = j * param->out_strides_[1] + out_dim0_offset; | |||
| for (int k = 0; k < in_shape2; ++k) { | |||
| size_t in_dim2_offset = k * param->in_strides_[2] + in_dim1_offset; | |||
| size_t out_dim2_offset = k * param->out_strides_[2] + out_dim1_offset; | |||
| for (int l = 0; l < in_shape3; ++l) { | |||
| size_t offset = l + in_dim2_offset; | |||
| param->arg_elements_[l].index_ = l; | |||
| param->arg_elements_[l].data_.f_data_ = input[offset]; | |||
| } | |||
| qsort(param->arg_elements_, in_shape3, sizeof(ArgElement), ArgCompareAscFp32); | |||
| for (int l = 0; l < param->topk_; ++l) { | |||
| size_t out_offset = out_dim2_offset + l; | |||
| output[out_offset] = param->arg_elements_[l].index_; | |||
| } | |||
| } | |||
| if (param->get_max_) { | |||
| ArgMaxTopK1(input, output, output_value, param, pre_axis_count, axis_count, after_axis_count); | |||
| } else { | |||
| ArgMinTopK1(input, output, output_value, param, pre_axis_count, axis_count, after_axis_count); | |||
| } | |||
| return; | |||
| } | |||
| } | |||
| void ArgMaxDim0(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->out_value_) { | |||
| ArgMaxDim0OutValue(input, output, in_shape, param); | |||
| } else { | |||
| ArgMaxDim0OutIndex(input, output, in_shape, param); | |||
| } | |||
| } | |||
| void ArgMinDim0(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->out_value_) { | |||
| ArgMinDim0OutValue(input, output, in_shape, param); | |||
| COMPARE_FUNCTION compare_function = NULL; | |||
| if (param->get_max_) { | |||
| compare_function = ArgCompareDescFp32; | |||
| } else { | |||
| ArgMinDim0OutIndex(input, output, in_shape, param); | |||
| compare_function = ArgCompareAscFp32; | |||
| } | |||
| } | |||
| void ArgMaxDim1(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->out_value_) { | |||
| ArgMaxDim1OutValue(input, output, in_shape, param); | |||
| } else { | |||
| ArgMaxDim1OutIndex(input, output, in_shape, param); | |||
| } | |||
| } | |||
| void ArgMinDim1(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->out_value_) { | |||
| ArgMinDim1OutValue(input, output, in_shape, param); | |||
| } else { | |||
| ArgMinDim1OutIndex(input, output, in_shape, param); | |||
| } | |||
| } | |||
| void ArgMaxDim2(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->out_value_) { | |||
| ArgMaxDim2OutValue(input, output, in_shape, param); | |||
| } else { | |||
| ArgMaxDim2OutIndex(input, output, in_shape, param); | |||
| } | |||
| } | |||
| void ArgMinDim2(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->out_value_) { | |||
| ArgMinDim2OutValue(input, output, in_shape, param); | |||
| } else { | |||
| ArgMinDim2OutIndex(input, output, in_shape, param); | |||
| } | |||
| } | |||
| void ArgMaxDim3(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->out_value_) { | |||
| ArgMaxDim3OutValue(input, output, in_shape, param); | |||
| } else { | |||
| ArgMaxDim3OutIndex(input, output, in_shape, param); | |||
| } | |||
| } | |||
| void ArgMinDim3(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param) { | |||
| if (param->out_value_) { | |||
| ArgMinDim3OutValue(input, output, in_shape, param); | |||
| } else { | |||
| ArgMinDim3OutIndex(input, output, in_shape, param); | |||
| } | |||
| } | |||
| void ArgMax(const float *input, float *output, const ArgMinMaxParameter *param, int pre_axis_count, int axis_count, | |||
| int after_axis_count) { | |||
| bool out_value = param->out_value_; | |||
| for (int i = 0; i < pre_axis_count; ++i) { | |||
| size_t output_offset = i * after_axis_count; | |||
| size_t input_offset = output_offset * axis_count; | |||
| for (int j = 0; j < after_axis_count; ++j) { | |||
| float value = -FLT_MAX; | |||
| float index = 0.0f; | |||
| for (int k = 0; k < axis_count; ++k) { | |||
| float value_tmp = input[input_offset + k * after_axis_count + j]; | |||
| if (value_tmp > value) { | |||
| value = value_tmp; | |||
| index = k; | |||
| } | |||
| } | |||
| output[output_offset + j] = out_value ? value : index; | |||
| } | |||
| } | |||
| } | |||
| void ArgMin(const float *input, float *output, const ArgMinMaxParameter *param, int pre_axis_count, int axis_count, | |||
| int after_axis_count) { | |||
| bool out_value = param->out_value_; | |||
| for (int i = 0; i < pre_axis_count; ++i) { | |||
| size_t output_offset = i * after_axis_count; | |||
| size_t input_offset = output_offset * axis_count; | |||
| for (int j = 0; j < after_axis_count; ++j) { | |||
| float value = FLT_MAX; | |||
| float index = 0.0f; | |||
| for (int k = 0; k < axis_count; ++k) { | |||
| float value_tmp = input[input_offset + k * after_axis_count + j]; | |||
| if (value_tmp < value) { | |||
| value = value_tmp; | |||
| index = k; | |||
| } | |||
| } | |||
| output[output_offset + j] = out_value ? value : index; | |||
| } | |||
| switch (param->axis_) { | |||
| case 0: | |||
| ArgMinMaxDim0(input, output, output_value, in_shape, param, compare_function); | |||
| break; | |||
| case 1: | |||
| ArgMinMaxDim1(input, output, output_value, in_shape, param, compare_function); | |||
| break; | |||
| case 2: | |||
| ArgMinMaxDim2(input, output, output_value, in_shape, param, compare_function); | |||
| break; | |||
| case 3: | |||
| ArgMinMaxDim3(input, output, output_value, in_shape, param, compare_function); | |||
| break; | |||
| } | |||
| return; | |||
| } | |||
| @@ -18,21 +18,13 @@ | |||
| #include "nnacl/arg_min_max_parameter.h" | |||
| typedef int (*COMPARE_FUNCTION)(const void *a, const void *b); | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| void ArgMax(const float *input, float *output, const ArgMinMaxParameter *param, int pre_axis_count, int axis_count, | |||
| int after_axis_count); | |||
| void ArgMin(const float *input, float *output, const ArgMinMaxParameter *param, int pre_axis_count, int axis_count, | |||
| int after_axis_count); | |||
| void ArgMaxDim0(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| void ArgMinDim0(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| void ArgMaxDim1(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| void ArgMinDim1(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| void ArgMaxDim2(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| void ArgMinDim2(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| void ArgMaxDim3(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| void ArgMinDim3(const float *input, float *output, const int *in_shape, const ArgMinMaxParameter *param); | |||
| void ArgMinMaxFp32(const float *input, float *output, float *output_value, const int *in_shape, | |||
| const ArgMinMaxParameter *param); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| @@ -1,47 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "nnacl/fp32/instance_norm_fp32.h" | |||
| #include <math.h> | |||
| #include "nnacl/errorcode.h" | |||
| #include "nnacl/op_base.h" | |||
| int InstanceNorm(int outer_size, int inner_size, const float *src_data, const float *scale_data, const float *bias_data, | |||
| const InstanceNormParameter *param, float *dst_data, int task_id, int thread_num) { | |||
| if (src_data == NULL || dst_data == NULL || scale_data == NULL || bias_data == NULL) { | |||
| return NNACL_NULL_PTR; | |||
| } | |||
| for (int j = task_id; j < outer_size; j += thread_num) { | |||
| int offset = (j / param->channel_) * inner_size * param->channel_; | |||
| const float *src = src_data + offset; | |||
| float *dst = dst_data + offset; | |||
| float mean = 0.0f; | |||
| float square_mean = 0.0f; | |||
| for (int i = 0; i < inner_size; i++) { | |||
| int idx = j % param->channel_ + i * param->channel_; | |||
| mean += src[idx]; | |||
| square_mean += src[idx] * src[idx]; | |||
| } | |||
| mean /= (float)inner_size; | |||
| square_mean /= (float)inner_size; | |||
| const float deno = 1 / sqrtf(square_mean - mean * mean + param->epsilon_); | |||
| for (int i = 0; i < inner_size; ++i) { | |||
| int idx = j % param->channel_ + i * param->channel_; | |||
| int scale_idx = (j / param->channel_) * param->channel_ + j % param->channel_; | |||
| dst[idx] = ((src[idx] - mean) * deno) * scale_data[scale_idx] + bias_data[scale_idx]; | |||
| } | |||
| } | |||
| return NNACL_OK; | |||
| } | |||
| @@ -1,32 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||
| #define MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||
| #include "nnacl/op_base.h" | |||
| #include "nnacl/instance_norm_parameter.h" | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| int InstanceNorm(int outer_size, int inner_size, const float *src_data, const float *scale_data, const float *bias_data, | |||
| const InstanceNormParameter *param, float *dst_data, int task_id, int thread_num); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| #endif // MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_ | |||
| @@ -35,6 +35,7 @@ OpParameter *PopulateArgMaxParameter(const mindspore::lite::PrimitiveC *primitiv | |||
| arg_param->axis_type_ = param->GetAxisType(); | |||
| arg_param->out_value_ = param->GetOutMaxValue(); | |||
| arg_param->keep_dims_ = param->GetKeepDims(); | |||
| arg_param->get_max_ = true; | |||
| return reinterpret_cast<OpParameter *>(arg_param); | |||
| } | |||
| @@ -35,6 +35,7 @@ OpParameter *PopulateArgMinParameter(const mindspore::lite::PrimitiveC *primitiv | |||
| arg_param->axis_type_ = param->GetAxisType(); | |||
| arg_param->out_value_ = param->GetOutMaxValue(); | |||
| arg_param->keep_dims_ = param->GetKeepDims(); | |||
| arg_param->get_max_ = false; | |||
| return reinterpret_cast<OpParameter *>(arg_param); | |||
| } | |||
| @@ -1,118 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/runtime/kernel/arm/base/arg_min_max_base.h" | |||
| #include "nnacl/arg_min_max.h" | |||
| #include "src/runtime/kernel/arm/fp32/argminmax_fp32.h" | |||
| #include "nnacl/arithmetic_common.h" | |||
| #include "schema/model_generated.h" | |||
| #include "src/kernel_registry.h" | |||
| #include "include/errorcode.h" | |||
| #include "include/context.h" | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_FORMAT_ERR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::lite::RET_PARAM_INVALID; | |||
| using mindspore::schema::PrimitiveType_ArgMax; | |||
| using mindspore::schema::PrimitiveType_ArgMin; | |||
| namespace mindspore::kernel { | |||
| int ArgMinMaxBaseCPUKernel::Init() { | |||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||
| switch (op_parameter_->type_) { | |||
| case PrimitiveType_ArgMax: | |||
| param->get_max_ = true; | |||
| break; | |||
| case PrimitiveType_ArgMin: | |||
| param->get_max_ = false; | |||
| break; | |||
| default: | |||
| MS_LOG(ERROR) << "Unexpected type " << op_parameter_->type_; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int ArgMinMaxBaseCPUKernel::ReSize() { | |||
| auto in_shape = in_tensors_.at(0)->shape(); | |||
| auto dims_size = in_shape.size(); | |||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||
| int axis = param->axis_ < 0 ? param->axis_ + dims_size : param->axis_; | |||
| param->axis_ = axis; | |||
| param->dims_size_ = dims_size; | |||
| if (param->topk_ <= 0) { | |||
| MS_LOG(ERROR) << "Invalid topk " << param->topk_; | |||
| return RET_PARAM_INVALID; | |||
| } | |||
| param->topk_ = MSMIN(param->topk_, in_shape.at(axis)); | |||
| ComputeStrides(in_shape.data(), param->in_strides_, in_shape.size()); | |||
| auto out_shape = out_tensors_.at(0)->shape(); | |||
| ComputeStrides(out_shape.data(), param->out_strides_, out_shape.size()); | |||
| return RET_OK; | |||
| } | |||
| int ArgMinMaxBaseCPUKernel::Run() { | |||
| auto input_data = in_tensors_.at(0)->MutableData(); | |||
| auto output_data = out_tensors_.at(0)->MutableData(); | |||
| auto shape = in_tensors_.at(0)->shape(); | |||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||
| MS_ASSERT(context_->allocator != nullptr); | |||
| if (param->topk_ > 1 || param->keep_dims_) { | |||
| param->arg_elements_ = | |||
| reinterpret_cast<ArgElement *>(context_->allocator->Malloc(sizeof(ArgElement) * shape[param->axis_])); | |||
| if (param->arg_elements_ == nullptr) { | |||
| MS_LOG(ERROR) << "malloc memroy fail!"; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| ArgMinMax(input_data, output_data, reinterpret_cast<const int *>(shape.data()), param); | |||
| context_->allocator->Free(param->arg_elements_); | |||
| param->arg_elements_ = nullptr; | |||
| return RET_OK; | |||
| } | |||
| kernel::LiteKernel *CpuArgMinMaxFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter, | |||
| const lite::InnerContext *ctx, const kernel::KernelKey &desc, | |||
| const mindspore::lite::PrimitiveC *primitive) { | |||
| if (op_parameter == nullptr) { | |||
| MS_LOG(ERROR) << "Input op_parameter is nullptr!"; | |||
| return nullptr; | |||
| } | |||
| auto kernel = new (std::nothrow) ArgMinMaxCPUKernel(op_parameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "new ArgMinMaxCPUKernel fail!"; | |||
| free(op_parameter); | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: " | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_)); | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ArgMax, CpuArgMinMaxFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ArgMin, CpuArgMinMaxFp32KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -1,41 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_ARG_MIN_MAX_BASE_H_ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_ARG_MIN_MAX_BASE_H_ | |||
| #include <vector> | |||
| #include "src/lite_kernel.h" | |||
| namespace mindspore::kernel { | |||
| class ArgMinMaxBaseCPUKernel : public LiteKernel { | |||
| public: | |||
| ArgMinMaxBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) {} | |||
| virtual ~ArgMinMaxBaseCPUKernel() = default; | |||
| int Init() override; | |||
| int ReSize() override; | |||
| int Run() override; | |||
| private: | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_ARG_MIN_MAX_BASE_H_ | |||
| @@ -15,11 +15,8 @@ | |||
| */ | |||
| #include "src/runtime/kernel/arm/fp32/argminmax_fp32.h" | |||
| #include <vector> | |||
| #include "schema/model_generated.h" | |||
| #include "src/kernel_registry.h" | |||
| #include "nnacl/arg_min_max.h" | |||
| #include "include/errorcode.h" | |||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | |||
| using mindspore::lite::KernelRegistrar; | |||
| @@ -30,22 +27,79 @@ using mindspore::schema::PrimitiveType_ArgMin; | |||
| namespace mindspore::kernel { | |||
| int ArgMinMaxCPUKernel::Init() { | |||
| auto ret = ArgMinMaxBaseCPUKernel::Init(); | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| } | |||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||
| param->data_type_ = kNumberTypeFloat32; | |||
| arg_param_->data_type_ = kNumberTypeFloat32; | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| return ReSize(); | |||
| } | |||
| int ArgMinMaxCPUKernel::ReSize() { return ArgMinMaxBaseCPUKernel::ReSize(); } | |||
| int ArgMinMaxCPUKernel::ReSize() { | |||
| auto in_shape = in_tensors_.at(0)->shape(); | |||
| auto dims_size = in_shape.size(); | |||
| int axis = arg_param_->axis_ < 0 ? arg_param_->axis_ + dims_size : arg_param_->axis_; | |||
| arg_param_->axis_ = axis; | |||
| arg_param_->dims_size_ = dims_size; | |||
| if (arg_param_->topk_ <= 0) { | |||
| MS_LOG(ERROR) << "Invalid topk " << arg_param_->topk_; | |||
| return RET_ERROR; | |||
| } | |||
| arg_param_->topk_ = MSMIN(arg_param_->topk_, in_shape.at(axis)); | |||
| ComputeStrides(in_shape.data(), arg_param_->in_strides_, in_shape.size()); | |||
| auto out_shape = out_tensors_.at(0)->shape(); | |||
| ComputeStrides(out_shape.data(), arg_param_->out_strides_, out_shape.size()); | |||
| return RET_OK; | |||
| } | |||
| int ArgMinMaxCPUKernel::Run() { | |||
| auto ret = ArgMinMaxBaseCPUKernel::Run(); | |||
| return ret; | |||
| float *input_data = reinterpret_cast<float *>(in_tensors_.at(0)->data_c()); | |||
| float *output_data = reinterpret_cast<float *>(out_tensors_.at(0)->data_c()); | |||
| float *output_value = nullptr; | |||
| if (out_tensors_.size() == 2) { | |||
| output_value = reinterpret_cast<float *>(out_tensors_.at(1)->data_c()); | |||
| } | |||
| auto shape = in_tensors_.at(0)->shape(); | |||
| MS_ASSERT(context_->allocator != nullptr); | |||
| if (arg_param_->topk_ > 1 || arg_param_->keep_dims_) { | |||
| arg_param_->arg_elements_ = | |||
| reinterpret_cast<ArgElement *>(context_->allocator->Malloc(sizeof(ArgElement) * shape[arg_param_->axis_])); | |||
| if (arg_param_->arg_elements_ == nullptr) { | |||
| MS_LOG(ERROR) << "malloc memroy fail!"; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| ArgMinMaxFp32(input_data, output_data, output_value, reinterpret_cast<const int *>(shape.data()), arg_param_); | |||
| context_->allocator->Free(arg_param_->arg_elements_); | |||
| arg_param_->arg_elements_ = nullptr; | |||
| return RET_OK; | |||
| } | |||
| kernel::LiteKernel *CpuArgMinMaxFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter, | |||
| const lite::InnerContext *ctx, const kernel::KernelKey &desc, | |||
| const mindspore::lite::PrimitiveC *primitive) { | |||
| if (op_parameter == nullptr) { | |||
| MS_LOG(ERROR) << "Input op_parameter is nullptr!"; | |||
| return nullptr; | |||
| } | |||
| auto kernel = new (std::nothrow) ArgMinMaxCPUKernel(op_parameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "new ArgMinMaxCPUKernel fail!"; | |||
| free(op_parameter); | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: " | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_)); | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ArgMax, CpuArgMinMaxFp32KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ArgMin, CpuArgMinMaxFp32KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -17,21 +17,29 @@ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_ARGMINMAX_H_ | |||
| #include <vector> | |||
| #include "src/runtime/kernel/arm/base/arg_min_max_base.h" | |||
| #include "include/errorcode.h" | |||
| #include "nnacl/fp32/arg_min_max_fp32.h" | |||
| #include "nnacl/arithmetic_common.h" | |||
| #include "src/lite_kernel.h" | |||
| namespace mindspore::kernel { | |||
| class ArgMinMaxCPUKernel : public ArgMinMaxBaseCPUKernel { | |||
| class ArgMinMaxCPUKernel : public LiteKernel { | |||
| public: | |||
| ArgMinMaxCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : ArgMinMaxBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {} | |||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) { | |||
| arg_param_ = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||
| } | |||
| ~ArgMinMaxCPUKernel() = default; | |||
| int Init() override; | |||
| int ReSize() override; | |||
| int Run() override; | |||
| private: | |||
| ArgMinMaxParameter *arg_param_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -1,107 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/runtime/kernel/arm/fp32/instance_norm_fp32.h" | |||
| #include <vector> | |||
| #include "schema/model_generated.h" | |||
| #include "src/kernel_registry.h" | |||
| #include "include/errorcode.h" | |||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | |||
| using mindspore::lite::KernelRegistrar; | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_OK; | |||
| using mindspore::schema::PrimitiveType_InstanceNorm; | |||
| namespace mindspore::kernel { | |||
| int InstanceNormCPUKernel::Init() { | |||
| if (!InferShapeDone()) { | |||
| return RET_OK; | |||
| } | |||
| return ReSize(); | |||
| } | |||
| int InstanceNormCPUKernel::ReSize() { | |||
| auto input_shapes = in_tensors_.front()->shape(); | |||
| auto n_dim = input_shapes.size(); | |||
| outer_size_ = input_shapes.at(0) * input_shapes.at(n_dim - 1); | |||
| inner_size_ = 1; | |||
| for (size_t i = 0; i < n_dim - 1; ++i) { | |||
| inner_size_ *= input_shapes.at(i); | |||
| } | |||
| param_->channel_ = input_shapes.at(n_dim - 1); | |||
| return RET_OK; | |||
| } | |||
| int InstanceNormCPUKernel::DoInstanceNorm(int task_id) { | |||
| int ret = InstanceNorm(outer_size_, inner_size_, src_data_, scale_data_, bias_data_, param_, dst_data_, task_id, | |||
| op_parameter_->thread_num_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "DoInstanceNorm error error_code[" << ret << "]"; | |||
| return ret; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int InstanceNormRun(void *cdata, int task_id) { | |||
| auto kernel = reinterpret_cast<InstanceNormCPUKernel *>(cdata); | |||
| auto ret = kernel->DoInstanceNorm(task_id); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "InstanceNormRun error task_id[" << task_id << "] error_code[" << ret << "]"; | |||
| } | |||
| return ret; | |||
| } | |||
| int InstanceNormCPUKernel::Run() { | |||
| src_data_ = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData()); | |||
| scale_data_ = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData()); | |||
| bias_data_ = reinterpret_cast<float *>(in_tensors_.at(2)->MutableData()); | |||
| dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData()); | |||
| auto ret = ParallelLaunch(this->context_->thread_pool_, InstanceNormRun, this, op_parameter_->thread_num_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "FillRun error error_code[" << ret << "]"; | |||
| return ret; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| kernel::LiteKernel *CpuInstanceNormFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, | |||
| OpParameter *opParameter, const lite::InnerContext *ctx, | |||
| const kernel::KernelKey &desc, | |||
| const mindspore::lite::PrimitiveC *primitive) { | |||
| if (opParameter == nullptr) { | |||
| MS_LOG(ERROR) << "Create kernel failed, opParameter is nullptr, type: PrimitiveType_InstanceNorm. "; | |||
| return nullptr; | |||
| } | |||
| MS_ASSERT(desc.type == schema::PrimitiveType_InstanceNorm); | |||
| auto *kernel = new (std::nothrow) InstanceNormCPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "new InstanceNormCPUKernel fail!"; | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| auto ret = kernel->Init(); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: " | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| delete kernel; | |||
| return nullptr; | |||
| } | |||
| return kernel; | |||
| } | |||
| REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_InstanceNorm, CpuInstanceNormFp32KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -1,53 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||
| #include <vector> | |||
| #include "src/lite_kernel.h" | |||
| #include "include/context.h" | |||
| #include "nnacl/fp32/instance_norm_fp32.h" | |||
| using mindspore::lite::InnerContext; | |||
| namespace mindspore::kernel { | |||
| class InstanceNormCPUKernel : public LiteKernel { | |||
| public: | |||
| InstanceNormCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) { | |||
| param_ = reinterpret_cast<InstanceNormParameter *>(parameter); | |||
| } | |||
| ~InstanceNormCPUKernel() override{}; | |||
| int Init() override; | |||
| int ReSize() override; | |||
| int Run() override; | |||
| int DoInstanceNorm(int thread_id); | |||
| private: | |||
| InstanceNormParameter *param_ = nullptr; | |||
| int outer_size_; | |||
| int inner_size_; | |||
| float *src_data_ = nullptr; | |||
| float *dst_data_ = nullptr; | |||
| float *scale_data_ = nullptr; | |||
| float *bias_data_ = nullptr; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_ | |||
| @@ -14,11 +14,8 @@ | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/runtime/kernel/arm/int8/argminmax_int8.h" | |||
| #include <vector> | |||
| #include "schema/model_generated.h" | |||
| #include "src/kernel_registry.h" | |||
| #include "nnacl/int8/arg_min_max_int8.h" | |||
| #include "include/errorcode.h" | |||
| using mindspore::lite::RET_ERROR; | |||
| using mindspore::lite::RET_OK; | |||
| @@ -31,10 +28,6 @@ using mindspore::schema::PrimitiveType_ArgMin; | |||
| namespace mindspore::kernel { | |||
| int ArgMinMaxInt8CPUKernel::Init() { | |||
| auto ret = ArgMinMaxBaseCPUKernel::Init(); | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| } | |||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||
| param->data_type_ = kNumberTypeInt8; | |||
| auto *input_tensor = in_tensors_.at(kInputIndex); | |||
| @@ -52,7 +45,23 @@ int ArgMinMaxInt8CPUKernel::Init() { | |||
| return ReSize(); | |||
| } | |||
| int ArgMinMaxInt8CPUKernel::ReSize() { return ArgMinMaxBaseCPUKernel::ReSize(); } | |||
| int ArgMinMaxInt8CPUKernel::ReSize() { | |||
| auto in_shape = in_tensors_.at(0)->shape(); | |||
| auto dims_size = in_shape.size(); | |||
| auto param = reinterpret_cast<ArgMinMaxParameter *>(op_parameter_); | |||
| int axis = param->axis_ < 0 ? param->axis_ + dims_size : param->axis_; | |||
| param->axis_ = axis; | |||
| param->dims_size_ = dims_size; | |||
| if (param->topk_ <= 0) { | |||
| MS_LOG(ERROR) << "Invalid topk " << param->topk_; | |||
| return RET_ERROR; | |||
| } | |||
| param->topk_ = MSMIN(param->topk_, in_shape.at(axis)); | |||
| ComputeStrides(in_shape.data(), param->in_strides_, in_shape.size()); | |||
| auto out_shape = out_tensors_.at(0)->shape(); | |||
| ComputeStrides(out_shape.data(), param->out_strides_, out_shape.size()); | |||
| return RET_OK; | |||
| } | |||
| int ArgMinMaxInt8CPUKernel::Run() { | |||
| auto input = in_tensors_.at(0); | |||
| @@ -110,5 +119,4 @@ kernel::LiteKernel *CpuArgMinMaxInt8KernelCreator(const std::vector<lite::Tensor | |||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_ArgMax, CpuArgMinMaxInt8KernelCreator) | |||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_ArgMin, CpuArgMinMaxInt8KernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -17,16 +17,19 @@ | |||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARGMINMAX_INT8_H_ | |||
| #include <vector> | |||
| #include "src/runtime/kernel/arm/base/arg_min_max_base.h" | |||
| #include "nnacl/quantization/quantize.h" | |||
| #include "nnacl/int8/arg_min_max_int8.h" | |||
| #include "nnacl/arithmetic_common.h" | |||
| #include "include/errorcode.h" | |||
| #include "src/lite_kernel.h" | |||
| namespace mindspore::kernel { | |||
| class ArgMinMaxInt8CPUKernel : public ArgMinMaxBaseCPUKernel { | |||
| class ArgMinMaxInt8CPUKernel : public LiteKernel { | |||
| public: | |||
| ArgMinMaxInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx, | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : ArgMinMaxBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {} | |||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) {} | |||
| ~ArgMinMaxInt8CPUKernel() = default; | |||
| @@ -1,291 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "src/common/log_adapter.h" | |||
| #include "common/common_test.h" | |||
| #include "mindspore/lite/nnacl/fp32/arg_min_max_fp32.h" | |||
| #include "mindspore/lite/nnacl/arg_min_max.h" | |||
| #include "mindspore/lite/nnacl/arithmetic_common.h" | |||
| namespace mindspore { | |||
| class TestArgMinMaxTestFp32 : public mindspore::CommonTest { | |||
| public: | |||
| TestArgMinMaxTestFp32() = default; | |||
| }; | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest1) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {2, 2, 0, 2, 0}; | |||
| std::vector<int> shape = {3, 5}; | |||
| float out[5]; | |||
| ArgMinMaxParameter param; | |||
| param.topk_ = 1; | |||
| param.out_value_ = false; | |||
| param.axis_ = 0; | |||
| param.data_type_ = 43; | |||
| param.dims_size_ = 2; | |||
| param.get_max_ = true; | |||
| param.keep_dims_ = false; | |||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||
| for (size_t i = 0; i < except_out.size(); ++i) { | |||
| std::cout << out[i] << " "; | |||
| } | |||
| std::cout << "\n"; | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest1_keep_dim) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {2, 2, 0, 2, 0}; | |||
| std::vector<int> shape = {3, 5}; | |||
| float out[5]; | |||
| ArgMinMaxParameter param; | |||
| param.topk_ = 1; | |||
| param.out_value_ = false; | |||
| param.axis_ = 0; | |||
| param.data_type_ = 43; | |||
| param.dims_size_ = 2; | |||
| param.get_max_ = true; | |||
| param.keep_dims_ = true; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(shape[param.axis_] * sizeof(ArgElement))); | |||
| std::vector<int> out_shape = {1, 5}; | |||
| ComputeStrides(shape.data(), param.in_strides_, shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||
| for (size_t i = 0; i < except_out.size(); ++i) { | |||
| std::cout << out[i] << " "; | |||
| } | |||
| std::cout << "\n"; | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest_axis2_keep_dim) { | |||
| std::vector<float> in = {10, 20, 30, 11, 15, 10, 5, 10, 12, 10, 20, 30, 11, 15, | |||
| 10, 5, 10, 12, 10, 20, 30, 11, 15, 10, 5, 10, 12}; | |||
| std::vector<float> except_out = {1, 0, 0, 1, 0, 0, 1, 0, 0}; | |||
| std::vector<int> shape = {1, 3, 3, 3}; | |||
| float out[9]; | |||
| ArgMinMaxParameter param; | |||
| param.topk_ = 1; | |||
| param.out_value_ = false; | |||
| param.axis_ = 2; | |||
| param.data_type_ = 43; | |||
| param.dims_size_ = 4; | |||
| param.get_max_ = true; | |||
| param.keep_dims_ = true; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(shape[param.axis_] * sizeof(ArgElement))); | |||
| std::vector<int> out_shape = {1, 3, 1, 3}; | |||
| ComputeStrides(shape.data(), param.in_strides_, shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||
| for (size_t i = 0; i < except_out.size(); ++i) { | |||
| std::cout << out[i] << " "; | |||
| } | |||
| std::cout << "\n"; | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest2) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {30, 45, 30, 50, 90}; | |||
| std::vector<int> shape = {3, 5}; | |||
| float out[5]; | |||
| ArgMinMaxParameter param; | |||
| param.topk_ = 1; | |||
| param.out_value_ = true; | |||
| param.axis_ = 0; | |||
| param.data_type_ = 43; | |||
| param.dims_size_ = 2; | |||
| param.get_max_ = true; | |||
| param.keep_dims_ = false; | |||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMinTest2) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {10, 11, 15, 1, 30}; | |||
| std::vector<int> shape = {3, 5}; | |||
| float out[5]; | |||
| ArgMinMaxParameter param; | |||
| param.topk_ = 1; | |||
| param.out_value_ = true; | |||
| param.axis_ = 0; | |||
| param.data_type_ = 43; | |||
| param.dims_size_ = 2; | |||
| param.get_max_ = false; | |||
| param.keep_dims_ = false; | |||
| ArgMinMax(in.data(), out, shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.000001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest3_axis2_out_data) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {30, 45, 30, 50, 90, 20, 20, 25, 40, 50}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 2; | |||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = true; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {1, 1, 2, 5}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[10]; | |||
| ArgMaxDim2(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest3_axis2_out_index) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {2, 2, 0, 2, 0, 1, 0, 2, 0, 1}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 2; | |||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = false; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {1, 1, 2, 5}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[10]; | |||
| ArgMaxDim2(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest4_axis3_out_data) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {90, 40, 50, 20, 50, 45}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 3; | |||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = true; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {1, 1, 3, 2}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[6]; | |||
| ArgMaxDim3(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest4_axis3_out_index) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {4, 3, 4, 0, 3, 1}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 3; | |||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = false; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {1, 1, 3, 2}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[6]; | |||
| ArgMaxDim3(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest5_axis1_out_index) { | |||
| std::vector<float> in = {100, 2, 300, 4, 50, 6, 11, 12, 13, 34, 35, 36, 9, 6, 17, 10, 20, 30, | |||
| 10, 20, 30, 40, 5, 60, 7, 80, 90, 10, 11, 120, 18, 5, 16, 9, 22, 23}; | |||
| std::vector<float> except_out = {0, 1, 0, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 1; | |||
| std::vector<int> in_shape = {2, 3, 2, 3}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = false; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {2, 2, 2, 3}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[24]; | |||
| ArgMaxDim1(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest5_axis1_out_data) { | |||
| std::vector<float> in = {100, 2, 300, 4, 50, 6, 11, 12, 13, 34, 35, 36, 9, 6, 17, 10, 20, 30, | |||
| 10, 20, 30, 40, 5, 60, 7, 80, 90, 10, 11, 120, 18, 5, 16, 9, 22, 23}; | |||
| std::vector<float> except_out = {100, 12, 300, 34, 50, 36, 11, 6, 17, 10, 35, 30, | |||
| 18, 80, 90, 40, 22, 120, 10, 20, 30, 10, 11, 60}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 1; | |||
| std::vector<int> in_shape = {2, 3, 2, 3}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = true; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {2, 2, 2, 3}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[24]; | |||
| ArgMaxDim1(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest6_axis0_out_index) { | |||
| std::vector<float> in = {100, 2, 4, 50, 11, 12, 34, 35, 10, 20, 40, 5, 7, 80, 10, 11, 55, 25, 5, 15, 18, 8, 15, 16}; | |||
| std::vector<float> except_out = {0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 2, 2, 0, 0, 2, 2}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 1; | |||
| std::vector<int> in_shape = {3, 2, 2, 2}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = false; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {2, 2, 2, 2}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[16]; | |||
| ArgMaxDim0(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMaxTest6_axis0_out_data) { | |||
| std::vector<float> in = {100, 2, 4, 50, 11, 12, 34, 35, 10, 20, 40, 5, 7, 80, 10, 11, 55, 25, 5, 15, 18, 8, 15, 16}; | |||
| std::vector<float> except_out = {100, 25, 40, 50, 18, 80, 34, 35, 55, 20, 5, 15, 11, 12, 15, 16}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 1; | |||
| std::vector<int> in_shape = {3, 2, 2, 2}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = true; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {2, 2, 2, 2}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[16]; | |||
| ArgMaxDim0(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| TEST_F(TestArgMinMaxTestFp32, ArgMinTest1_axis3_out_data) { | |||
| std::vector<float> in = {10, 20, 30, 40, 90, 20, 11, 15, 1, 50, 30, 45, 25, 50, 30}; | |||
| std::vector<float> except_out = {10, 20, 1, 11, 25, 30}; | |||
| ArgMinMaxParameter param; | |||
| param.axis_ = 3; | |||
| std::vector<int> in_shape = {1, 1, 3, 5}; | |||
| param.arg_elements_ = reinterpret_cast<ArgElement *>(malloc(in_shape[param.axis_] * sizeof(ArgElement))); | |||
| param.out_value_ = true; | |||
| param.topk_ = 2; | |||
| std::vector<int> out_shape = {1, 1, 3, 2}; | |||
| ComputeStrides(in_shape.data(), param.in_strides_, in_shape.size()); | |||
| ComputeStrides(out_shape.data(), param.out_strides_, out_shape.size()); | |||
| float out[6]; | |||
| ArgMinDim3(in.data(), out, in_shape.data(), ¶m); | |||
| ASSERT_EQ(0, CompareOutputData(out, except_out.data(), except_out.size(), 0.00001)); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -1,134 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <iostream> | |||
| #include "src/common/log_adapter.h" | |||
| #include "common/common_test.h" | |||
| #include "mindspore/lite/nnacl/fp32/instance_norm_fp32.h" | |||
| #include "mindspore/lite/src/kernel_registry.h" | |||
| #include "mindspore/lite/src/lite_kernel.h" | |||
| namespace mindspore { | |||
| class TestInstanceNormFp32 : public mindspore::CommonTest { | |||
| public: | |||
| TestInstanceNormFp32() {} | |||
| }; | |||
| TEST_F(TestInstanceNormFp32, INTest1) { | |||
| std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399, | |||
| -1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344}; | |||
| std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514}; | |||
| std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003}; | |||
| InstanceNormParameter op_param; | |||
| op_param.op_parameter_.type_ = schema::PrimitiveType_InstanceNorm; | |||
| op_param.epsilon_ = 0.001f; | |||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {3}); | |||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {3}); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input2_tensor.set_data(in_data2.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||
| std::vector<float> output(12); | |||
| std::vector<float> corr_out = {5.0145645, 9.248516, 15.439679, 33.51017, 0.0012711287, 31.0666883, | |||
| 17.70254, -2.5507483, -8.204435, 2.3031063, -3.8630369, 6.4138837}; | |||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| output0_tensor.set_data(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| ASSERT_NE(creator, nullptr); | |||
| lite::InnerContext ctx; | |||
| ctx.thread_num_ = 4; | |||
| ASSERT_EQ(lite::RET_OK, ctx.Init()); | |||
| kernel::LiteKernel *kernel = | |||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||
| ASSERT_NE(kernel, nullptr); | |||
| auto output_tensor_shape = output0_tensor.shape(); | |||
| kernel->Run(); | |||
| printf("==================output data=================\n"); | |||
| for (int i = 0; i < output0_tensor.ElementsNum(); i++) { | |||
| std::cout << output[i] << " ,"; | |||
| } | |||
| std::cout << std::endl; | |||
| ASSERT_EQ(0, CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001)); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| input2_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestInstanceNormFp32, INTest2) { | |||
| std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399, | |||
| -1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344, | |||
| -12.18675, 12.433986, 12.386012, 12.245945, -3.7614849, 15.692399, | |||
| -2.1983503, -7.6790967, 7.383416, -14.3213005, -9.693595, 10.476344}; | |||
| std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514, 12.352293, 5.122387, 14.249514}; | |||
| std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003, 14.632595, 0.70900035, 11.179003}; | |||
| InstanceNormParameter op_param; | |||
| op_param.op_parameter_.type_ = schema::PrimitiveType_InstanceNorm; | |||
| op_param.epsilon_ = 0.001f; | |||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {2, 2, 2, 3}); | |||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {2, 3}); | |||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {2, 3}); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input2_tensor.set_data(in_data2.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||
| std::vector<float> output(24); | |||
| std::vector<float> corr_out = {5.0145645, 9.248516, 15.439679, 33.51017, 0.0012711287, 31.0666883, | |||
| 17.70254, -2.5507483, -8.204435, 2.3031063, -3.8630369, 6.4138837, | |||
| 5.133601, 9.310399, 15.439679, 33.886883, -0.22505027, 31.066883, | |||
| 16.888313, -2.5316327, -8.204435, 2.6215858, -3.717714, 6.4138837}; | |||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {2, 2, 2, 3}); | |||
| output0_tensor.set_data(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| ASSERT_NE(creator, nullptr); | |||
| lite::InnerContext ctx; | |||
| ctx.thread_num_ = 4; | |||
| ASSERT_EQ(lite::RET_OK, ctx.Init()); | |||
| kernel::LiteKernel *kernel = | |||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||
| ASSERT_NE(kernel, nullptr); | |||
| auto output_tensor_shape = output0_tensor.shape(); | |||
| kernel->Run(); | |||
| printf("==================output data=================\n"); | |||
| for (int i = 0; i < output0_tensor.ElementsNum(); i++) { | |||
| std::cout << output[i] << " ,"; | |||
| } | |||
| std::cout << std::endl; | |||
| ASSERT_EQ(0, CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001)); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| input2_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||